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ABSTRACT 

In data mining, most of clustering algorithms either require 

that the user provides in advance the exact number of clusters, 

or to tune some input parameter, which is often a difficult 

task. The present paper intends to overcome this problem by 

proposing a parameter free algorithm for automatic clustering. 

We evaluated its performance by applying on several 

benchmark datasets. Experimental  results demonstrated that 

the proposed approach is effective.   
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1. INTRODUCTION 

In data analysis, clustering consists of grouping a given 

dataset into a predefined number of disjoint sets, called 

clusters,  so that the elements in the same cluster are more 

similar to each other and more different from the elements in 

the other cluster. Most of existing clustering algorithms 

depend on one ore more tuning parameters, which are often 

difficult to tune, because they may require many empirical 

error-trials computations before obtaining satisfactory results. 

The most prominent clustering algorithm is k-means [1]. 

Given a set of n data points (objects) X = {x1 , . . . , xn } in Rd 

and an integer k, the clustering problem consists to determine 

a set of k centroids  

C = {c1 , . . . , ck } in Rd , so as to minimize the following Sum 

of Square Error (SSE) function: 

SSE=min || x − ci  || 
2 

         x∈D 
   i=1,...,k

 

where || . || 2 denotes the Euclidean norm. The basic k-means 

is a  greedy algorithm which has two stages: Initialization, in 

which we set the seed set of centroids, and an iterative stage, 

called Lloyd’s algorithm [1]. Additionally, Lloyd’s algorithm 

has two steps: The assignment step, in which each object is 

assigned to its closest centroid, and the centroid’s update step. 

The time required for the assignment step is O(nk), while the 

centroid’s update step and the computation of the error 

function is O(n).  

K-means algorithm has a major drawback: the user must 

specify in advance the correct number of clusters, which is 

usually a difficult task when the distribution of the given data 

set is unknown.  

In this paper, an alternative parameter free method for 

automatic clustering  is introduced. It is based on  the 

Agglomerative Clustering Method (ACM) proposed by the 

authors in a previous work [2]. Algorithm validation is 

conducted using several real-world and artificial clustering 

data sets from the UCI Machine Learning Repository [3].  

In the next section, some related work are briefly discussed. 

Then the proposed approach is described in Section 3. Section 

4 presents experimental results of this approach on different 

standard data sets and reports its performance. Finally, in 

Section 5 we draw conclusions and suggest some directions 

for future research.  

2. RELATED WORK 
Despite the fact that finding an optimal number of clusters k 

for a given data set is an NP-hard problem [4], several method 

have been developed to find k automatically.  

Pelleg and Moore [5] proposed the X-means algorithm, which 

proceed by learning k with k-means using the Bayesian 

Information Criterion (BIC) to score each model, and chooses 

the model with the highest BIC score. However, this method 

tends to overfit when it deals with data that arise from non-

spherical clusters. Tibshirani et al. [6] introduced the Gap 

statistic, which compares the likelihood of a learned model 

with the distribution of the likelihood of models trained on 

data drawn from a null distribution. This method is suitable 

for finding a small number of clusters, but has difficulty when 

k increases.Hamerly and Elkan [7] proposed the G-means 

algorithm, based on K-means algorithm, which uses 

projection and a statistical test for the hypothesis that the data 

in a cluster come from a Gaussian distribution. This algorithm 

works correctly if clusters are well-separated, and fails when 

clusters overlap and look non-Gaussian.  Density based 

clustering is to discovers clusters of arbitrary shape in spatial 

databases. The DBSCAN algorithm [8] requires two 

parameters: ε (Eps) and the minimum number of points 

required to form a cluster (minPts). Usually, it is difficult to 

find these optimal parameters, because many empirical 

attempts are required before to get good quality results. 

In the present work, an alternative approach is proposed, 

aiming to overcome this issue. 

3. PROPOSED APPROACH 
The  proposed  algorithm starts by setting k=floor((n)1/2), 

where n is the number of objects in the given data set. This 

choice is motivated by the fact that this number lies in the 

range from 2 to (n)1/2, as reported by Pal and Bezdek in [9]. 

Then in a first phase, it applies the ACM method proposed by 

the authors in. In the second phase, the two clusters having the 

closest centroids are merged.  At each iteration, the maximum 

of CH cluster validity index (Calinski and Harabasz  [10] ) of 

the current partition  is stored. We used this index because it 

is relatively inexpensive to compute, and it generally 

outperforms other cluster validity indices as reported by 

Milligan and Cooper in [11]. This process is repeated until 

k=2. Finally, the algorithm outputs the optimal k and partition 

corresponding to the maximum value of CH stored so far.  

This  algorithm  is outlined in the pseudo-code below: 



International Journal of Computer Applications (0975 – 8887) 

Volume 164 – No 1, April 2017 

35 

Algorithm PFACM 

Input: X= {x1 , x2 , . . . , xn } in Rd  

                                                                                                   

Output:   k  mutually disjoint clusters  C1 ,..., Ck  

                                         k 

such that X=Cj  

                      j=1 

k (n)1/2 

[I,c] ACM(X,k) 

ko k 

Io  I 

CHo  CH(I) 

While k>2 do 

 j argMin(Ci ) 

                        i<=k 

 cj[] 

 kk-1 

 if CHo <CH(I) then  

  ko k 

  Io  I 

  CHo  CH(I) 

 end if 

end while 

Output: ko and Io 

 

The pseudo-code of ACM is outlined in the pseudo-code 

below: 

Algorithm ACM(X,k) 

Input: X and k 

Output:   k  mutually disjoint clusters  C1 ,..., Ck  

                                         k 

such that X=Cj  

                      j=1 

1 for i=1:k 

       miXi 

       Ci Xi 

       XX-Xi 

 end for 

 2 compute D(d(mi,mj))1 ≤ i ≠ j ≤ k    muMin(D)  and 

(a,b)Arg(Min(D)) 

               i,j                   i,j 

             ik+1 

            3 while X

 diMin(d(Xi,mj)) and cArg(Min d(Xi,mj)) 

                                    j                                          j 

            if di<mu then 

                                     Cc CcXi

         mc(Ccmc+Xi)/(Cc+1) 

                                     D(c,:)(d(mc,mj)) 1 ≤ j ≤ k 

                                     D(:,c)D(c,:)'

else 

  Ca CaCb 

 

 ma(Cama+Cbmb)/(Ca+Cb) 

                                    D(a,:)(d(ma,mj)) 1 ≤ j ≤ k 

                                     D(:,a)D(a,:)' 

        Cb Xi 

                                      mb Xi 

                                      D(b,:)(d(mb,mj)) 1 ≤ j ≤ k 

                                      D(:,b)D(b,:)' 

              end if 

             XX-Xi 
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              ii+1 

              muMin(D)  and (a,b)Arg(Min(D)) 

                         h,j                                     h,j 

                                 

         end while 

 

3.1 Complexity 

The time complexity of the first phase is O(n3/2), since the 

running time of ACM is O(nk) and k=n1/2 . 

The second phase requires n1/2 xO(n1/2 ), since each iteration i 

requires O(i1/2 ) operations to update the centroids distance 

matrix and  O(i1/2 ) operations to evaluate the CH index of the 

current partition. Thus, the overall time complexity of  

PFACM is O(n3/2). 

4. EXPERIMENTAL RESULTS 
Algorithm validation is conducted using different data sets 

from the UCI Machine Learning Repository. We evaluated its 

performance by applying on several benchmark datasets and 

compare with k-means, once PFACM has found k, the number 

of clusters. 

Silhouette index (Kaufman and Rousseeuw [12]) which 

measures the cohesion based on the distance between all the 

points in the same cluster and the separation based on the 

nearest neighbor distance, was used in these experiments in 

order to evaluate clustering accuracy. ( bigger average 

silhouette value indicates a higher clustering accuracy ).  

Experimental results are reported in table 1 and figure 1, and 

some clustering results are depicted in figure 2 to 6. 

Table 1.  Experimental results of PFACM application on 

different datasets  in term of mean Silhouette value 

Dataset k 
k 

found 

K-means 

sil. 
PFACM sil. 

breast 2 2  0.7542 0.7294 

iris 3 3  0.7542 0.7786 

glass 7 15  0.6914 0.6009 

ruspini 4 4 0.9086 0.9086 

thyroid 2 7 0.7520 0.7194 

wine 3 8 0.5043 0.4126 

yeast 10 3 0.2995 0.7701 

a1 20 20 0.7185 0.7693 

a2 35 35 0.6998 0.7734 

a3 50 50 0.6695 0.7835 

D31 31 31 0.6871 0.9220 

dim32 16 16 0.7042 0.9962 

dim64 16 16 0.8506 0.9985 

dim128 16 16 0.7430 0.9991 

dim256 16 16 0.8216 0.9996 

dim512 16 16 0.6947 0.9997 

R15 15 15 0.7879 0.9361 

Unbalance 8 8 0.8132 0.9727 

s1 15 15 0.7173 0.8783 

s2 15 15 0.6796 0.7828 

s3 15 18 0.6422 0.5939 

s4 15 71 0.5492 0.5546 

 

      

Fig 1: Chart of mean Silhouette index for both PFACM and k-means applied on different datasets.           
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Fig 2: Clustering results of Unbalance dataset using k-means (on left) and PFACM (on right) 

 

 

Fig 3: Clustering results of dim32 dataset using k-means (on left) and PFACM (on right) 
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Fig 4: Clustering results of S1 dataset using k-means (on left) and PFACM (on right) 

 

Fig 5: Clustering results of S2 dataset using k-means (on left) and PFACM (on right) 
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Fig 6: Clustering results of a3 dataset using k-means (on left) and PFACM (on right) 

5. CONCLUSION 
In this paper, an algorithm was suggested for automatic 

clustering. It is based on a simple deterministic clustering 

approach proposed by the authors in a previous work [2]. 

Experimental  results demonstrated that this algorithm is able 

to find the appropriate number of clusters in almost all tested 

data sets. With this approach, non experts can expect good 

quality clusters without assistance from experts towards 

parameter tuning. 

In future work, it will be of interest to find a tighter upper 

bound on the number of clusters, instead of  n1/2 , in order to 

reduce the number of computations steps of the proposed 

approach. An other  possible improvement will consist to try 

more adequate similarity measure instead of Euclidean 

distance, in order to enhance its clustering accuracy. Further 

research will explore these directions. 
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