
International Journal of Computer Applications (0975 - 8887)
Volume 164 - No.10, April 2017

Extending OpenMP to Overcome the Interoperability
Challenges

Ali Alqazzaz
Department of Computer Science, Oakland University

Rochester, MI 48309

Zijun Han
Department of Computer Science, Oakland University

Rochester, MI 48309

ABSTRACT
OpenMP has become a very successful user-model for developing
parallel applications. However, there are still some challenges in
terms of OpenMP interoperability with other programming APIs
as well as within itself. In this paper, we introduce some exten-
sions to the OpenMP runtime library related to the interoperability
problem. Also, we evaluate and compare the performance of the
different waiting thread behaviors (PASSIVE |ACTIVE). In addi-
tion, we introduce a new function to shutdown or unload the whole
runtime library when exiting the parallel region in order to prove
that It would take longer time than awakening a sleeping thread.

Keywords
OpenMP, parallel programming, interoperability, multi-threading

1. INTRODUCTION
OpenMP is an implementation model to support the implementa-
tion of parallel algorithms. It is primarily designed for shared mem-
ory multiprocessors. The goal of OpenMP is to provide a standard
and portable API for writing shared memory parallel programs [3].
OpenMP takes a directive-based approach for supporting paral-
lelism. It consists of a set of directives that may be embedded within
a program written in a base language such as Fortran, C, or C++.
There are two compelling benefits of a directive-based approach
that led to this choice: The first is that this approach allows the same
code base to be used for development on both single-processor and
multiprocessor platforms; on the former, the directives are simply
treated as comments and ignored by the language translator, leading
to correct serial execution. The second related benefit is that it al-
lows an incremental approach to parallelismstarting from a sequen-
tial program, the programmer can embellish the same existing pro-
gram with directives that express parallel execution. These direc-
tives may be offered within any base language (within the C/C++
languages, directives are referred to as pragmas). In addition to di-
rectives, OpenMP also includes a small set of runtime library rou-
tines and environment variables. These are typically used to exam-
ine and modify the execution parameters. The language extensions
in OpenMP fall into one of three categories: control structures for
expressing parallelism, data environment constructs for communi-
cating between threads, and synchronization constructs for coordi-
nating the execution of multiple threads [2]. However, there are still
some challenges in terms of OpenMP interoperability with other

programming APIs as well as within itself. We tried to expose some
of these challenges.
This paper is organized as follows: Section 2 briefly explains the
execution model of OpenMP and how it works. The OpenMP run-
time library is discussed in Section 3. This is followed by the moti-
vations and challenges related to OpenMP interoperability in Sec-
tion 4. Section 5 and 6 show our implementation and results. Fi-
nally, the paper concludes in Section 7.

2. EXECUTION MODEL OF OPENMP
OpenMP uses a fork/join execution model. OpenMP provides two
kinds of constructs for controlling parallelism. First, it provides a
directive to create multiple threads of execution that execute con-
currently with each other. The only instance of this is the paral-
lel directive. Second, OpenMP provides constructs to divide work
among an existing set of parallel threads. An instance of this is the
do directive.
An OpenMP program always begins with a single thread of con-
trol that has associated with it an execution context or data envi-
ronment. This initial thread of control is referred to as the master
thread. When the master thread encounters a parallel construct, new
threads of execution are created along with an execution context
for each thread. Each thread has its own stack within its execu-
tion context. The execution context for a thread is the data address
space containing all the variables specified in the program. Multiple
OpenMP threads communicate with each other through ordinary
reads and writes to shared variables.

3. OPENMP RUNTIME LIBRARY
The OpenMP API runtime library routines are external procedures.
The return values of these routines are of default kind, unless other-
wise specified. Runtime library provides interface to the compiler.
The runtime interface is based on the idea that the compiler “out-
lines“ code that is to run in parallel into separate functions that
can then be invoked in multiple threads. OpenMP provides several
runtime library routines to assist you in managing your program
in parallel mode. Many of these runtime library routines have cor-
responding environment variables that can be set as defaults. The
runtime library routines enable you to dynamically change these
factors to assist in controlling your program. In all cases, a call to
a runtime library routine overrides any corresponding environment
variable.
Generally, we can analyze the architecture into two perspectives:
the parallelization regions and the data.

1

International Journal of Computer Applications (0975 - 8887)
Volume 164 - No.10, April 2017

(1) Region perspective. We use parallel to automatically create
multi-threads. And each thread will be executed without or-
der. However, we can use ordered clause to guarantee the code
be executed in sequence. There are different types of parallel
regions:
—Section means the task is assigned to each thread.
—Single means the task is assigned to a random thread.
—Master means the task is executed in the master thread.
For the default parallel regions, we can use schedule to design
a way to assign tasks to different threads. Generally, we can
implement this assignment in three ways:
—Static: equally assign them to n threads.
—Dynamic: assign them to the idle thread only.
—Guided: implement the dynamic assignment reductively.

(2) Data perspective. We have two kinds of variables. Variables
that are defined before parallel region are shared among ev-
ery thread, while those defined in parallel regions can be only
accessed by certain threads. We use threadprivate to change
those shared variables into a private one for each thread. This
is done by generating a new private variable for every single
thread. For those shared variables, we must pay attention to
the data race problem, which defined as two different memory
operations are trying to use a same variable, and different ex-
ecution order may lead to different results. To solve this prob-
lem, we can use critical or atomic directive to guarantee that
the data can be only accessed by one thread at a time. We can
also set barriers to make sure all threads have been executed
before starting any new threads. Sometimes the update of cer-
tain variables are stored only in registers, we can use flush to
directly write the data back to memory to make sure that other
threads will use the data that already been updated.

4. CHALLENGES AND MOTIVATIONS
There are still some challenges in terms of OpenMP interoperabil-
ity. OpenMP threads that are created by the parallel construct can-
not interact with external systems. In other words, we are trying
to enable the interoperability through flexible communication be-
tween OpenMP threads and user threads. However, the main goal
of this work is to achieve a high level of resource utilization. So, it
would be better if OpenMP threads can interact and communicate
with user threads. To achieve this goal, we implement four new
functions as follows:

(1) int omp set wait policy(ACTIVE |PASSIVE): set the waiting
thread behavior. The function returns the current wait policy,
which could be different from intention of the call depending
on the decision made by the runtime. If the value is PASSIVE,
waiting threads should not consume CPU power while waiting;
while the value is ACTIVE specifies that they should.

(2) int omp thread create(): to give the user the ability to create an
OpenMP thread without using #pragma omp parallel directive,
and lets it be a user thread similar to pthread.

(3) int omp quiesce(): to shutdown or unload the OpenMP run-
time library.

5. IMPLEMENTATION
In general, to implement those four functions, we follow the three
steps:

—Define this function in file kmp csupport.c, write down the im-
plementation.

Fig. 1: omp quiesce

Fig. 2: omp set wait policy

—Declare this function in file kmp.h, using KMP EXPORT in
front the declaration.

—Export this function in file dllexports, assign a unique ID for this
function.

(1) void omp quiesce()
The purpose of this function is to shutdown or destroy all
OpenMP threads in the thread pool. We have implemented
it, as shown in Figure 1, by using the Intel internal call
to kmp internal end fini, which unloads the runtime library.
Then, we have to register the master thread again so it can gen-
erate team of threads later when needed. This can be done by
calling the kmp get global thread id reg().

(2) void omp set wait policy(PASSIVE |ACTIVE)
The idea of this function is to set the waiting thread behavior.
PASSIVE value means that waiting threads should not con-
sume CPU power while waiting. In other words, the OpenMP
runtime system will put them into a sleep mode. On the other
hand, ACTIVE value means that waiting threads should keep
asking the CPU for work to do. The intention of doing this
function is to measure the differences in performance between
these different modes. The implementation of this function
is done by using the internal kmp stg parse wait policy as
shown in Figure 2. The current OpenMP runtime system uses
the library turnaround to indicate the ACTIVE mode and li-
brary throughput to indicate the PASSIVE mode. We pass an
integer as its parameter. If it equals to 0, we set the wait pol-
icy to be passive, otherwise, active. We found a variable named
kmp library in the environment setting file which has four dif-

ferent status for the waiting policy. So, we change this value
accordingly, then we call a function kmp aux set library to
set the changed value to the OpenMP environment.

(3) int omp thread create()
The purpose of this function is to give the user the ability to
create an OpenMP thread without using #pragma omp parallel
directive, and lets it be a user thread similar to pthread. The
implementation of this function is shown in Figure 3. So, we
are creating one thread to execute the passed function. If there

2

International Journal of Computer Applications (0975 - 8887)
Volume 164 - No.10, April 2017

Fig. 3: omp create thread

Fig. 4: Evaluation of omp quiesce

are enough available threads in the thread pool, we will get
one thread from the thread pool and assign the task to it. If no
thread is available in the thread pool, we create a new thread
to execute this task, and then put the new thread back into the
thread pool after completing its job.

6. EXPERIMENTAL RESULTS
(1) void omp quiesce()

Figure 4 shows the design of the quiesce evaluation. However,
Figure 5 below shows that the running time of all variables
(startup quisece, parallel, and quiesce) increase as we increase
the number of threads used. The running time of creating the
parallel region is very small because the OpenMP just cre-
ates that once. Then, it puts them in a global thread pool to
be used next time needed. However, the time cost represented
by the quiesce term refers to the time required to shutdown the
whole runtime library. In other words, after each parallel re-
gion we remove all threads in the global thread pool. Finally,
the startup quiesce term implies the time required to initialize
the parallel region and the time taken to shutdown the runtime
library.

(2) void omp set wait policy(PASSIVE |ACTIVE)
We need to create two processes since each process will only
maintain and share one thread pool. For those two process,
each task is execute using 1s, and we need to create enough
threads to make full use of the calculation power of one CPU.
We tested it in three cases: passive, active, and quiesce/restart
the runtime environment. Figure 6 shows the design of the
evaluation.

Fig. 5: Results of omp quiesce

Fig. 6: Evaluation of waiting policy

Fig. 7: Results of waiting policy

As Figure 7 below shows, there is no a big difference between
the two behaviors. The reason is that the OpenMP uses only
one global thread pool for all OpenMP threads created by mul-
tiple pthreads. So, the small difference comes from the time
required to awake a sleeping thread. By doing this experiment,
we have understand more about the way that OpenMP deals
with the thread pool.

(3) int omp thread create()
We compared this function with creating pthread to execute a
list of tasks. So, for this function we have tested it in two dif-
ferent ways. Figure 8 shows the design of the evaluation. For
the first way, we put different number of tasks in one parallel
region, so that every omp thread create() or pthread create()
function will be run in parallel. On the other hand, we
use different iterations to execute the omp thread create() or
pthread create() functions in sequence, and compare the run-
ning time.

3

International Journal of Computer Applications (0975 - 8887)
Volume 164 - No.10, April 2017

Fig. 8: Evaluation of creating thread

Fig. 9: Results of omp thread create in parallel

Fig. 10: Results of omp thread create in parallel

Figure 9 and Figure 10 show the result of the first approach
(execute in parallel). It clearly shows that there is almost no
differences between them. This is might be because that we
are doing it inside the parallel region.However, Figure 11 and
Figure 12 show the result of the second approach (execute in
sequence). They show that omp thread create() gives a better
performance that pthread create(). So, it would be a good fea-
ture if the user can do this instead of creating another pthread.

7. CONCLUSIONS AND FUTURE WORK
In conclusion, we have seen that there are many features can be
added to the current OpenMP Runtime Library in order to improve
the OpenMP interoperability. One feature is that allowing the user
to create a new OpenMP thread and assign a task to it instead of

Fig. 11: Results of omp thread create in sequence

Fig. 12: Results of omp thread create in sequence

creating new user thread. We have implement a function to allow
users to get one thread from the existing thread pool is any threads
are available, and assign one task to this thread, this helps to take
advantage of the OpenMP thread pool and wont need to create a
new thread to work on it, which helps to save the memory usage
and speed up the runtime.
We have studied the waiting policy of the OpenMP and how the
current OpenMP Runtime System deals with the thread pool. Con-
sidering there are two waiting policies, one called throughput (pas-
sive), which is designed to make the program aware of its environ-
ment (that is, the system load) and to adjust its resource usage to
produce efficient execution in a dynamic environment. While the
other one called turnaround (active), which is designed to keep ac-
tive all of the processors involved in the parallel computation in
order to minimize the execution time of a single job. We cannot
simply say which one is better than the other, it depends one the
executing environment. When setting the wait policy to be passive,
after a certain period of time has elapsed, the useless thread will
stop waiting and sleep. Thus active mode may be better for high-
density of OpenMP tasks. While, a passive mode with a small block
time value may offer better overall performance if your application
contains non-OpenMP threaded code that executes between paral-
lel regions.
In addition, we have implemented a new function to shutdown the
whole runtime library when exiting the parallel region. Since all
threads are maintained in the same thread pool, quiesce will reap
every threads to free the memory, which sometimes help to clear
the runtime environment when the task density is lower and we do
not need to wake up most of the thread in the thread pool. However,
when entering new parallel regions, we need to make sure that we

4

International Journal of Computer Applications (0975 - 8887)
Volume 164 - No.10, April 2017

register the current working thread as our root thread, so that new
runtime environment can be built on it. It costs time to restart an-
other parallel region, thus works slower when lots of tasks in the
task queue.
As a future work, we will continue adding more functions to the
existing runtime system to improve the OpenMP interoperability,
such as omp attach/omp detach, omp exit/omp join. By doing this,
we could have a better OpenMP runtime library that optimizes the
resources utilization.

8. REFERENCES

[1] IBM Knowledge Center. XLSMPOPTS Runtime options:
IBM XL C/C++ for Linux 12.1.0, (accessed June 25,

2016). http://www-01.ibm.com/support/docview.wss?
uid=swg27038813.

[2] Rohit Chandra. Parallel programming in OpenMP. Morgan
kaufmann, 2001.

[3] Leonardo Dagum and Rameshm Enon. Openmp: an industry
standard api for shared-memory programming. Computational
Science & Engineering, IEEE, 5(1):46–55, 1998.

[4] Intel. User and Reference Guide for the IntelR C++ Compiler
15.0, (accessed June 25, 2016). https://software.intel.
com/en-us/compiler_15.0_ug_c.

[5] ORACLE. Oracle Solaris Studio 12.3: OpenMP API Users
Guide, (accessed June 25, 2016). http://docs.oracle.
com/cd/E24457_01/html/E21996/toc.html.

5

http://www-01.ibm.com/support/docview.wss?uid=swg27038813
http://www-01.ibm.com/support/docview.wss?uid=swg27038813
https://software.intel.com/en-us/compiler_15.0_ug_c
https://software.intel.com/en-us/compiler_15.0_ug_c
http://docs.oracle.com/cd/E24457_01/html/E21996/toc.html
http://docs.oracle.com/cd/E24457_01/html/E21996/toc.html

	Introduction
	Execution Model of OpenMP
	OpenMP Runtime Library
	Challenges and Motivations
	Implementation
	Experimental Results
	Conclusions and Future Work
	References

