
International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

15

Digital Encoding to the form of Amino Acids for DNA

Cryptography and Biological Simulation

Mona Sabry

Computer Science dept.,
Faculty of Computer Science

and Information Systems,
Ain Shams University,

Cairo, Egypt.

Mohamed Hashem
Information Systems dept.,

Faculty of Computer Science
and Information Systems,

Ain Shams University,
Cairo, Egypt.

Taymoor Nazmy
Computer Science dept.,

Faculty of Computer Science
and Information Systems,

Ain Shams University,
Cairo, Egypt.

ABSTRACT

In a way to minimize the gap between digital computing and

DNA computing, it is needed to transfer DNA between the

two fields, and to make use of the two technologies in

generating ideas of data integrity and information security.

One of the critical problems in amino acid analysis is how to

establish a digital coding system to better reflect the

properties of amino acids and their degeneracy. This paper

introduces a method to convert digital data to the form of

DNA and then to the form of amino acids using the natural

RNA codons distribution on the 20 natural amino acids which

preserves their biological properties. The Decoding method

also convert the amino acids to a digital form. The method

solves the problem of ambiguity that more than one codon

correspond to the same amino acid. Applicability and

reversibility of the method is proven and successfully

implemented.

The presented encoding method can serve in DNA computers

and biological experiments by representing data in the form of

amino acids. This mainly aims at increasing the flexibility of

converting data between biological medium and digital

medium. Although it does not include the use of secret key

but it can also be used as an auxiliary factor in cryptographic

and steganographic applications like data integrity and digital

signature.

Keywords

Amino acids; binary data; digital encoding; DNA; RNA;

cryptography; secret writing; Ambiguity steganography;

biological simulation.

1. INTRODUCTION
DNA computing is a branch of computing which

uses DNA, biochemistry, and molecular biology hardware,

instead of the traditional silicon-based computer technologies.

In this trend many researches; including held by Sabry et al.

[1]; were directed to find a way to encode binary data to the

form of DNA. DNA cryptography is a new born

cryptographic field which emerged with the research of DNA

computing. The massive parallelism and vast information

density inherent in DNA molecules are explored for

cryptographic purposes such as encryption, data hiding,

signature, and so on [2, 3].

The research in this area has two directions. One direction

which is led in biological labs like technologies using

Polymerase Chain Reaction (PCR), DNA synthesis,

hybridization and DNA digital coding, which have been

developed and their results were well accepted [4, 5, 6].

Another direction used the DNA structure to implement

cryptographic approaches on digital computers.

Those researches have presented different ways to initially

convert data to the form of DNA prior to their cryptographic

or steganographic method. In 1999, Clelland et al. [6]

presented a steganographic approach in which they hide secret

messages encoded as DNA strands among a random DNA

strand. In 2000, Prof. Gehani [5] presented DNA-based one-

time-pads mechanisms that are used to design two encryption

methods. One is called substitution in which is the DNA plain

code sequence is translated to DNA cryptograph sequence

according to a defined mapping. The other is called

Exclusive-OR method, which uses biological molecular

techniques to perform an Exclusive-OR operation of DNA

plain code and DNA cipher key sequence [5].

Ning Kang then led another approach in [7]. In his research,

he did not apply real DNA computing operations, but he just

used the principle ideas in central dogma of molecular biology

and the DNA structure in order to develop his cryptographic

method. The method only simulates the transcription, splicing,

and translation processes to develop a cryptographic method.

He also hasn’t found an efficient solution the ambiguity

problem. This problem is introduced and solved in our

proposed algorithm. Heider et al. presented a survey on

various ways that have been used for data encoding to DNA

form [8]. Then they presented their own encoding algorithm

as a prior to their introduced cryptographic algorithm.

In a way of concentration on the idea of data encoding, Sabry

et al. [1] presented three different methods to convert data

from binary form to DNA form and then to amino acids form.

These transformation methods were implemented using

artificially constructed tables of RNA codons which contained

26 virtual amino acids. In our paper, we will use the natural

distribution of RNA codons on the 20 natural amino acids for

the same purpose.

The importance of such transformation lies mainly in

representing data in a biological form that can make data able

to go through biological experiments and processes, especially

related to Amino Acids and DNA. It is also a way of viewing

data moving through biological processes and representing it

in a binary form which can be used in many computer

applications.

In the field of cryptography, the encoding techniques cannot

provide security by their own as they don’t include the use of

a secret key. But they can be embedded into another

encryption algorithm to enhance confusion and therefore

enhance security. This concept is suitable for applying data

integrity, digital signature and confidentiality. An encryption

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

16

algorithm is presented in [9] which uses the idea of converting

digital data to the form of amino acids using secret key.

The next sections are organized as follows: section 2 explains

biological background information that helps us understand

the biological concepts involved in our algorithm. Section 3

contains the standard codons table design and how it will be

used then the details of our encoding algorithm, its reverse

and complexity calculation. Section 4 involves discussions

and analysis about the algorithms and their applications.

Section 5 presents our conclusion.

2. BIOLOGICAL BACKGROUND
DNA is made up of two base pairs (strands) [10]. The base

pairs are formed of four bases (nucleotides) that repeat over

and over in a very long molecule. DNA strands are long

polymers that consist of millions of linked nucleotides [10].

The nucleotides that make up these polymers are named after

the nitrogen base that it consists of. The nucleotides are:

Adenine (A), Cytosine (C), Guanine (G) and Thymine (T)

[10].

The first DNA operation is Transcription. The DNA code is

transcribed to RNA code, which is still in the form of

nitrogenous bases, except for Thymine on the DNA pairs

which is replaced with uracil ‘U’ on the RNA code. The next

operation is Translation. The RNA code is translated to

protein code, which is a different form. Each amino acid is

formed by combining three bases on the RNA. These three-

nucleotide sequences on the mRNA are called codons. Each

codon corresponds to a specific amino acid. One or more

codons can correspond to the same amino acid. The amino

acids are then organized into the correct sequence to build a

protein. Figure 1 graphically shows these steps.

Fig 1: Illustration with example to DNA conversion

through processes of transcription and translation.

3. OUR PROPOSED METHODOLOGY

3.1 The Encoding to DNA and the

Distribution Tables
Data in binary form can be transferred to DNA or RNA form

using Table 1 which is direct representation of each 2 bits to a

single DNA character. Note that the only difference between

DNA and RNA is that letter ‘T’ in DNA is the same as letter

‘U’ in RNA. The RNA code can be transferred to the Amino

acids’ form using Table 2. This table is the standard universal

table of Amino acids and their corresponding codons’

representation in the form of RNA. Each amino acid has a

name, abbreviation, and a single character symbol (1-letter

form). This character symbol is what will be used in our

algorithm.

Table 1. Bits encoding to the forms of DNA and RNA.

Bit 1 Bit 2 RNA DNA

0 0 A A

0 1 C C

1 0 G G

1 1 U T

The encoding method will depend on Table 2 which contains

the natural distribution of different codons on the 20 natural

amino acids. We will also consider the stop codons as an

additional amino acid which we will call ‘B’ resulting in 21

amino acids. As each amino acid is made up of 3 RNA, all the

64 combinations of the 3 RNA codons are distributed on the

21 amino acids. The new distribution is presented in Table 3.

The direct way to convert any binary data is:

1- Convert from binary to DNA: Using Table 1 which

contains direct one-to-one transformation of different

combinations of 2 bits to the one of the four DNA

[A,C,G,T]or RNA [A,C,G,U] bases.

2- Convert from DNA to amino acids: Using Table 3, take

each 3 RNA to be named as one codon. By searching

table 3 to find the codon location, and substitute the

codon with the column name (the amino acid character).

For example “010100111010110100” is encoded to “CCA

UGG UCA” in the form of RNA. It is encoded to “PWS” in

the form of amino acids. This way seems so simple and

represents the natural amino acid form of the data. But, it

suffers a drawback while decoding back the data from amino

acid’s form to binary form.

Given one amino acid character, it is needed to search Table 3

to find its column. On finding its column, we cannot just

substitute it with a DNA codon, because the amino acid may

contain more than one codon and there is no available way to

know which one was the actual or initial codon. This amino

acids’ property is what is called “Ambiguity”.

The ambiguity problem is the problem of codon-amino acid

mapping which aroused with other algorithms based on the

concept of Central Dogma. One of the researchers who faced

this problem is Kang Ning in [7]. Ning handled this problem

by putting this codon-amino acid mapping in the secret key.

Then this key is to be sent to the receiver through a secure

channel [7]. This idea is not efficient because the key size

increases in relation to the plaintext size. But the problem is

handled in this research in a different way.

The information about the right ambiguity should be included

during the encoding process to select which codon is the right

representation of the amino acid. The ambiguity within each

amino acid varies between the numbers of (1, 2, 3, 4 and 6).

For representing these numbers, they need different number of

bits for each. The ambiguity of each amino acid and the

needed number of bits are mapped in Table 3.

 In some cases all bits combinations will cover the number of

ambiguities and other cases not, like if ambiguity =1 or 3 or 6.

For example on having six ambiguities which need 3 bits for

representation, the bits should define the ambiguity values (0,

1, 2, 3, 4, and 5), while the total combinations of 3 bits

represent the values (0, 1, 2, 3, 4, 5, 6, and 7). So the values (6

and 7) or (110, 111) do not represent a real ambiguity value

and will not be used.

DNA

RNA

CODON

S

AMINO

ACID

C A G G A T C T T A A G T C C

C A G G A U C U U A A G U C C

 CAG | GAU | CUU | AAG | UCC

 Q(Gln) D (ASP) L(Leu) K(Lys) S(Ser)

 Glutamine Aspartic

acid

 Leucine Lysine Serine

Transcription

 gfh

g
Translation

http://en.wikipedia.org/wiki/Aspartic_acid
http://en.wikipedia.org/wiki/Aspartic_acid

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

17

Table 2. The RNA codon table [https://en.wikipedia.org/wiki/Genetic_code]

Nonpolar Polar Basic Acidic (stop codon)

Standard genetic code

1st 2nd base 3rd

Base U C A G Base

U

UUU (Phe/F)

Phenylalanine

UCU

(Ser/S)

Serine

UAU (Tyr/Y)

Tyrosine

UGU (Cys/C)

Cysteine

U

UUC UCC UAC UGC C

UUA

(Leu/L)

Leucine

UCA UAA
Stop

(Ochre)

UGA Stop (Opal) A

UUG UCG UAG
Stop

(Amber)
UGG

(Trp/W)

Tryptophan

G

C

CUU CCU

(Pro/P)

Proline

CAU (His/H)

Histidine

CGU

(Arg/R)

Arginine

U

CUC CCC CAC CGC C

CUA CCA CAA (Gln/Q)

Glutamine

CGA A

CUG CCG CAG CGG G

A

AUU
(Ile/I)

Isoleucine

ACU

(Thr/T)

Threonine

AAU (Asn/N)

Asparagine

AGU (Ser/S)

Serine

U

AUC ACC AAC AGC C

AUA ACA AAA
(Lys/K)

Lysine

AGA
(Arg/R)

Arginine

A

AUG

(Met/M)

Methionine

ACG AAG AGG G

G

GUU

(Val/V) Valine

GCU

(Ala/A)

Alanine

GAU (Asp/D)

Aspartic

acid

GGU

(Gly/G)

Glycine

U

GUC GCC GAC GGC C

GUA GCA GAA (Glu/E)

Glutamic

acid

GGA A

GUG GCG GAG GGG G

Table 3. Another layout to RNA codon table

Amino acid A B C D E F G H I K L M N P Q R S T V W Y

#Ambiguity 4 3 2 2 2 2 4 2 3 2 6 1 2 4 2 6 6 4 4 1 2

0 GCU UAA UGU GAU GAA UUU GGU CAU AUU AAA UUA AUG AAU CCU CAA CGU

UCU ACU GUU UGG UAU

1 GCC UAG UGC GAC GAG UUC GGC CAC AUC AAG UUG

AAC CCC CAG CGC UCC ACC GUC

UAC

2 GCA UGA

GGA

AUA

CUU

CCA

CGA UCA ACA GUA

 3 GCG

GGG

CUC

CCG

CGG UCG ACG GUG

 4

CUA

AGA AGU

 5

CUG

AGG AGC

 Number of

Bits 2 2 1 1 1 1 2 1 2 1 3 0 1 2 1 3 3 2 2 0 1

3.2 The Natural Encoding Algorithm
In our proposed Algorithm, each 6 bits from data in binary

form is to be converted to the form of DNA using Table 2

then to amino acids’ form. Each DNA triple is to be treated as

a separate codon. Table 3 is used to represent its amino acid

form by describing the codon’s location in the table. The

codon’s location is to be defined by its amino acid (column)

and its ambiguity (row).

The value of the amino acid (column) is represented by the

character abbreviation of the selected amino acid. The

ambiguity number is to be represented in the form of bits

using different number of bits. The ambiguity bits will be

added in front of the binary form of the rest of the data. The

next step is to convert the next corresponding 6 bits into DNA

form and then to amino acids’ form as explained, and so on

till reaching the end of the data. By this, the ambiguity of one

step is added to the data to be encoded in the next step. The

algorithm is illustrated in the following pseudo code Figure 2.

It cannot be estimated initially how many bits will be

processed or the number of bits will be left at the end because

they depend on the nature of each amino acid involved in the

data. The algorithm processing should be sequential as each

step is dependent on the previous step. Each 6 bits produce

one amino acid in addition to its ambiguity bits. The next step

also collects 6 bits as input (the resulted ambiguity of the

http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Cysteine
http://en.wikipedia.org/wiki/Cysteine
http://en.wikipedia.org/wiki/Leucine
http://en.wikipedia.org/wiki/Leucine
http://en.wikipedia.org/wiki/Stop_codon
http://en.wikipedia.org/wiki/Stop_codon
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Arginine
http://en.wikipedia.org/wiki/Arginine
http://en.wikipedia.org/wiki/Glutamine
http://en.wikipedia.org/wiki/Glutamine
http://en.wikipedia.org/wiki/Isoleucine
http://en.wikipedia.org/wiki/Isoleucine
http://en.wikipedia.org/wiki/Threonine
http://en.wikipedia.org/wiki/Threonine
http://en.wikipedia.org/wiki/Asparagine
http://en.wikipedia.org/wiki/Asparagine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Methionine
http://en.wikipedia.org/wiki/Methionine
http://en.wikipedia.org/wiki/Valine
http://en.wikipedia.org/wiki/Alanine
http://en.wikipedia.org/wiki/Alanine
http://en.wikipedia.org/wiki/Aspartic_acid
http://en.wikipedia.org/wiki/Aspartic_acid
http://en.wikipedia.org/wiki/Aspartic_acid
http://en.wikipedia.org/wiki/Glycine
http://en.wikipedia.org/wiki/Glycine
http://en.wikipedia.org/wiki/Glutamic_acid
http://en.wikipedia.org/wiki/Glutamic_acid
http://en.wikipedia.org/wiki/Glutamic_acid

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

18

previous step (1, 2 or 3 bits) + input data (5, 4, or 3 bits)

respectively).

Input: binary data (Inp)

Output: amino acid form of data (Out),

remainder bits (Rem)

Processing:

1- while (Inp.length >= 6)

a. (B)= take first 6 bits from Inp.

b. (D)= convert B to DNA form using

table 1 (result is 3 DNA)

c. Search table 3 to find the cell

containing D, and select:

a. (A): amino acid column

b. (Ambig): bits defining the

level of ambiguity

d. Add A to Out

e. Add Ambig to Inp (at the beginning)

2- If (Inp.length < 6)

Then (Rem)= Inp

Fig 2: Algorithm of the Proposed Natural Encoding to

Amino Acids’ form

But on reaching the last bits which are less than 6 bits, we call

these bits, the remainder. The reminder bits –whose number

varies between 0, 1, 2, 3, 4, 5 bits - are too little to be

processed as their size is less than the size of one amino acid.

Consider the following example to encode the word “FCIS”

whose Hexadecimal representation is “46 43 49 53” and bits

representation is “01 00 01 10 01 00 00 11 01

00 10 01 01 01 00 11”.

The input in the form of 32 bits is converted into 7 amino acid

characters “HBHSPGC” leaving a remainder 2 bits “11”. The

encoding details are explained in Table 4.

Table 4: The steps of Natural Encoding of the word

“FCIS” to the form of Amino Acids.

Iteration
Bits DNA

Amino

acid Ambiguity

1 10001 CAC H 1

2 1 10010 UAG B 01

3 01 0001 CAC H 1

4 1 10100 UCA S 010

5 010 100 CCA P 10

6 10 1010 GGG G 11

7 11 1001 UGC C 1

8 1 1

In order to define the Input to Output ratio, we have to

consider the best and worst cases as the number of ambiguity

bits varies according to the nature of the amino acids of the

data. If the input size is (N) bits, the best case is when

ambiguity size is always the minimum or equals to zero. In

this case, the output size = 8/6 N = (4/3 N). This is because

each 6 bits produce one amino acid character which

corresponds to 8 bits in output so Input: Output ratio = 3:4. In

this case the output has the minimum size.

The worst case is when the ambiguity size is the maximum or

equals to 3 bits. If the input size is N, the output will be the

result of processing (N+1/3N) bits. In this case, the output size

will be

 . This is because if input size is N, it is

increased by 1/3N representing the ambiguity to be N+ 1/3N =

4/3N. So the output size is the size of the processed 4/3 N. the

input to output ratio will be 9:16 and this is the case of the

maximum size that can reached by the output.

 Best case Input / Output = ¾

Worst case Input / Output = 9/16

3.3 The Decoding Algorithm (Reverse

Encoding)
In order to decode the amino acid form of data to get the

initial binary form, we have to start from the end of the amino

acid sequence in addition to the remainder. The last amino

acid is selected to know the number of bits used to define its

ambiguity. These bits are extracted from the remainder. If

there are any other bits in the remainder, then they are put in

the end of the binary output. The amino acid along with the

ambiguity bits are used to substitute in Table 3, and get the

desired codon (DNA triple). The 3 DNA’s are converted to

binary form using Table 1. Then the result is put in the

remainder and so on till the data is finished. The algorithm

details are explained in Figure 3.

Input: Amino acid form of data (AA),

Remainder bits (R).

Output: Binary Data (B)

Processing:

(Len) = AA.length

While Len >0

1- (SAA) = AA[Len] //selected amino

acid which is the last one in the

stream

2- (NB) = get_num_bits(SSA) // search

table 3 to get the number of bits for

SAA

3- (Ambig) = extract the first NB bits

from R

4- R= remove the first NB bits from R

5- Use SAA and Ambig to substitute in

table 3 and get the corresponding

codon (D)

6- B=R+B

7- (SB) = convert D into bits

8- R= SB

9- Len --

End while.

Fig 3: Algorithm of Amino Acids’ Natural Decoding

The following table 5 shows in details how to decode the

amino acid data resulted from the previous example back to

the initial binary form. The amino acid data is “HBHSPGC”

and remainder is “11”. We will start from the last amino acid

till the first one.

The result is “0100 0110 0100 0011 0100 1001 0101 0011”

which is the same input to the encoding algorithm explained

in the previous example. It is the same Hexadecimal form of

the word “FCIS”. The algorithm reversibility is proved

through implementation. As we can see, each iteration in the

decoding algorithm depends on the output resulted from the

previous iteration. That is why the processing of the algorithm

should be sequentially implemented and cannot be

implemented in parallel).

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

19

Table 5: The steps of natural amino acid’s decoding of the example of in Table 4

Iteration Amino acid Remainder Ambiguity Codon Bits now

1 C 11 1 UGC 1

2 G 111001 11 GGG 1001 1

3 P 101010 10 CCA 1010 1001 1

4 S 010100 010 UCA 100 1010 1001 1

5 H 110100 1 CAC 10100 100 1010 1001 1

6 B 010001 01 UAG 000110100 100 1010 1001 1

7 H 110010 1 CAC 10010 0001 10100 100 1010 1001 1

8 - 010001 - - 010001 10010 0001 10100 100 1010 1001 1

We succeeded in implementation of an encoding algorithm

that translates any binary data into the environment of 21

amino acids, without losing any of the initial data and with

zero errors. This was proved by the algorithm’s reversibility.

3.4 Algorithm Complexity
The encoding algorithm of input size (N) runs in a loop that

processes 6 bits per iteration. But this input size increases

during each iteration with constant C= 0, 1, 2, or 3 bits.

Assume that m is the number of iterations till the algorithm

halts. At each iteration, i which is initially zero is incremented

by 6 in each iteration, so in total, it will be increased by 6m. N

is increased by C in each iteration, so N will be increased by

Cm. The halting condition is when i == N which is equivalent

to 6m = N + Cm for m iterations. Solving this equation, m =

N/ (6-C). Then the total processing time is T (N/ (6-C)) for C

< 6 or the complexity is O (n).

3.5 Implementation
We succeeded in implementing the algorithm on a computer

program using C#. For example, we will consider the input

“32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37

07 34” in the hexadecimal format. It is converted to binary

which resulted in 128 bits then converted to DNA/RNA form

using Table 1. The result is “AUA GCA AUU UCG GGG

AGA GAC CGG AUA AGA UCA UAC AUA CGC GAG
GAG UGA AAU CUA ACU AUC A”. Afterwards,

Conversion to Amino acids form is implemented using our

proposed algorithm. The resulted amino acids= “I G Q L P R
L R P A E W I E A C Y A Y T B R P L E T L R D H”

with remainder “00100”. Figure 4 shows screenshot of the

program implementation.

4. DISCUSSION AND ANALYSIS
The introduced algorithm proved to meet the main

characteristics of an algorithm. Definiteness: the algorithm is

clearly specified and implemented through a computer

program. Effectiveness: steps are sufficiently simple, basic

and easily reversible. Input is defined to be any sequence of

binary data. Output is defined to be a sequence of English

characters representing the Amino acids in additional to

remainder in the form of bits. All the outputs can be

represented in a binary form. Finiteness: the algorithm

terminates after a finite number of steps which is proved in

the algorithm complexity. We have proved that the encoding

algorithm is reversible and applicable.

Moreover, the natural algorithm can be implemented with one

or many rounds. The idea of representing the amino acid in

English characters makes this form to be used as input to

additional rounds. This is implemented by calculation the

ASCII code of each letter. Then we can convert it to the

binary then DNA forms which act as input to a new round.

In the field of cryptography, the encoding techniques cannot

provide security by their own as they don’t include the use of

a secret key [11]. But they can be embedded into another

encryption algorithm to enhance confusion specially that the

output can be again represented in digital form which is

completely different from the input. This was successfully

implemented in a previous paper as a hybrid system with a

cryptographic algorithm [9].

The sequence of characters in the input message clearly

affects the output. This is because it is based on combining

triples of DNA while one character is represented by 4 DNA.

Also because of the inclusion of ambiguity bits whose

number varies between 0, 1,2 or 3 bits according to the nature

of the amino acid. These all allow interfering of code between

successive characters.

This concept is suitable for applying data integrity, digital

signature and confidentiality as the change of a portion of the

message will lead to variance in the output which propagates

to the rest of the output. The remainder is a very critical

member in the process of decoding that it is considered the

key to decode the message. The loss of the remainder for

instance will make us completely unable to decode the

message.

Although the algorithm uses the natural distribution of codons

on amino acids, but we cannot say that the resulted form is a

direct and natural representation of amino acid form of data.

This is because of including the ambiguity inside the encoding

process. The result is that not each bit presented in the amino

acid, represents a bit in the initial data.

The algorithm translates any digital data into the environment

of 21 amino acids, without losing any of the initial data and

with zero errors. This was proved by the algorithm’s

reversibility.

5. CONCLUSION
Our proposed encoding method used the natural distribution

of codons on the 20 natural amino acids to develop a

reversible method of data encoding from binary form to DNA

then to the form of Amino acids. The encoding algorithm and

its decoding proved to meet the main characteristics of an

applicable reversible algorithm. They can be implemented

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.10, May 2017

20

with one or many rounds. This concept is suitable for

applying data integrity, digital signature and confidentiality.

The importance of such encoding algorithm lies mainly in

representing data in a biological form that can make data be

able to go through biological experiments and processes,

especially related to Amino Acids and DNA. It is also a way

of viewing data moving through biological processes and

representing it in a binary form which can be used in many

computer applications. As they don’t include a secret key they

cannot provide security by their own. But they can be

combined with other traditional or biological cryptographic

algorithm to create new security systems.

Fig 4: Program Implementation of Natural Encoding.

6. REFERENCES
[1] Sabry Mona, Hashem M., Nazmy Taymoor, September

2012, Three Reversible Data Encoding Algorithms based

on DNA and Amino Acids Structure. International

Journal of Computer Applications (IJCA), 54(8):24-30,

Published by Foundation of Computer Science, New

York, USA.

[2] Kari L., 1997, DNA Computing: Arrival of Biological

Mathematics,” The Mathematical Tntelligencer, 19, pp.

9–22.

[3] Kartalopoulos S.V., 2005, DNA-inspired cryptographic

method in optical communications, in Authentication and

Data Mimicking Military Communications Conference

2005, pp. 774–779.

[4] Lu M. X., 2007, Symmetric-key cryptosystem with DNA

technology, Science in China Series F: Information

Sciences, vol. 3, pp. 324–333.

[5] Gehani A., LaBean T. H. and Reif J. H., 2000, DNA-

based cryptography, DNA Based Computers V.

Providence: American Mathematical society, vol. 54, pp.

233–249.

[6] Celland C. T., Risca V. and Bancroft C., 1999, Hiding

messages in DNA microdots, Nature, vol. 399, pp. 533–

534.

[7] KANG Ning, October, 2004, A Pseudo DNA

Cryptography Method, Independent Research Study

Project for CS5231.

[8] Heider Dominik and Barnekow Angelika. 2007, DNA-

based watermarks using the DNA-crypt algorithm. BMC

bioinformatics, 8(1):176.

[9] Sabry Mona, Hashem M., Nazmy Taymoor, Khalifa

M.E., 2010, A DNA and Amino Acids-Based

Implementation of Playfair Cipher, International Journal

of Computer Science and Information Security (IJCSIS),

8(3).

[10] Nixon, D., 2002, DNA and DNA Computing in Security

Practices – Is the Future in Our Genes? GSEC

Assignment Version 1.3, SANS Institute.

[11] Stallings W., 2003, Cryptography and Network Security,

Third Edition, Prentice Hall International.

IJCATM : www.ijcaonline.org

