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In this paper we prove a common fixed point theorem for 

compatible map of type     in Fuzzy 2- metric space. 
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1. INTRODUCTION 

Integral type contraction principle is one of the most popular 

contraction principle in fixed point theory. The first known 

result in this direction was given by Branciari [1] in general 

setting of lebgesgue  integrable function and proved following 

fixed point theorems in metric spaces.  In 1988, Grabiec [3] 

defined contraction and contractive mappings on a fuzzy 

metric space and extended fixed point theorems of Banach 

and Edelstein in such spaces. Following Grabiec's approach, 

Mishra et al. [4] obtained common fixed point theorems for 

asymptotically commuting mappings on fuzzy metric spaces. 

In 1998, Vasuki [5] established a generalization of Grabiec's 

fuzzy contraction theorem wherein he proved a common fixed 

point theorem for a sequence of mappings in a fuzzy metric 

space. Thereafter, Cho [2] extended the concept of compatible 

mappings of type (alpha) 

Our objective of this paper is to prove a common fixed point 

theorem by removing the assumption of continuity, relaxing 

compatibility to compatible maps of type     or    . weak 

compatibility and replacing the completeness of the space 

with a set of alternative conditions for functions satisfying an 

implicit relation in FM-space.   

In this paper the following implicit relation: Let             
be a continuous t-norm and F be the set of all real continuous 

functions           satisfying the following conditions 

1.1   F is no increasing in the fifth and sixth variables, 

1.2  if, for some constant           we have 

1.2(a)                              
 

 
       

 

 
       ,                               

or 

1.2(b)                            
 

 
       

 

 
           

for any fixed        and any nondecreasing functions 

               with                  then there exists 

          with                    , 

1.3 if, for some constant           we have 

                                

for any fixed       and any nondecreasing function   
           then               

 

2. PRELIMINARIES 
                A triplet         is said to be a Fuzzy 2- 

metric space if X is an arbitrary set,   is a continuous t − norm 

and M is a fuzzy set on            satisfying the following 

condition for all               

                          

                         if and only if         . 

                                             

                                                
                  

                                 is continuous. 

Then   is called a Fuzzy 2- metric on    The function 

           denote the degree of nearness between x , y  and 

   with respect to t. 

Example : Let       be a metric space. Define          

            and              
 

          
  

For all           and all      . Then         is a Fuzzy 2- 

metric space. 

It is called the Fuzzy 2- metric space induced by   We note 

that,             can be realized as the measure of nearness 

between     and      with respect  to  .  It is known that 

         is non decreasing for all       .  Let            be 

a Fuzzy 2- metric   space for       ,  the   open   ball 

                                          

 Now, the collection                                is 
a neighborhood system for a topology    on   induced by the 

Fuzzy 2- metric M. This topology is Housdroff and   first 

countable. 

Definition 2.2 A sequence       in a Fuzzy 2- metric space 

         is said to be a   converges   to      iff   for  each   

      and   each                   such   that  

                                  

Definition 2.3  A sequence       in a Fuzzy 2- metric space 

         is said to be a   G- Cauchy sequence converges   to  

    iff   for  each         and   each                   such   

that                                       

A Fuzzy 2- metric space         is said to be complete if 

every G- Cauchy sequence in it converges to a point in it. 

3. MAIN RESULT 
Theorem 3.1 Let         be a complete Fuzzy 2- metric 

space and let                 be mappings from X into itself 

such that the following conditions are satisfied: 

3.1(a)                              
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3.1 (b)          is compatible of type      and         is 

weak  compatible, 

 3.1(c) there exists         such that for every     
                          

     
  
                                              

                                             
 

 
                  

Where                      is a lebgesgue integrable 

mapping which is summable on each compact subset of 

        non negative and such that               
 

 
     

  . Then A, B,S,T, P and Q have a unique common fixed point 

in X. 

Proof : Let     , then from 3.1 (a) we have         such 

tha                          

Inductively, we construct sequences                in X such 

that  for     

                                              

put                     in 3.1(c)then we have                                                      

  

     
  

                      
                      

                 

                          
                     

                  
 

 
     

     

     
  
                      

                  
                 

                     
                    

                
 

 
          

 

     

  

                      
                  

                 

                     
                   

               
 

 
                   

 

 
  

 

 
         

From condition 3.1 (a) we have 

     
                     

 
    

     
               

 

 
                   

 

 
  

 
     

we have 

     
                     

 
         

               
 

 
 

 
      

Since       is a lebesgue integrable function so we have  

                                  
 

 
   

Similarly we have 

                                    
 

 
   

Thus we have 

                              
 

 
   

                             
 

  
   

                         
 

   
                   

and hence                                             

For each                 we can choose        such that 

                                       .   

For any        we suppose that      . Then we have 

              

            
 

   
                  

 

   
        

             
 

   
     

                                         
         

                      

And hence       is a Cauchy sequence in X. 

Since          is complete,      converges to some point 

   . Also its subsequences converges to the same point 

     

That is                                    

                                   

As         is compatible pair of type       we have 

                                            

Or                         Therefore,            .  

Put                               in 3.1(c)we have                 

     

   

                      
                         

                            
                      

                          
                       

 

 
    1 

Taking     and 3.1(a)  we get 

     
                 

 
          

                

 
      

Since       is a lebesgue integrable function which implies 

                                    

we have                         .      

Put                         in  3.1(c) we have 

         

     

   

                     
                     

             

                          
                   

                   

 

 
            

Taking      3.1 (a) That is      
              

 
     

       
             

 
     

Since       is a lebesgue integrable function so we have  

                             

we get          

So we have                 

Putting                                          

     
   

                     
                     

               

                        
                    

                  
 

 
    

   

Taking      , 3.1(a)  

     
              

 
          

             

 
       

Since        is a lebesgue integrable function which follows 

                            

we have          

And also we have                           
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Therefore                   

As              there exists     such that  

          

Putting                in 3.1(c) we 

get

     
   
                  

                  
                 

                                 
               

 

 
    

   

Taking       we get 

     
   

                                       

                                         
 

 
       

     
              

 
          

             

 
       

Since       is a lebesgue integrable function which implies  

                            

we have         

Hence           

Hence         is weak compatible, therefore, we have  

           

Thus           

Putting                in 3.1© we get 

     
   
                  

                  
                 

                                 
                

 

 
    

   

 Taking       we get 

     
   

                                       

                                         
 

 
       

     
              

 
           

             

 
       

Since       is a lebesgue integrable function and hence  

                           

we get          

Putting                   in 5.3.2(c) we get 

     
   

                    
                    

                 

                                    
                 

 

 
   

    

As                     we have 

                

And                            

Taking       we get 

     
   

                                        

                                       
 

 
        

     
               

 
          

              

 
      

Since       is a lebesgue integrable function therefore 

                                

we have         

Now                                

Hence                     

Combining                         

Hence z is the common fixed point of A, B, S, T, P and Q. 

Uniqueness  Let u be another common fixed point of 

A,B,S,T,P and Q. Then                    
 Putting                 in 3.1(c) then we get

 

     
   
                                             

                                            
 

 
       

Taking   limit both side then we get 

     
   
                                    

                                    
 

 
       

     
             

 
           

           

 
       

Since       is a lebesgue integrable function so we have  

                           

we get        .  

That is z   is a unique common fixed point of A,B, S, T, P and 

Q in X. 

Corollary 3.2   Let         be a complete Fuzzy 2- metric 

space and let             be mappings from X into itself 

such that the following conditions are satisfied: 

(a)                            

(b)         is compatible of type      and        is weak  

compatible, 

(c) there exists         such that for every               
                          

     
  
                                           

                                          
 

 
                   

Where                         is  a  lebgesgue  integrable  

mapping  which  is  summable  on  each  compact  subset  of  

        ,  non  negative,  and  such  that,           

     
 

 
       . Then A, S,P and Q have a unique common 

fixed point in X. 

Proof   If we take B = T = I  ( identity mapping)  in Theorem 

3.1  then we  get the result.    
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