
International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

34

A Simplified Particle Swarm Optimization for Job

Scheduling in Cloud Computing

Ibrahim Attiya
School of Computer and Communication

Engineering,
University of Science and Technology Beijing,

Beijing, China
Mathematics Department, Faculty of Science,

Zagazig University, Zagazig, Egypt

Xiaotong Zhang
School of Computer and Communication

Engineering,
University of Science and Technology Beijing,

Beijing, China
Beijing Key Laboratory of Knowledge Engineering

for Materials Science, Beijing, China

ABSTRACT

Recent advances in various areas such as networking,

information and communication technologies have greatly

boosted the potential capabilities of cloud computing and

made it become more prevalent in recent years. Cloud

computing is a promising computing paradigm that facilitates

the delivery of IT infrastructure, platforms, and applications

of any kind to consumers as services over the internet.

Although cloud computing systems nowadays provide better

ways to accomplish the job requests in terms of

responsiveness and scalability under various workloads,

scheduling of jobs or tasks in cloud environment is still NP-

complete and complex in nature due to the dynamicity of

resources and on-demand user application requirements. In

this paper, a simplified version of particle swarm optimization

(PSO) algorithm is proposed to solve the job scheduling

problem in cloud computing environment. To evaluate the

performance of the proposed approach, this study compares

the proposed PSO strategy with genetic algorithm (GA), by

having both of them implemented on CloudSim toolkit. The

results obtained demonstrate that the presented PSO algorithm

can significantly reduce the makespan of job scheduling

problem compared with the other metaheuristic algorithm

evaluated in this paper.

General Terms

Computer Networks, Distributed Systems, Cloud Computing.

Keywords

Cloud computing, job scheduling, makespan, particle swarm

optimization, resource allocation.

1. INTRODUCTION
Cloud computing is an emerging technology that facilitates

the delivery of various services such as infrastructure, servers,

storage and applications to consumers over the internet. More

specifically, it aims to deliver such services on a pay-per-use

basis. Cloud computing can be defined as “a model for

enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal

management effort or service provider interaction” [1]. This

definition reflects the essential characteristics of cloud

computing environment, for instance, on-demand self-service,

accessible through broad networks like the internet, can be

quickly as well as easily scaled up or down on demand, draw

from unlimited pool of computing resources and involves

some sort of metering capability to track usage [2].

Cloud computing has been proposed as a new computing

paradigm which can offer practical solutions for solving the

limitation of restricted amount of resources and significantly

reduce the cost of purchasing, maintaining and managing the

physical resources [3, 4]. Specifically, it is the further

development of distributed computing, parallel computing and

grid computing [5]. Cloud computing has gained its

popularity due to its ability to facilitate the provision and use

of IT infrastructure, platforms, and applications of any kind in

the form of services that are electronically available on the

Web. Its services are targeted to the mass, ranging from the

end consumers hosting their own documents on the internet to

enterprises outsourcing their whole IT infrastructure to

external data centers [6]. In other words, cloud computing can

serve multiple sectors effectively. Firstly, it provides great

business models for small computational science and

engineering research groups because these groups often do not

have enough human resources and knowledge to deal with the

complexity of computational and data infrastructure for their

research [7]. Secondly, it offers significant benefit to IT

organizations by freeing them from the low-level tasks of

setting up and maintaining basic hardware and software

infrastructures and thus enabling them to focus on innovation

and creating business value for their services [6]. Thirdly, it

offers an exciting opportunity for end users by enabling them

to utilize a variety of devices, including PCs, laptops,

smartphones, and PDAs to access their personal data,

programs, storage, and application-development platforms

over the internet, via on-demand services offered by cloud

providers. Last but not the least, cloud computing enables

consumers to take benefit from all of the provided

technologies without the need for deep knowledge about or

expertise with each one of them [2]. Moreover, the cloud aims

to reduce costs and help the consumers concentrate on their

core business instead of being impeded by obstacles of IT.

Central to any cloud environment is the concept of

virtualization. The virtualization technology further makes

cloud computing different from the traditional paradigms, and

also makes cloud computing more convenient in the

commercialization [8]. Virtualization provides a promising

approach to separate the hardware and software resources and

allows running several independent virtual servers on a single

physical device [9]. Hence, all the resources are represented as

virtual machine (VM) instances and allocated to cloud service

customers based on the pay-as-you-go manner [3]. Each VM

is an abstract unit of computing, memory and storage

capacities in the cloud. The size of CPU, memory, and other

resources in VMs can be configured according to the time-

varying demand of consumers [8] and, accordingly the cloud

resources are more effectively and efficiently utilized.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

35

Resource management and job scheduling are the key issues

of cloud computing that plays a vital role in improving the

performance of the cloud system. More precisely, job

scheduling is a key process for infrastructure as a service

(IaaS) that is mapping the requests on resources in an efficient

manner by considering cloud characteristics [10]. It takes

VMs as scheduling units for allocating physical

heterogeneous resources to jobs. Scheduling in cloud

computing environment falls into a category of problems

known as NP-hard or NP-complete problem due to some

reasons such as heterogeneous and dynamic properties of

resources, in addition to large solution space and large number

of entry tasks with different characteristics and thus it takes a

long time to find an optimal solution [11]. Although job

scheduling in cloud computing has been widely studied for

the last few years, there is still no algorithm that can find

optimal solution within polynomial time to solve it. Therefore,

instead of spending long time looking for optimal solution for

scheduling in the cloud, it is desirable to find suboptimal

solution, but in short period of time. Heuristic and

metaheuristic-based techniques have been proved to achieve

near optimal solutions within a reasonable time for such

complex problems [12].

In this paper, a simplified version of particle swarm

optimization-based job scheduling algorithm is proposed for

scheduling of jobs in the cloud environment so as to minimize

the makespan. The performance of the proposed strategy is

compared to genetic algorithm through conducting an

extensive simulation tests. The simulation results show that

the proposed PSO technique is able to find near-optimal

solutions within a reasonable time frame.

The remainder of the paper is organized as follows. Section 2

discusses related work and Section 3 formulates the

scheduling problem. The description of the proposed

algorithm is presented in Section 4, and in Section 5 the

obtained results are presented. Finally, Section 6 concludes

the paper.

2. RELATED WORK
Due to bottlenecks such as lack of scalability and elasticity,

poor responsiveness and efficiency, difficulties in installation

and maintenance, fault tolerance and low performance in

traditional information technology (IT) frameworks, there is

an urgent need to leverage modern information technology

techniques and solutions to deal with the growing complexity

of scientific and engineering problems. In view of this, cloud

computing with its promise of provisioning virtually

unlimited computing resources in a dynamic and elastic way

[13], seems to be a promising alternative. With this new

technological paradigm, computing resources have become

cheaper, more powerful and more available than ever before

[14]. However, because of cloud resources are provided as a

utility, utilization of the resources is an important issue which

not only influences the performance of the cloud system, but

also has a direct impact on the cost issue for cloud users who

run their applications, and cloud suppliers who provide the

required cloud infrastructure [15, 16, 17]. Thus, scheduling

the cloud resources to serve the cloud clients is considered as

a major theme in cloud resource management and scheduling

research [18].

Scheduling for resource utilization in cloud computing is a

vital research area, which aimed at mapping the submitted

tasks or jobs to the most appropriate available resources by

considering some constraints such as cost, minimum

makespan, task execution time, deadline, load balancing,

Quality of Service (QoS), high throughput, etc. [19, 20, 17].

During the past decade, numerous researchers focus on job

scheduling in the cloud environment and a large number of

different algorithms have been proposed to tackle this

problem [21, 22, 23]. However, due to the NP-complete

nature of the problem, no feasible exact (optimal) solutions

are proposed. On the other hand, metaheuristic algorithms

which employ iterative strategies to find solutions in a

reasonable time [24], have shown their effectiveness for

solving a wide range of hard-to-solve combinatorial and

multi-objective optimization problems. The most popular

metaheuristic algorithms that are presented to solve NP

problems are genetic algorithm (GA) [25], simulated

annealing (SA) [26], tabu search (TS) [27], particle swarm

optimization (PSO) [28], ant colony optimization (ACO) [29]

and artificial bee colony optimization (ABC) [30]. Hence,

metaheuristic techniques that are intent to find near optimal

solutions are considered appropriate approaches for solving

cloud scheduling issues.

In [31], the authors reviewed the advanced research and

developments on resource management and task scheduling in

cloud computing, and they proposed an adaptive strategy to

maximize the profit earned by service providers, while it

minimizes the overall cost to consumers. The work described

in [32] proposes an ACO strategy to address job scheduling

within a cloud. The proposed strategy is aimed to maximize

scheduling throughput to accomplish all the diversified job

requests according to different resources available in a cloud

and minimize the makespan of cloud job scheduling. The

work in [33] presents an ABC algorithm called honey bee

behavior inspired load balancing, which seeks to minimize the

makespan of job scheduling and balance the load across VMs

in a cloud environment. In [34], the authors have exhibited a

three level cloud scheduler based on swarm intelligence (SI)

metaheuristics for scheduling and execution of computational

mechanics applications on federated clouds. In their study,

makespan and flowtime were considered as objectives. In [35]

the authors have proposed a task scheduling optimizing

method based on PSO to allocate jobs to resources in a cloud

so as to minimize both job computation cost and job

transferring time. The authors in [36] proposed a load

balancing technique based on artificial neural network (ANN),

which utilizes back propagation algorithm to distribute as

equally as possible the workload among all the servers. In the

work proposed in [37] the researchers developed a GA

scheduler to schedule independent and divisible tasks in a

cloud computing environment, with makespan as an objective.

Furthermore, to increase the Quality of Service of the cloud

system, the authors in [38] introduced an improved task

scheduling algorithm to assign tasks to computing resources

with the objective of maximizing the scalability and reliability

of the cloud system.

In summary, by using appropriate and effective scheduling

schemes, the execution time of the tasks can be minimized

and the cloud resources can be fully utilized, which finally

increases the availability and scalability of the entire cloud

system. Our work here proposes a PSO methodology to

address the issue of job scheduling in a cloud environment

with makespan as an objective.

3. PROBLEM STATEMENT
In order to formulate the scheduling problem in cloud

computing, we briefly explain some of the key terms relevant

to the problem. In cloud computing environment, all the

resources are shared by using the virtualization technology

over the internet. Therefore, all the resources are represented

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

36

as virtual machines (VMs) and each VM is a set of

computational resources with limited capacities (e.g.,

processing power, memory size, network bandwidth, etc.) in

the cloud. In addition, each VM has its corresponding

processing speed (cycles/second). The speed of each VM can

be expressed in millions of instructions per second (MIPS).

Such VMs are provisioned to service the jobs submitted by

cloud users. A job is considered as a single set of multiple

atomic tasks. Each job has its corresponding length

(processing requirement) expressed in million instructions

(MI). At a given moment of time, numerous jobs can be

received by the cloud provider to be performed, each with

different requirements. These jobs need to be arranged for

execution in such a way that allows every job to be completed

in time, and efficiently utilize all the available resources.

A scheduling problem can be defined as follows: Find an

optimal or near optimal solution to schedule a given set of

independent user jobs 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛} to a given set of

heterogeneous virtual machines 𝑉𝑀 = {𝑉𝑀1, 𝑉𝑀2, . . . , 𝑉𝑀𝑚 }

subject to a predefined set of constraints and measurements

[39]. As mentioned previously, there are several criteria that

are used to evaluate the efficiency and effectiveness of the

schedule solution [40]. Among them, makespan is a widely

used metric for measuring the quality of a schedule in cloud

environment. It is defined as the completion time of the last

job. Minimization of makespan implies that no job takes a

long time to execute [41]. Hence, the makespan can be

formulated as follows:

𝐶𝑖 = 𝑉𝑀𝐸𝑖𝑗

(𝑗 |𝐴𝑗∈𝑖)

+ 𝑊𝑖

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐶𝑖}

where 𝐶𝑖 is the time required for virtual machine 𝑖 to complete

all its assigned jobs; {𝑗 ∣ 𝐴𝑗 ∈ 𝑖} represents the jobs assigned

to virtual machine 𝑖; 𝑉𝑀𝐸𝑖𝑗 the time it takes 𝑉𝑀𝑖 to complete

job 𝐽𝑗 ; 𝑖 ∈ 1,2, . . . , 𝑚; 𝑗 ∈ 1,2, . . . , 𝑛; and 𝑊𝑖 the time for which

job 𝑗 has to wait for virtual machine 𝑖 to get ready.

In job scheduling, an optimal schedule will be the one that

optimizes the makespan [42]. Thus, the objective of the job

scheduling is to search the schedule S that minimizes the

makespan while fulfilling the schedule feasibility constraints.

That is, the problem is formalized as follows:

𝑂𝑏𝑗: 𝑓 𝑆 = 𝑚𝑖𝑛 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑆)

 subject to S ϵ Fd

where Fd is a feasible region in the objective space. Our job

scheduling objective in this study is to obtain an ideal solution

of the mentioned problem in a reasonable period of time.

4. ALGORITHM DESIGN
Particle swarm optimization (PSO) is a population-based

global search swarm intelligence metaheuristic, introduced by

Kennedy and Eberhart [28] in 1995. It is inspired by social

behavior of organisms such as bird flocking and fish

schooling. Particles, similar to individuals, not only remember

their own local best positions, but also communicate with

each other and record the globally best position [43]. In PSO

algorithm, the swarm of particles is stochastically generated

initially, and every particle position represents a possible

solution to the problem. Each particle is represented by a

velocity, a location in the search space and has a memory

which helps it in recalling its previous best position. In each

iteration, each particle adjusts its velocity based on its best

position and the position of the best particle of the entire

population. Particles move around in the search space based

on the particles’ updated position and velocity to get an

optimized/enhanced solution [44, 17], meaning that PSO

utilizes the velocity update and position update to guide

potential solutions to “fly” toward the globally optimal region.

PSO combines local search methods with global search

methods attempting to balance the exploration and

exploitation.

In PSO, each particle has a position represented by a position-

vector 𝑥𝑖 (𝑖 is the index of the particle), and a velocity

represented by a velocity-vector 𝑣𝑖 . At each iteration, each

particle alters its searching direction based on: its previous

velocity 𝑣𝑖 (𝑡), its best position (called personal best) 𝑃𝑖 it has

encountered so far and the best position 𝑃𝑔 obtained so far by

all particles in the swarm (called global best). That is, each

particle updates its velocity and position according to Eq. (4)

and Eq. (5), respectively:

1 1 2 2(1) () (()) (())i i i i g iv t wv t c r p x t c r p x t

(1) () ()i i ix t x t v t

where 𝑤 is called the inertia weight and it plays the role of

balancing the global search and local search. A large inertia

weight encourages global exploration, while a smaller inertia

weight encourages local exploitation [45]. Therefore, a 𝑤

value that balances global and local search implies fewer

iterations in order for the algorithm to converge. In the

literature, there are some experimental results demonstrate

that it is better to initially set the inertia parameter to a large

value so as to encourage global exploration of the search

space, and gradually decrease it to obtain more accurate

solutions [46, 47]. 𝑟1 and 𝑟2 are two random numbers ranging

between 0 and 1. 𝑐1 and 𝑐2 are two positive constants called

acceleration coefficients. They represent the attraction that a

particle has either towards its best position (the cognitive part)

or towards the best position of its neighbors (the social part),

respectively. Therefore, tuning them properly may lead to a

faster convergence and may prevent the algorithm to get

caught in local minima.

Overall, in the particle swarm model, the particle searches the

solutions in the problem space with a range [−𝑠, +𝑠].
Moreover, in order to keep the particles from flying out of the

problem space, each component of 𝑣𝑖 must be kept within the

range −𝑉𝑚𝑎𝑥 , +𝑉𝑚𝑎𝑥 .

4.1 Encoding Mechanism
The first step of applying PSO to scheduling problem in the

cloud is to encode the problem. In the PSO-based job

scheduling scenario presented here, the dimension of the

particles is the number of jobs that need to be allocated and

each position of a particle indicates a mapping between the

virtual machines and submitted jobs. In particular, each

particle is encoded as a vector of integers and the vector

length is set to 𝑛 (number of jobs). In addition, each element

in particle delegates a job. This element is an integer value

between 1 and 𝑚 (number of VMs), which represents the

number of a computing resource (VM index). Moreover, the

real values (if any) in the particles’ positions resulting from

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

37

updating particles velocities and positions are rounded off to

the nearest integer.

4.2 Fitness Evaluation
The objective of this study is to minimize the makespan

encountered by the job scheduling, subject to the resource

constraints. As mentioned before, each particle corresponds to

a candidate solution of the underlying problem. In other

words, each particle represents a mapping of VM to a job. The

evaluation of each particle is performed by a fitness function,

which allows the comparison of the efficiency of one schedule

to another, based on the objective, makespan. Thus, the fitness

value of each schedule solution can be estimated using Eq.

(3). The particle with minimum fitness value is considered as

the best solution among the others.

4.3 The Proposed Algorithm
The PSO algorithm has gained its popularity due to its

simplicity and its utilization in a wide range of applications in

different domains. In addition to its fewer parameters and its

fast convergence speed, PSO has proved to be both effective

and fast for solving various optimization problems.

To simplify the PSO algorithm for scheduling in the cloud, we

started by removing components of the algorithm and seeing

how this influences the performance of PSO. We found that

eliminating the personal memory term from the velocity

update formula reinforces the case for PSO being mostly

reliant on social interaction rather than personal experience. In

detail, we eliminated the part containing the particle's

previous best position by setting 𝑐1 = 0 in Eq. (4). That is, the

velocity updating formula becomes:

(1) () (())i i g iv t wv t c r p x t

where 𝑐 is a positive constant (called social parameter) and 𝑟

is a random number in the range [0, 1]. This simplification of

PSO algorithm is similar to the one that has been suggested by

Kennedy in [48] who called it the “social only” PSO. Finally,

the simplification made here, allows the particles to keep track

only of the global best solution found so far to encourage

social interaction as opposed to personal experience.

The main idea behind the proposed PSO algorithm is as

follows. The proposed scheduler starts by collecting the

information about the VMs and the job requests from the

cloud user. It then adjusts the parameters for PSO (e.g., 𝑁

(swarm size), 𝑤 (inertia weight) and 𝑐 (social parameter)).

Then the scheduler generates a population of particles with

random positions and velocities in the search space, meaning

that it initializes position-vector and velocity-vector of each

particle in the swarm. It then calculates the fitness value of

each particle in the swarm using the fitness function. The

scheduler then selects the particle with best fitness value from

all particles as global best. The following steps will be

repeated (for every particle) until the maximum number of

iterations is met. The scheduler then updates the velocity-

vector and checks that each element does not violate the

velocity boundaries. It then updates the position-vector and

rounds off the real values (if any) in the particle’s position.

Finally, it evaluates the fitness value for each particle in the

population and updates the global best if necessary. The

algorithm stops when a termination condition is met. As a

result, the best solution found so far is considered as the final

solution. The pseudo-code of the proposed simplified PSO

algorithm is as given in Algorithm 1.

Algorithm 1 Simplified PSO algorithm

1: Input the scheduling problem
2: Setup the parameters
3: Generate a swarm of particles with random positions and

velocities
4: Calculate the fitness value of each particle in the swarm

using Eq. (3)
5: Select the particle with best fitness value from all

particles as global best
6: while termination criterion is not met do
7: for each particle 𝑖 do
8: Update the particle’s velocity using Eq. (6)
9: Check the velocity boundaries for each component

of velocity-vector
10: Update the particle’s position using Eq. (5)
11: Round off the real values in particle’s position

into the nearest integer
12: Evaluate the fitness of the particle using Eq. (3)

13: if () ()i iF x F p

 then

14: Update the global best
15: end if
16: end for
17: end while

18: Output the best particle (schedule) as the final solution.

5. RESULTS
In this section, we report the simulation results to assess the

performance of the presented scheduling approach. We first

present the details of the simulation environment and describe

the data sets used in the experiments. Thereafter, we present

the measured makespan obtained from studying the

performance of the proposed algorithm and the other

algorithm evaluated in this paper.

5.1 Data Sets and Experimental Settings
The simulation analysis of this study was run on a DELL PC

with 2.40 GHz Intel Core i5 CPU and 4 GB of RAM. In order

to evaluate the performance of the proposed algorithm, we

implemented the simulations using the CloudSim simulator.

CloudSim toolkit [49] is a tool for modeling and simulation of

cloud computing environment. It supports dynamic creation of

various types of cloudlets (jobs) and VM instances at run-

time. In our experiments, we have assumed that each job/task

which is submitted to the cloud may require varying

processing time. VMs with different processing capacities are

considered here also. The processing requirement of jobs is

measured in MI, while the processing speed of VMs is

measured in MIPS.

Moreover, to compare the performance of the presented

approach against genetic algorithm which was

aforementioned, we have utilized six different dimensions of

job scheduling problem, namely, (3, 13), (5, 100), (8, 60), (10,

50), (60, 500), and (100, 1000) as used by Liu et al. in [47].

For each testing case, the notation (𝑉𝑀, 𝐽) is employed to

indicate the number of VMs on the cloud (𝑉𝑀) and the

number of jobs (𝐽) to be scheduled. For example, (100, 1000)

refers to the test instance with 100 VMs and 1000 jobs.

Further, in order to get robust estimates for our results, we

repeated each experiment 50 times and the average value of

the results obtained is reported. Finally, in all experiments, the

parameter settings of the evaluated scheduling algorithms are

as shown in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

38

Table 1. Parameter settings for the evaluated algorithms

Algorithm Parameter Value

GA Population size 50

 Crossover probability 0.9

 Mutation probability 0.05

 Scale for mutations 0.1

PSO Swarm size 50

 Inertia weight 𝑤 0.72

 Social coefficient 𝑐 1.49

5.2 Results and Analysis
For the test case (3, 13), the speeds of 3 VMs are 4, 3, 2

MIPS, and the job lengths of 13 jobs are 6, 12, 16, 20, 24, 28,

30, 36, 40, 42, 48, 52, 60 MI, respectively. One of the optimal

schedules for this test instance is: Allocating jobs 𝐽3, 𝐽7, 𝐽8, 𝐽10

and 𝐽13 on VM1, jobs 𝐽1, 𝐽4, 𝐽5, 𝐽9 and 𝐽11 on VM2, and jobs 𝐽2,

𝐽6 and 𝐽12 on VM3. In this optimal schedule: the time required

for VM1 to complete all its assigned jobs is 46 and the time for

the other two VMs are also 46, that is the best makespan is 46.

This implies that, if the workload placed on the VMs is

balanced, then the resources’ utilization is maximized while

the makespan is minimized.

Fig. 1 shows the performance of our PSO algorithm and the

GA for job scheduling problem (3, 13). The results

demonstrate that the completion time of jobs for PSO is less

than that of GA, meaning that the makespan obtained by the

proposed PSO algorithm is better than that of GA algorithm.

Fig. 1. Performance comparison for test case (3, 13)

Figs. 2 ~ 6 illustrate the performance of the two algorithms in

terms of the makespan for the other five (𝑉𝑀, 𝐽) pairs, i.e.

(5,100), (8, 60), (10, 50), (60, 500), and (100, 1000). For the

small and middle-sized scheduling problems, the results

depicted in Figs. 2, 3 and 4 show that PSO usually can find

better results than the other scheduling algorithm (i.e., GA) in

terms of makespan. For the large size job scheduling (60, 500)

and (100, 1000) problems, the results also demonstrate that

the makespan of our PSO algorithm is obviously lower than

that of GA algorithm, as can be seen in Fig. 5 and Fig. 6.

Fig. 2. Performance comparison for test case (5, 100)

Fig. 3. Performance comparison for test case (8, 60)

Fig. 4. Performance comparison for test case (10, 50)

To summarize, the results depict that the proposed PSO

algorithm is able to handle large sized scheduling problems

and has the ability to minimize the makespan of job

scheduling in the cloud. From the results, it is also clear that

the presented PSO algorithm converges faster than the other

metaheuristic GA algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

39

Fig. 5. Performance comparison for test case (60, 500)

Fig. 6. Performance comparison for test case (100, 1000)

6. CONCLUSIONS AND FUTURE

TRENDS
With cloud computing, we can focus on design, simulation,

analysis, and discovery, instead of spending much time

building, configuring and maintaining complex IT

infrastructures. In cloud computing, the resources should be

utilized effectively and consequently scheduling should

consider the resource utilization to decrease the execution

time and thereby increasing the throughput of the system. In

this paper, a simplified particle swarm optimization-based job

scheduling algorithm was implemented for scheduling of jobs

in cloud environment in order to minimize the makespan. The

performance of the proposed method was compared to genetic

algorithm through carrying out extensive simulation tests and

different settings. Simulation results for a large variety of test

cases show that the proposed method is able to find near

optimal solutions in a reasonable time. Moreover, it

significantly outperforms the considered GA method in terms

of makespan, specifically in the middle and large sizes of

scheduling problems. In the future, our research works can

address other important factors like the flowtime, overall

execution cost and load balancing during the scheduling of

tasks and jobs.

7. ACKNOWLEDGMENTS
The work of this paper is sponsored by the National High

Technology Research and Development Program (863

Program) of China (Grant No. 2014AA041801-2). The

authors would also like to thank the support of Beijing Key

Laboratory of Knowledge Engineering for Materials Science.

8. REFERENCES
[1] P. M. Mell and T. Grance, “SP 800-145. The NIST

Definition of Cloud Computing,” National Institute of

Standards & Technology, Gaithersburg, MD, United

States, 2011.

[2] I. Attiya and X. Zhang, “Cloud Computing Technology:

Promises and Concerns,” Int. J. Comput. Appl., vol. 159,

no. 9, pp. 32–37, Feb. 2017.

[3] D.-K. Kang, S.-H. Kim, C.-H. Youn, and M. Chen, “Cost

adaptive workflow scheduling in cloud computing,” in

Proceedings of the 8th International Conference on

Ubiquitous Information Management and

Communication - ICUIMC ’14, 2014, pp. 1–8.

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:

State-of-the-art and research challenges,” J. Internet

Serv. Appl., vol. 1, no. 1, pp. 7–18, 2010.

[5] B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and

Survey of Cloud Computing Systems,” in 2009 Fifth

International Joint Conference on INC, IMS and IDC,

2009, pp. 44–51.

[6] R. Buyya, S. Pandey, and C. Vecchiola, “Cloudbus

Toolkit for Market-Oriented Cloud Computing,” in

Proceedings of the 1st International Conference on

Cloud Computing, M. G. Jaatun, G. Zhao, and C. Rong,

Eds. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 24–

44.

[7] H.-L. Truong and S. Dustdar, “Cloud computing for

small research groups in computational science and

engineering: current status and outlook,” Computing, vol.

91, no. 1, pp. 75–91, Jan. 2011.

[8] X. Liu, Z. Zhan, K. Du, and W. Chen, “Energy aware

virtual machine placement scheduling in cloud

computing based on ant colony optimization approach,”

in Proceedings of the 2014 conference on Genetic and

evolutionary computation - GECCO ’14, 2014, pp. 41–

48.

[9] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource

allocation using virtual machines for cloud computing

environment,” IEEE Trans. Parallel Distrib. Syst., vol.

24, no. 6, pp. 1107–1117, 2013.

[10] A. Ghorbannia Delavar and Y. Aryan, “HSGA: A hybrid

heuristic algorithm for workflow scheduling in cloud

systems,” Cluster Comput., vol. 17, no. 1, pp. 129–137,

2014.

[11] M. Kalra and S. Singh, “A review of metaheuristic

scheduling techniques in cloud computing,” Egypt.

Informatics J., vol. 16, no. 3, pp. 275–295, Nov. 2015.

[12] S. R. Shishira, A. Kandasamy, and K. Chandrasekaran,

“Survey on meta heuristic optimization techniques in

cloud computing,” in 2016 International Conference on

Advances in Computing, Communications and

Informatics (ICACCI), 2016, pp. 1434–1440.

[13] S. N. Srirama, O. Batrashev, P. Jakovits, and E.

Vainikko, “Scalability of parallel scientific applications

on the cloud,” Sci. Program., vol. 19, no. 2–3, pp. 91–

105, 2011.

[14] M. G. Avram, “Advantages and Challenges of Adopting

Cloud Computing from an Enterprise Perspective,”

Procedia Technol., vol. 12, pp. 529–534, 2014.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

40

[15] H. Zhang, P. Li, Z. Zhou, and X. Yu, “A PSO-Based

Hierarchical Resource Scheduling Strategy on Cloud

Computing,” in Trustworthy Computing and Services:

International Conference, ISCTCS 2012, Beijing, China,

May 28 -- June 2, 2012, Revised Selected Papers, Y.

Yuan, X. Wu, and Y. Lu, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 325–332.

[16] W. Li, J. Tordsson, and E. Elmroth, “Modeling for

dynamic cloud scheduling via migration of virtual

machines,” in Proceedings - 2011 3rd IEEE

International Conference on Cloud Computing

Technology and Science, CloudCom 2011, 2011, pp.

163–171.

[17] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, “A

Survey of PSO-Based Scheduling Algorithms in Cloud

Computing,” J. Netw. Syst. Manag., vol. 25, no. 1, pp.

122–158, Jan. 2017.

[18] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H.

Chung, and Y. Li, “Cloud Computing Resource

Scheduling and a Survey of Its Evolutionary

Approaches,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–

33, 2015.

[19] R. Nallakumar, N. Sengottaiyan, and S. P. K. S, “A

Survey on Scheduling and the Attributes of Task

Scheduling in the Cloud,” Int. J. Adv. Res. Comput.

Commun. Eng., vol. 3, no. 10, pp. 8167–8171, 2014.

[20] C. Lin and S. Lu, “Scheduling scientific workflows

elastically for cloud computing,” in Proceedings - 2011

IEEE 4th International Conference on Cloud Computing,

CLOUD 2011, 2011, pp. 746–747.

[21] M. L. Pinedo, Scheduling: Theory, algorithms, and

systems: Fourth edition. Boston, MA: Springer US,

2012.

[22] D. M. Lei, “Minimizing makespan for scheduling

stochastic job shop with random breakdown,” Appl.

Math. Comput., vol. 218, no. 24, pp. 11851–11858, 2012.

[23] S. S. Kim, J. H. Byeon, H. Yu, and H. Liu,

“Biogeography-based optimization for optimal job

scheduling in cloud computing,” Appl. Math. Comput.,

vol. 247, pp. 266–280, 2014.

[24] C. W. Tsai and J. J. P. C. Rodrigues, “Metaheuristic

scheduling for cloud: A survey,” IEEE Syst. J., vol. 8,

no. 1, pp. 279–291, 2014.

[25] J. H. Holland, Adaptation in Natural and Artificial

Systems: An Introductory Analysis with Applications to

Biology, Control and Artificial Intelligence. Cambridge,

MA, USA: MIT Press, 1992.

[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,

“Optimization by Simulated Annealing,” Science (80-.).,

vol. 220, no. 4598, pp. 671–680, May 1983.

[27] F. Glover, “Future Paths for Integer Programming and

Links to Artificial Intelligence,” Comput. Oper. Res.,

vol. 13, no. 5, pp. 533–549, May 1986.

[28] J. Kennedy and R. Eberhart, “Particle swarm

optimization,” in Proceedings of ICNN’95 -

International Conference on Neural Networks, 1995, vol.

4, pp. 1942–1948.

[29] M. Dorigo and L. M. Gambardella, “Ant colony

system: a cooperative learning approach to the

traveling salesman problem,” IEEE Trans. Evol.

Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[30] A. Walker, J. Hallam, and D. Willshaw, “Bee-havior in a

mobile robot: the construction of a self-organized

cognitive map and its use in robot navigation within a

complex, natural environment,” in IEEE International

Conference on Neural Networks, 1993, pp. 1451–1456

vol.3.

[31] F. Pop and M. Potop-Butucaru, “ARMCO: Advanced

topics in resource management for ubiquitous cloud

computing: An adaptive approach,” Futur. Gener.

Comput. Syst., vol. 54, pp. 79–81, Jan. 2016.

[32] S. Banerjee, I. Mukherjee, and P. K. Mahanti, “Cloud

Computing Initiative using Modified Ant Colony

Framework,” Eng. Technol., vol. 56, no. 8, pp. 221–224,

2009.

[33] L. D. Dhinesh Babu and P. Venkata Krishna, “Honey bee

behavior inspired load balancing of tasks in cloud

computing environments,” Appl. Soft Comput. J., vol. 13,

no. 5, pp. 2292–2303, 2013.

[34] E. Pacini, C. Mateos, C. G. Garino, C. Careglio, and A.

Mirasso, “A bio-inspired scheduler for minimizing

makespan and flowtime of computational mechanics

applications on federated clouds,” J. Intell. Fuzzy Syst.,

vol. 31, no. 3, pp. 1731–1743, 2016.

[35] X. Wang, C. S. Yeo, R. Buyya, and J. Su, “Optimizing

the makespan and reliability for workflow applications

with reputation and a look-ahead genetic algorithm,”

Futur. Gener. Comput. Syst., vol. 27, no. 8, pp. 1124–

1134, Oct. 2011.

[36] S. A. A. A. Nada M. Al Sallami Ali Al daoud, “Load

Balancing with Neural Network,” Int. J. Adv. Comput.

Sci. Appl., vol. 4, no. 10, pp. 138–145, 2013.

[37] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu,

“Independent Tasks Scheduling Based on Genetic

Algorithm in Cloud Computing,” in 2009 5th

International Conference on Wireless Communications,

Networking and Mobile Computing, 2009, pp. 1–4.

[38] S. Selvarani and G. S. Sadhasivam, “Improved cost-

based algorithm for task scheduling in cloud computing,”

in 2010 IEEE International Conference on

Computational Intelligence and Computing Research,

2010, pp. 1–5.

[39] C.-W. Tsai, W.-C. Huang, M.-H. Chiang, M.-C. Chiang,

and C.-S. Yang, “A Hyper-Heuristic Scheduling

Algorithm for Cloud,” IEEE Trans. Cloud Comput., vol.

PP, no. 99, pp. 1–1, 2014.

[40] I. Attiya, X. Zhang, and X. Yang, “TCSA : A Dynamic

Job Scheduling Algorithm for Computational Grids,” in

2016 First IEEE International Conference on Computer

Communication and the Internet (ICCCI), 2016, pp.

408–412.

[41] J. A. Torkestani, J. Akbari Torkestani, and J. A.

Torkestani, “A new approach to the job scheduling

problem in computational grids,” Cluster Comput., vol.

15, no. 3, pp. 201–210, 2011.

[42] S.-S. Kim et al., “Optimal job scheduling in grid

computing using efficient binary artificial bee colony

optimization,” Soft Comput., vol. 17, no. 5, pp. 867–882,

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 9, April 2017

41

2013.

[43] A. Y. S. Lam and V. O. K. Li, “Chemical Reaction

Optimization for Task Scheduling in Grid Computing,”

IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 10, pp.

1624–1631, 2011.

[44] Eberhart and Yuhui Shi, “Particle swarm optimization:

developments, applications and resources,” in

Proceedings of the 2001 Congress on Evolutionary

Computation (IEEE Cat. No.01TH8546), 2001, vol. 1,

pp. 81–86.

[45] Y. Shi and R. C. Eberhart, “Empirical study of particle

swarm optimization,” in Proceedings of the 1999

Congress on Evolutionary Computation-CEC99 (Cat.

No. 99TH8406), 1999, vol. 3, pp. 1945–1950.

[46] J. Kennedy and R. Mendes, “Population structure and

particle swarm performance.pdf,” Proc. 2002 Congr.

Evol. Comput. CEC 2002, pp. 1671–1676, 2002.

[47] H. Liu, A. Abraham, and A. E. Hassanien, “Scheduling

jobs on computational grids using a fuzzy particle swarm

optimization algorithm,” Futur. Gener. Comput. Syst.,

vol. 26, no. 8, pp. 1336–1343, 2010.

[48] J. Kennedy, “The particle swarm: social adaptation of

knowledge,” in Proceedings of 1997 IEEE International

Conference on Evolutionary Computation (ICEC ’97),

1997, pp. 303–308.

[49] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De

Rose, and R. Buyya, “CloudSim: a toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms,” Softw.

Pract. Exp., vol. 41, no. 1, pp. 23–50, Jan. 2011.

IJCATM : www.ijcaonline.org

