
International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 1, April 2017

34

A Parameter Free Clustering Algorithm

Omar Kettani

Scientific Institute,
 Physics of the Earth Laboratory

Mohamed V- University
Rabat, Morocco

Faical Ramdani

Scientific Institute,
Physics of the Earth Laboratory

Mohamed V- University
Rabat, Morocco

ABSTRACT

In data mining, most of clustering algorithms either require

that the user provides in advance the exact number of clusters,

or to tune some input parameter, which is often a difficult

task. The present paper intends to overcome this problem by

proposing a parameter free algorithm for automatic clustering.

We evaluated its performance by applying on several

benchmark datasets. Experimental results demonstrated that

the proposed approach is effective.

General Terms

Data Mining, Clustering , Algorithms.

Keywords

Parameter free, automatic clustering, agglomerative

clustering.

1. INTRODUCTION

In data analysis, clustering consists of grouping a given

dataset into a predefined number of disjoint sets, called

clusters, so that the elements in the same cluster are more

similar to each other and more different from the elements in

the other cluster. Most of existing clustering algorithms

depend on one ore more tuning parameters, which are often

difficult to tune, because they may require many empirical

error-trials computations before obtaining satisfactory results.

The most prominent clustering algorithm is k-means [1].

Given a set of n data points (objects) X = {x1 , . . . , xn } in Rd

and an integer k, the clustering problem consists to determine

a set of k centroids

C = {c1 , . . . , ck } in Rd , so as to minimize the following Sum

of Square Error (SSE) function:

SSE=min || x − ci ||
2

 x∈D
 i=1,...,k

where || . || 2 denotes the Euclidean norm. The basic k-means

is a greedy algorithm which has two stages: Initialization, in

which we set the seed set of centroids, and an iterative stage,

called Lloyd’s algorithm [1]. Additionally, Lloyd’s algorithm

has two steps: The assignment step, in which each object is

assigned to its closest centroid, and the centroid’s update step.

The time required for the assignment step is O(nk), while the

centroid’s update step and the computation of the error

function is O(n).

K-means algorithm has a major drawback: the user must

specify in advance the correct number of clusters, which is

usually a difficult task when the distribution of the given data

set is unknown.

In this paper, an alternative parameter free method for

automatic clustering is introduced. It is based on the

Agglomerative Clustering Method (ACM) proposed by the

authors in a previous work [2]. Algorithm validation is

conducted using several real-world and artificial clustering

data sets from the UCI Machine Learning Repository [3].

In the next section, some related work are briefly discussed.

Then the proposed approach is described in Section 3. Section

4 presents experimental results of this approach on different

standard data sets and reports its performance. Finally, in

Section 5 we draw conclusions and suggest some directions

for future research.

2. RELATED WORK
Despite the fact that finding an optimal number of clusters k

for a given data set is an NP-hard problem [4], several method

have been developed to find k automatically.

Pelleg and Moore [5] proposed the X-means algorithm, which

proceed by learning k with k-means using the Bayesian

Information Criterion (BIC) to score each model, and chooses

the model with the highest BIC score. However, this method

tends to overfit when it deals with data that arise from non-

spherical clusters. Tibshirani et al. [6] introduced the Gap

statistic, which compares the likelihood of a learned model

with the distribution of the likelihood of models trained on

data drawn from a null distribution. This method is suitable

for finding a small number of clusters, but has difficulty when

k increases.Hamerly and Elkan [7] proposed the G-means

algorithm, based on K-means algorithm, which uses

projection and a statistical test for the hypothesis that the data

in a cluster come from a Gaussian distribution. This algorithm

works correctly if clusters are well-separated, and fails when

clusters overlap and look non-Gaussian. Density based

clustering is to discovers clusters of arbitrary shape in spatial

databases. The DBSCAN algorithm [8] requires two

parameters: ε (Eps) and the minimum number of points

required to form a cluster (minPts). Usually, it is difficult to

find these optimal parameters, because many empirical

attempts are required before to get good quality results.

In the present work, an alternative approach is proposed,

aiming to overcome this issue.

3. PROPOSED APPROACH
The proposed algorithm starts by setting k=floor((n)1/2),

where n is the number of objects in the given data set. This

choice is motivated by the fact that this number lies in the

range from 2 to (n)1/2, as reported by Pal and Bezdek in [9].

Then in a first phase, it applies the ACM method proposed by

the authors in. In the second phase, the two clusters having the

closest centroids are merged. At each iteration, the maximum

of CH cluster validity index (Calinski and Harabasz [10]) of

the current partition is stored. We used this index because it

is relatively inexpensive to compute, and it generally

outperforms other cluster validity indices as reported by

Milligan and Cooper in [11]. This process is repeated until

k=2. Finally, the algorithm outputs the optimal k and partition

corresponding to the maximum value of CH stored so far.

This algorithm is outlined in the pseudo-code below:

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 1, April 2017

35

Algorithm PFACM

Input: X= {x1 , x2 , . . . , xn } in Rd

Output: k mutually disjoint clusters C1 ,..., Ck

 k

such that X=Cj

 j=1

k (n)1/2

[I,c] ACM(X,k)

ko k

Io  I

CHo  CH(I)

While k>2 do

 j argMin(Ci )

 i<=k

 cj[]

 kk-1

 if CHo <CH(I) then

 ko k

 Io  I

 CHo  CH(I)

 end if

end while

Output: ko and Io

The pseudo-code of ACM is outlined in the pseudo-code

below:

Algorithm ACM(X,k)

Input: X and k

Output: k mutually disjoint clusters C1 ,..., Ck

 k

such that X=Cj

 j=1

1 for i=1:k

 miXi

 Ci Xi

 XX-Xi

 end for

 2 compute D(d(mi,mj))1 ≤ i ≠ j ≤ k muMin(D) and

(a,b)Arg(Min(D))

 i,j i,j

 ik+1

 3 while X

 diMin(d(Xi,mj)) and cArg(Min d(Xi,mj))

 j j

 if di<mu then

 Cc CcXi

 mc(Ccmc+Xi)/(Cc+1)

 D(c,:)(d(mc,mj)) 1 ≤ j ≤ k

 D(:,c)D(c,:)'

else

 Ca CaCb

 ma(Cama+Cbmb)/(Ca+Cb)

 D(a,:)(d(ma,mj)) 1 ≤ j ≤ k

 D(:,a)D(a,:)'

 Cb Xi

 mb Xi

 D(b,:)(d(mb,mj)) 1 ≤ j ≤ k

 D(:,b)D(b,:)'

 end if

 XX-Xi

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 1, April 2017

36

 ii+1

 muMin(D) and (a,b)Arg(Min(D))

 h,j h,j

 end while

3.1 Complexity

The time complexity of the first phase is O(n3/2), since the

running time of ACM is O(nk) and k=n1/2 .

The second phase requires n1/2 xO(n1/2), since each iteration i

requires O(i1/2) operations to update the centroids distance

matrix and O(i1/2) operations to evaluate the CH index of the

current partition. Thus, the overall time complexity of

PFACM is O(n3/2).

4. EXPERIMENTAL RESULTS
Algorithm validation is conducted using different data sets

from the UCI Machine Learning Repository. We evaluated its

performance by applying on several benchmark datasets and

compare with k-means, once PFACM has found k, the number

of clusters.

Silhouette index (Kaufman and Rousseeuw [12]) which

measures the cohesion based on the distance between all the

points in the same cluster and the separation based on the

nearest neighbor distance, was used in these experiments in

order to evaluate clustering accuracy. (bigger average

silhouette value indicates a higher clustering accuracy).

Experimental results are reported in table 1 and figure 1, and

some clustering results are depicted in figure 2 to 6.

Table 1. Experimental results of PFACM application on

different datasets in term of mean Silhouette value

Dataset k
k

found

K-means

sil.
PFACM sil.

breast 2 2 0.7542 0.7294

iris 3 3 0.7542 0.7786

glass 7 15 0.6914 0.6009

ruspini 4 4 0.9086 0.9086

thyroid 2 7 0.7520 0.7194

wine 3 8 0.5043 0.4126

yeast 10 3 0.2995 0.7701

a1 20 20 0.7185 0.7693

a2 35 35 0.6998 0.7734

a3 50 50 0.6695 0.7835

D31 31 31 0.6871 0.9220

dim32 16 16 0.7042 0.9962

dim64 16 16 0.8506 0.9985

dim128 16 16 0.7430 0.9991

dim256 16 16 0.8216 0.9996

dim512 16 16 0.6947 0.9997

R15 15 15 0.7879 0.9361

Unbalance 8 8 0.8132 0.9727

s1 15 15 0.7173 0.8783

s2 15 15 0.6796 0.7828

s3 15 18 0.6422 0.5939

s4 15 71 0.5492 0.5546

Fig 1: Chart of mean Silhouette index for both PFACM and k-means applied on different datasets.

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 1, April 2017

37

Fig 2: Clustering results of Unbalance dataset using k-means (on left) and PFACM (on right)

Fig 3: Clustering results of dim32 dataset using k-means (on left) and PFACM (on right)

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 1, April 2017

38

Fig 4: Clustering results of S1 dataset using k-means (on left) and PFACM (on right)

Fig 5: Clustering results of S2 dataset using k-means (on left) and PFACM (on right)

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 1, April 2017

39

Fig 6: Clustering results of a3 dataset using k-means (on left) and PFACM (on right)

5. CONCLUSION
In this paper, an algorithm was suggested for automatic

clustering. It is based on a simple deterministic clustering

approach proposed by the authors in a previous work [2].

Experimental results demonstrated that this algorithm is able

to find the appropriate number of clusters in almost all tested

data sets. With this approach, non experts can expect good

quality clusters without assistance from experts towards

parameter tuning.

In future work, it will be of interest to find a tighter upper

bound on the number of clusters, instead of n1/2 , in order to

reduce the number of computations steps of the proposed

approach. An other possible improvement will consist to try

more adequate similarity measure instead of Euclidean

distance, in order to enhance its clustering accuracy. Further

research will explore these directions.

6. ACKNOWLEDGMENTS
Our thanks to the anonymous reviewers for their helpful

comments.

7. REFERENCES
[1] Lloyd., S. P. (1982). "Least squares quantization in PCM".

IEEE Transactions on Information Theory 28 (2): 129–

137. doi:10.1109/TIT.1982.1056489.

[2] Kettani, O. ; Ramdani, F. & Tadili, B. An Agglomerative

Clustering Method for Large Data Sets.International

Journal of Computer Applications 92(14):1-7, April

2014. DOI:10.5120/16074-4952

[3] Asuncion, A. and Newman, D.J. (2007). UCI Machine

LearningRepository

[http://www.ics.uci.edu/~mlearn/MLRepository.html].

Irvine, CA: University of California, School of

Information and Computer Science.

[4] Aloise, D.; Deshpande, A.; Hansen, P.; Popat, P. (2009).

"NP-hardness of Euclidean sum-of-squares clustering".

Machine Learning 75: 245–249. doi:10.1007/s10994-

009-5103-0.

[5] Dan Pelleg and Andrew Moore. X-means: Extending k-

means with efficient estimation of the number of

clusters. In Proceedings of the 17th International Conf.

on Machine Learning, pages 727–734. Morgan

Kaufmann, 2000.

[6] Robert Tibshirani, Guenther Walther, and Trevor Hastie.

Estimating the number of clusters in a dataset via the

Gap statistic. Journal of the Royal Statistical Society B,

63:411–423, 2001.

[7] Greg Hamerly and Charles Elkan. Learning the k in k-

means. In Proceedings of the seventeenth annual

conference on neural information processing systems

(NIPS), pages 281–288, 2003

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-

based algorithm for discovering clusters in large spatial

databases with noise,” in Proc. Second Int’l Conf.

Knowledge Discovery and Data Mining (SIGKDD),

1996

[9] Pal, N.R. and Bezdek, J.C. (1995) On Cluster Validity for

the Fuzzy c-Means Model. IEEE Transactions on Fuzzy

Systems, 3, 370-379.

http://dx.doi.org/10.1109/91.413225

[10] T. Calinski and J. Harabasz. A dendrite method for

cluster analysis. Communications in Statistics, 3:1–27,

1974.

[11] G. W. Milligan and M. C. Cooper. An examination of

procedures for determining the number of clusters in a

data set. Psychometrica, 50:159–179, 1985.

[12] L. Kaufman and P. J. Rousseeuw. Finding groups in

Data: “an Introduction to Cluster Analysis”. Wiley, 1990.

IJCATM : www.ijcaonline.org

