Evaluating the Performance of Teaching Assistant Using Decision Tree ID3 Algorithm

K. Devasenapathy
Information Technology Department
Nehru Arts and Science College
Coimbatore-Tamilnadu -India

S. Duraisamy
Computer Science Department
Chikkanna Government Arts College
Coimbatore-Tamilnadu –India

ABSTRACT
Data mining (DM) is a class of database application that look for the hidden patterns in a collection of data and their relationships. DM is used in developing methods for discovering facts from data which come from educational environment and it becomes educational data mining (EDM). The educational institutions can use classification for complete analysis of students’ characteristics. This paper details the Iterative Dichotomiser (ID3) algorithm in classification technique. The ID3 algorithm builds a decision tree from a dataset. This action we accumulates Teaching Assistant Evaluation’s (TAE) dataset from UCI machine learning repository. This paper demonstrates the ID3 to construction of decision tree (DT). The implementation of this algorithm is useful to study of teaching performance over three regular semesters and two summer semesters of 151 Teaching Assistant (TA).In this work various kinds of impurities measures and discovery the maximum information gain at various iterations levels. This task is to extract the knowledge that describes TA performance over summer and regular semester. This exertion will help the institute to growth the performance.

Keywords
Educational Data Mining, Iterative Dichotomiser 3 (ID3) Algorithm, Decision Tree, Teaching Assistant

1. INTRODUCTION
Data Mining (DM) is a gorgeous field of computer science. DM methods apply in the areas of machine learning, statistics, artificial intelligence and databases. DM is the process of automatically searching large stores of data to discover patterns and trends from large data sets. [10] The objective of the DM process is to extract information from a data set and convert it into a logical construction for further use. [5] DM is the process of processing large volumes of data, searching for patterns and relationships within that data. DM has two learning methods like supervised learning and unsupervised learning. Supervised learning is the DM task of understand function from labeled training data. The training data consist of a set of training examples. The training data consisting input object and a desired output value. Unsupervised learning is seeking that to find hidden structure in unlabeled data. Supervised learning is the DM task of understand function from labeled test data. DM has been applied in numerous fields including e-commerce, bioinformatics, counter terrorism and lately, within the educational research which commonly known as Educational Data Mining (EDM). [2].The EDM society website, www.educationaldatamining.org “an emerging discipline, concerned with developing methods for discovering the unique types of data that come from educational settings, and using those methods to better understanding of the students, and the settings which they learn in”. The job of traditional education is to transmit to a next generation. Today the technology development in computer, internet, industrialization and mechanization are blessing of human beings. In the traditional educational system boredom, confusion, engaged concentration, frustration, neutral delight are raised. It must be a transparent transformation which is required from traditional educational system to modern education system [8].

2. EDUCATIONAL DATA MINING (EDM)
The EDM is the application of DM techniques to educational data, and so, its objective is to scrutinize these types of data in order to resolve educational research issues [3].The EDM methods are statistics and visualization, web mining, classification, regression, density estimation, clustering, classification, relationship mining, outlier detection, sequential pattern mining and text mining [6].
The EDM is an emerging field exploring data in educational context by applying different DM techniques and tools. EDM is an interesting research area which extracts useful, previously unknown patterns from educational database for better thoughtful, improved educational performance and assessment of the student learning process. EDM is a term used for processes designed for the analysis of data from educational settings to better to understand students and the settings which they learn in. Today in the EDM there are increasing research interests in using DM techniques in educational field. This new emerging field, EDM, concerns with developing methods that discover knowledge from data which originating from education system. It is often differ from traditional DM techniques. The EDM focuses on cluster, archiving, and analysis of data related to students learning and judgment. The analysis performed in EDM research is often related to techniques drawn from variety of literatures, including psychometrics, machine learning, data mining, educational statistics, information visualization and computational modeling.

3. DECISION TREE
The Decision Tree (DT) is flow-chart tree structure are commonly used for gaining information for the purpose of decision making. Where each inner node is denoted by rectangles and leaf nodes are denoted by ovals. All inner nodes have two or more child nodes. All interior nodes contain splits, which test the value of an expression of the attributes. Arcs from an inner node to its children are labeled with distinct outcomes of the test. Each leaf node has a class label associated with it. DT starts with a root node on which it is for users to take activities. From this node, users split each node recursively according to DT learning algorithm. The final result is a DT in which each branch represents a
functions which can degree, which questions provide the most balanced splitting.

4.1 Measuring Impurity

Given a data table that contains attributes and class of the Attributes are measure homogeneity (or heterogeneity) of the table based on the classes. A table is pure or homogenous if it encompasses only a single class. If a data table contains several classes, then that the table is impure or heterogeneous. There are several indices to measure degree of impurity quantitatively. Utmost fine recognized indices to produce degree of impurity are entropy, gini index, and classification error.

\[
\text{Probability(Low)} = \frac{52}{151} = 0.344 \\
\text{Probability(Medium)} = \frac{50}{151} = 0.331 \\
\text{Probability(High)} = \frac{49}{151} = 0.325
\]

Entropy

Entropy is way measure the impurity. It is calculated based on proportion of target values. The formula as follows

\[
H(X) = \sum^n_j -p_j \log_2 p_j
\]

The logarithm base is 2

\[
\text{Entropy} = -0.344 \log_2 0.344 \\
-0.331 \log_2 0.331 \\
-0.325 \log_2 0.325 = 1.585
\]

4.2 Information Gain

The information gain metric is such a function

For Set S, Attribute A Where S is split into

\[
\text{subsets based on values of } A \quad c_\delta^A = \text{Subset } A \text{ of } S \\
I_E = \text{Entropy} \quad c_\delta^A = \text{Size}(c_\delta^A) \\
\text{Size}(S) \\
I_{G(S,A)} = I_E(S) - \sum^n_j \left((p(c_\delta^A)) \cdot I_E(c_\delta^A) \right)
\]

Results of First Iteration

<table>
<thead>
<tr>
<th>Table 1: Entropy based maximum information gain</th>
<th>Class Size (CS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>Whet</td>
</tr>
<tr>
<td>is TA</td>
<td>Functional No. NS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig 1: Result of first iteration Class Size (CS) is maximum information gain

The above Fig 1 explains the entropy based maximum information gain. It indicates the maximum information gain is Class Size (CS). The Class Size becomes the root node of the DT.

Results of Second Iteration

TABLE 2: Entropy based maximum information gain - Course Instructor (CI)

<table>
<thead>
<tr>
<th>Gain</th>
<th>Whether of TA is a NES / Non-NS</th>
<th>Course Instructor</th>
<th>Course</th>
<th>Summer/Regular</th>
<th>Maximum Information Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entropy</td>
<td>0.414</td>
<td>0.581</td>
<td>0.538</td>
<td>0.103</td>
<td>0.585</td>
</tr>
</tbody>
</table>

Fig 2: Result of second iteration Course Instructor (CI) is maximum information gain

The above Fig 2 explains the entropy based maximum information gain. It indicates the maximum information gain is Course Instructor (CI). The Course Instructor becomes the next level of the Decision Tree (DT)

Results of Third Iteration

Table 3: Entropy based maximum information gain – Course

<table>
<thead>
<tr>
<th>Gain</th>
<th>Whether of TA is a NES / Non-NS</th>
<th>Course</th>
<th>Summer/Regular</th>
<th>Maximum Information Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entropy</td>
<td>0.083</td>
<td>0.540</td>
<td>0.106</td>
<td>0.540</td>
</tr>
</tbody>
</table>

Fig 3: Result of third iteration Course is maximum information gain

The above figure 3 explains the entropy based maximum information gain. It indicates the maximum information gain is Course. The Course becomes the next level of the DT.

Results of Fourth Iteration

TABLE 4: Entropy based maximum information gain - TA is a NES/Non -NS and Summer/Regular

<table>
<thead>
<tr>
<th>Gain</th>
<th>Whether of TA is a NES / Non-NS</th>
<th>Summer/Regular</th>
<th>Maximum Information Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entropy</td>
<td>0.073</td>
<td>0.143</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Fig 4: Result of fourth iteration TA is a NES/Non-NS and Regular/Summer

The above figure 4 explains the entropy based maximum information gain. It indicates the maximum information gain is equal to remaining attributes of whether of Teaching Assistant is a Native English Speaker (NES) or Non-Native Speaker (NS) and Regular or Summer. Both are of equal level in the DT.
5. CONSTRUCTION OF DECISION TREE USING ID3 ALGORITHM

FIGURE 5: Construction of Decision Tree for Teaching Assistant Evaluation dataset using ID3 Algorithm
6. CONCLUSION
The DM methods are applied in education field it is called EDM. The EDM techniques are used to improve the process of educational settings like Schools, Colleges and Universities. EDM is an application of DM. The EDM is a promising research field. In this paper, implementation algorithm of ID3 algorithm in the Teaching Assistant Evaluation (TAE) dataset and the approach of decision tree (DT) induction using ID3 algorithm. ID3 algorithm calculated different types of impurities and finding the maximum information gain at various levels of iteration. It helps to analysis the performance of teaching assistant (TAE) data set with different dimensions. The DT shows the overall performance of the TA. The Experimental results are hopeful, investigating other relational dataset. The implementation of classification algorithm in educational data set, retrieve the improved result in future works.

7. REFERENCES