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ABSTRACT 

This paper presents detailed comparisons and analysis of 

various single source shortest path algorithms. The paper 

proposes comparison among these algorithms on the basis of 

execution time taken by the algorithms to completely find the 

shortest path to all the nodes from a starting node. The 

algorithms have been analyzed on the various parameters: 

number of vertices, number of edges, and structure of the 

graph. This analysis will help in selecting the appropriate 

algorithm to be used in solving a particular real-life problem. 

This paper also proposes an algorithm that works efficiently 

over all types of the graph. 
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1. INTRODUCTION 
Shortest path problem [1] is the problem of finding a path 

between two vertices in a graph such that the sum of the 

weights of its constituent edges is minimized. Without the use 

of shortest path algorithms, the naïve approach for finding the 

shortest path between two vertices is to enumerate all possible 

paths between the vertices and select the shortest one i.e. brute 

force. However for the various domain specific applications 

of the shortest path problem, brute force approach is not 

feasible and hence require more optimal solution i.e. the 

shortest path algorithms. The aim of shortest path algorithms 

is to find the shortest path among all paths available between 

the pair of vertices. Some shortest path algorithms works only 

over the non-negative weighted graphs while some can works 

with negative weighted graphs too. Also the distinction 

between the algorithms is made by whether these are single 

source shortest path (SSSP) or all pair shortest path algorithm 

(APSP). This paper focuses on single source shortest path 

algorithms for the non-negative weighted graphs. Some of the 

shortest path algorithms are greedy in nature while some uses 

the dynamic programming. The shortest path algorithms 

works over the principle of relaxation. In such algorithms, 

optimization is based on the number of times relaxation is 

performed during the execution. Various real life applications 

of shortest path algorithms are finding the shortest route 

between the two places, social network analysis (SNA) to 

calculate degree of separation between two users on a social 

networking medium and so on. This paper compares the set of 

algorithms among themselves on the basis of execution time 

on datasets of different types. 

2. SET OF SHORTEST PATH 

ALGORITHMS UNDER ANALYSIS 

2.1 Bellman-Ford Algorithm 
Bellman-Ford algorithm [2] uses the principle of edge-based 

relaxation. In every iteration it relaxes all the edges and these 

iterations are done V-1 times as the maximum number of 

edges in the shortest path between two vertices are V-1, where 

V is the number of vertices in the graph. If the relaxation can 

be done more than V-1 times, it indicates the presence of the 

negative cycles. The worst case complexity of this algorithm 

is O(VE). 

2.2 Dijkstra Algorithm 
Dijsktra algorithm [3] uses the same principle of relaxation as 

Bellman-Ford algorithm. It works over the graph with non-

negative weighted edges only. In every iteration, it greedily 

chooses the vertex which is not selected before and has 

minimum cost. It tries to relax vertices through the selected 

vertex. Selection of vertex with minimum cost primarily 

affects the complexity of algorithm. In case of binary heap, 

worst case complexity of this algorithm is O(E logV). We are 

also considering an implementation of Dijkstra [4] which 

fastens the performance in case where the number of distinct 

weighted edges is less. 

2.3 Pape-Levit Algorithm 
Pape-Levit [5] is an incremental graph algorithm, where the 

two sets of vertices are maintained. One set of vertices 

contains those vertices which are scanned at least once while 

the second set contains those vertices which have never been 

scanned. The priority is given to first set for selection of 

vertex. The worst case complexity of this algorithm is O(VE). 

It works quite fast on the randomly weighted graphs. 

2.4 SPFA 
The Shortest Path Faster Algorithm (SPFA) [6] is an 

improvement of the Bellman–Ford algorithm which computes 

single-source shortest paths in a weighted directed graph. The 

algorithm is believed to work well on random sparse graphs 

and is particularly suitable for graphs that contain negative-

weight edges. The performance of the algorithm is strongly 

determined by the order in which candidate vertices are used 

to relax other vertices. 

2.5 Proposed Algorithm 
As the performance of some algorithms highly depends over 

the order in which candidate vertices are used to relax the 

other vertices, we can see the linear time performance over the 

various type of graph structures while  it also goes to O(VE) 

worst case time complexity. On the other hand, algorithms 

like the Dijkstra gives O(E logV) time complexity on every 

type of graph structure. This proposed algorithm harnesses the 



International Journal of Computer Applications (0975 – 8887) 

Volume 163 – No 8, April 2017 

47 

power of both the algorithms. Proposed solution uses SPFA 

upto a certain limit of operations and if the shortest path is not 

found it moves to Dijkstra algorithm and the intermediate 

information produced by SPFA can be used to fasten the 

computation of Dijkstra algorithm. Let the transition factor be 

µ. Proposed solution uses SPFA till µ*(V+E) operations, after 

this it transits to Dijkstra. The value of transition factor (µ) 

will decide how fast the transition between these two 

algorithms happens. This algorithm will reduce the average 

time for finding the shortest path on a general graph. 

 

Proposed Algorithm : 

Input : Adjacency list of graph and source vertex. 

Output : Distance array containing length of shortest path 

from source to every other vertex. 

 

transitionOperationCount := µ*(V+E) 

for i : = 1 to V, 

 distance(i) :=  ∞ 
operationCount := 0 

while operationCount <= transitionOperationCount, 

 perform SPFA 

 for each en-queuing operation, 

  operationCount++ 

if shortest path is not found, 

 perform Dijkstra 

end 

Description of the algorithm – 

„:=‟ denotes the assignment operation, while x++ denotes 

incrementing value of x by 1. This algorithm has an important 

factor (µ) which we termed as the transition factor. This 

transition factor decides how fast it moves from SPFA to the 

Dijkstra. If this factor is small then it moves to the Dijkstra 

quite fast, but if this factor is high it ends up using SPFA all 

the time. So a moderate value is required for this factor. Our 

algorithm runs SPFA algorithm for the µ*(V+E) operations, 

after that if it does not able to find the shortest path it moves 

to the Dijkstra algorithm. In best case it finds the shortest path 

in the time of SPFA itself, while in the worst case it ends up 

using both the algorithms. So asymptotically best case of this 

proposed algorithm is O(µ*(V+E)) while worst case is 

O((V+E)*(logV+µ)). In general case it is assumed that µ is a 

small constant value. In the experimental analysis three 

different values of µ are considered. 

3. ANALYSIS 

3.1 Experiment Specifications 
The tests were run on Intel Core i33217U @1.80 GHz CPU 

(CPU family 6, Model A, Stepping 9). Number of CPU(s) and 

socket is 1 having 2 Thread(s) per core and 2 Core(s) per 

socket. The algorithms were tested in presence of 64K L1d 

cache, 64K of L1i cache, 512K of L2 cache, 3072K of L3 

cache, and 4GB DDR3 RAM. The system had Intel HD 4000 

Graphics with 349MHz GPU clock. Byte Order of CPU used 

is Little Endian. The computer was running Windows 10 64-

bit. All programs were written in C++ programming language 

with g++ compiler 4.8.4 producing x86_64 “64-bit” code.  

 

 

3.2 Analysis Specification  
The types of datasets used for the analysis of algorithms were: 

Some random datasets that were generated using the Prüfer 

sequence [7] consisting of various vertices and edge count. 

With the use of Prüfer sequence [7], generation of test data for 

trees can be done in equi-probable manner. In the random 

datasets we generated different structures like trees and graph, 

having vertices count from 10,000 to 10,000,000. For 

complete graphs, vertices count is varied from 100 to 5000. 

Along with random graph structures, some special graphs [8] 

are also generated which lead to the worst case for various 

algorithms. Experiments uses some datasets from DIMACS 

Implementation Challenge - Shortest Paths [9] (Northeast 

USA) containing 1,524,453 nodes and 3,897,636 edges. 

Along with this datasets from Stanford Large Network 

Dataset [10] Collection were included; one is the YouTube 

online social network containing 1,134,890 vertices and 

2,987,624 edges, other one is the Amazon product co-

purchasing network from June 1 2003 containing 403,394 

vertices and 3,387,388 edges. The analysis report is based on: 

the execution time taken by algorithms on all the above 

mentioned datasets. 

4. EXPERIMENTAL RESULTS  
This analysis report is based on the execution time taken by 

algorithms on all the above mentioned parameters working 

with the above mentioned datasets. The resultant execution 

time is calculated as shown in Table 1 along with its graphical 

representation in Figure 1. Datasets were taken from 9th 

DIMACS implementation: shortest path – Northeast USA, 

Stanford large network dataset collection – YouTube 

community, Amazon sales co-purchasing network from June 

1, 2003. 

4.1 Analysis on Trees 
Table 1 shows analysis of various algorithms on trees with 

different number of nodes. Figure 1 shows graph of execution 

time on different number of vertices in tree. 

4.2 Analysis on Randomistic graphs 
Table 2 shows analysis of various algorithms on randomistic 

graphs with different number of nodes and edges. 

4.3 Analysis on Complete graphs 
Table 3 shows analysis of various algorithms on complete 

graphs with different number of nodes. Figure 2 shows graph 

of execution time on different number of vertices in complete 

graph. 

4.4 Analysis on Special graphs 
Table 4 shows analysis of various algorithms on Special 

graphs with different number of nodes. Figure 3 shows graph 

of execution time on different number of vertices in special 

graph. 

4.5 Analysis on Benchmarking Datasets 
Table 5 shows analysis of various algorithms on 

benchmarking graphs. Figure 4 shows execution time on 

DIMAC distance based dataset. Figure 5 shows execution 

time on DIMAC time based dataset. Figure 6 shows execution 

time on Amazon co-purchasing dataset. Figure 7 shows 

execution time on YouTube community dataset. 
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Table 1: Showing the execution time of the algorithms on tree

 

Figure 1: Graph showing execution time vs. number of vertices in tree 

Table 2: Showing the execution time of the algorithms on graphs  

 Set of algorithms  
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Number 

of edges 
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Heap) 

Dijkstra 

(Edge 

based) 

Pape-

Levit SPFA 

Proposed 

Algorithm 

(µ = 1) 

Proposed 

Algorithm 

(µ = 2) 

Proposed 

Algorithm 

(µ = 3) 

10000 30000 0.0200 0.0770 0.3060 0.1900 0.0370 0.1150 0.1150 0.0850 

10000 40000 0.0240 0.0750 0.2620 0.2820 0.0300 0.0960 0.0820 0.0730 
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 Set of algorithms 

Ex
ec
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ti

o
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 t
im

e 
(i

n
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n
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s)
 

 Bellman-

Ford 

Dijkstra 

(Binary 

Heap) 

Dijkstra 

(Edge 

based) 

Pape-

Levit 

SPFA Proposed 

Algorithm 

(µ = 1) 

Proposed 

Algorithm 

(µ = 2) 

Proposed 

Algorithm 

(µ = 3) 

10000 0.0400 0.0350 0.1380 0.0020 0.0050 0.0060 0.0070 0.0040 

50000 0.4510 0.1220 0.6020 0.0420 0.0210 0.0260 0.0240 0.0300 

100000 0.7970 0.2880 0.8540 0.0880 0.0490 0.0560 0.0550 0.0620 

500000 6.6220 1.6870 3.1460 0.3700 0.3280 0.3490 0.3190 0.3310 

1000000 23.5760 3.5230 5.8320 0.7990 0.6770 0.7040 0.6970 0.7230 

5000000 80.4500 22.8310 34.3050 5.0920 4.2270 3.6200 4.3780 4.5780 

10000000 - 50.5150 - 13.5350 10.9730 13.3140 11.6240 10.6110 
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10000 50000 0.0310 0.0810 0.3030 0.4980 0.0360 0.1210 0.1060 0.1000 

100000 300000 0.2110 0.8330 1.7370 15.6010 0.5730 1.2670 1.2520 1.1550 

100000 400000 0.2900 0.7560 1.9650 33.4720 1.0100 1.5580 1.6560 1.8150 

100000 500000 0.5030 1.0560 1.9810 33.9610 0.8640 1.3890 1.4270 1.3800 

1000000 3000000 2.2170 8.2320 13.1330 - 8.0270 14.5790 12.5150 15.7310 

1000000 4000000 4.5570 9.2260 14.0800 - 8.9250 15.6860 16.8670 15.9590 

1000000 5000000 4.2640 10.4900 19.8210 - 15.2440 17.3900 13.0030 13.3360 

Table 3: Showing the execution time of the algorithms on complete graphs 

 Set of Algorithms 

E
x
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u
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o
n
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(i
n
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o
n
d
s)

 

Number of 

Vertices 

Bellman-

Ford 

Dijkstra 

(Binary 

Heap) 

Dijkstra 

(Edge 

based) Pape-Levit SPFA 

Proposed 

Algorithm 

(µ = 1) 

Proposed 

Algorithm 

(µ = 2) 

Proposed 

Algorithm 

(µ = 3) 

300 0.0160 0.0000 0.0160 0.0620 0.0310 0.0160 0.0000 0.0000 

600 0.0310 0.0160 0.0780 0.7500 0.1100 0.0320 0.0250 0.0250 

1000 0.1090 0.0510 0.2190 5.0910 0.5320 0.1530 0.1150 0.1150 

3000 2.0720 0.4870 2.8640 134.8480 6.5170 0.5060 0.8270 0.8270 

5000 4.8120 0.7860 5.9740 - 16.2580 1.8700 2.2150 2.2150 

 

 

Figure 2: Graph showing execution time vs. number of vertices in complete graph 

 

 

 

0

5

10

15

20

25

300 600 1000 3000 5000

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Number of vertices

Bellman-Ford

Dijkstra (Binary Heap)

Dijkstra (Edge based)

Pape-Levit

SPFA

Proposed Algorithm (µ = 1)

Proposed Algorithm (µ = 2)

Proposed Algorithm (µ = 3)



International Journal of Computer Applications (0975 – 8887) 

Volume 163 – No 8, April 2017 

50 

Table 4: Showing the execution time of the algorithms on special graphs 

 Set of Algorithms 

E
x
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Number of 

Vertices 

Bellman-

Ford 
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(Binary 

Heap) 

Dijkstra 

(Edge based) Pape-Levit SPFA 

Proposed 

Algorithm (µ 

= 1) 

Proposed 

Algorithm (µ 

= 2) 

Proposed 

Algorithm (µ 

= 3) 

100 0.0000 0.0190 0.0400 0.0200 0.0160 0.0040 0.0020 0.0010 

300 0.0030 0.2260 0.6460 0.4430 0.5200 0.0400 0.0080 0.0090 

600 0.0100 0.8100 4.7360 3.5010 3.4940 0.1970 0.0370 0.0470 

1000 0.0340 2.3880 20.1700 18.5500 16.2490 0.5530 0.0850 0.0950 

3000 0.2880 28.1930 - - - 4.6220 0.5950 0.7190 

5000 2.7350 88.9080 - - - 19.7420 2.2980 2.9660 

 

 

Figure 3: Graph showing execution time vs. number of vertices in special graph 

Table 5: Showing the execution time of the algorithms on benchmarking datasets 
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Youtube 

Communties 
3.6290 12.2210 16.935 4.5170 13.1500 9.8760 9.5000 

Amazon 

Purchasing 

Network 

1.2730 3.3360 4.3660 2.3650 5.9210 5.1170 4.4140 

 

 

Figure 4: Graph showing execution time on the DIMAC 

(NE USA) distance based dataset 

Figure 6: Graph showing execution time on the SNAP 

Amazon co-purchasing network based dataset 

 
 

Figure 5: Graph showing execution time on the DIMAC 

(NE USA) time based dataset 

 

Figure 7: Graph showing execution time on the SNAP 

YouTube Communities based dataset 
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5. CONCLUSIONS 
It can be seen from the aforementioned analysis that for 

different datasets, all algorithms under analysis perform 

differently i.e. certain algorithms perform better as compared 

to others. For random graphs, SPFA outperforms all the other 

algorithms while for the general graphs the performance 

degrades. Performance of algorithms like SPFA highly 

depends upon the order in which candidate vertices are used 

to relax other vertices. While processing a vertex, which can 

be relaxed further increases the time overhead of the 

algorithm. In case of random graph, this overhead is quite low 

which make the SPFA performs better in comparison to other 

algorithms. In case of special graph and benchmarking 

datasets, this overhead becomes quite high which results in 

poor performance of SPFA. For all type of graphs the 

performance of Dijkstra does not depends over the structure 

of graph, which makes it faster on special graphs. For 

harnessing the power of both the algorithms our proposed 

scheme proved to perform better over every kind of graph. 
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