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ABSTRACT 

Battery Modeling is required to improve the efficiency and 

reliability of the battery. The Lithium-ion batteries are widely 

used as a power source for several applications. An accurate 

battery model and model parameters help in the estimation of 

the state of charge and state of health. However, battery 

parameters are variable and depend on several factors such as 

Temperature, cycle lifetime, the state of charge and depth of 

discharge and age. By taking account of the characteristics of 

battery the paper includes circuit oriented model approach of 

lithium-ion battery. The model characteristics are dependent 

and linear with respect to the battery’s state of charge. This 

paper presents a state of charge estimation of lithium ion 

battery using Kalman filter. Rather than other methods, Kalman 

filter provides weighted average between the measured value 

and predicted value. Thus the battery modeling helps to 

improve the performance of  Photovoltaic module and other 

applications 

Keywords 
Battery Modeling, Lithium-ion battery, Kalman filter, State Of 

charge(SOC), Sum Square Error(SSE). 

1. INTRODUCTION 
As lithium is the lightest of all metals and provides greatest 

electrochemical potential and largest specific energy per 

weight. Hence lithium ion battery provides extraordinary high 

energy density [1], Because of its rechargeable nature, 

Lithium-ion batteries are common in home electronics  as well 

as other applications such as electric vehicle and 

communication base stations. 

It is possible to design battery equivalent circuit using a 

different model such as electrochemical model which provides 

accurate results but it is very complex in nature. Another one 

is the mathematical model but this model is not applicable for 

all battery cells and does not provide the accurate 

electrochemical process in the cells.  Another model is electric 

circuit model where model behavior is represented in electrical 

circuit form and provides good accuracy. Thus in this paper, we 

will discuss electrical equivalent circuit model [2]. When 

considering the short term behavior of a battery it includes 

voltage response, the useable capacity, and determination of 

the SOC. When considering long-term behavior it includes 

capacity and power fading of the cells. 

State of charge (SOC) and state of discharge defines the life 

time of the battery [3]. Soc generally expresses in percentage. 

In this paper, SOC is expressed on the scale of 0 to1.       

SOC of Lithium battery is the percentage of its total energy 

capacity that is still available to discharge. 

A Battery management system (BMS) is required to keep the 

battery within a safe operating window and to ensure a long 

cycle life [4]. Thus proper modeling is a major function of 

the Battery Management System. Further, in automotive 

applications such as electric vehicles and photovoltaic array 

modeling, batteries need very precise control of the charge 

for efficient and safe management of the energy flows. The 

SOC estimation must be accurate under all vehicle operating 

condition. High temperatures and strenuous load profiles can 

cause cell aging. 

Extensive research has been carried out for estimation of 

charging rate and discharging rate of batteries, such as 

Coulomb counting [5], fuzzy logic[6], neural network [7], 

voltage delay method and extended Kalman filter [8]. 

Coulomb counting is used for the estimation of charging 

rate of the battery. It integrates the current with respect to 

time. However, some limitations are still there in coulomb 

counting. The voltage delay method is another method for 

charging rate estimation. Discharge curve is used to plot the 

voltage versus SOC characteristics. Due to the effect of 

external agents like temperature on the battery, the voltage is 

significantly affected. The neural network is another 

approach for SOC estimation but a large amount of 

calculation makes it very complex. Fuzzy logic is also used 

for battery charging rate estimation but it is hard to develop 

a model from a fuzzy system. It requires fine tuning and 

simulation before the operation. 

In this paper, Kalman filter is applied to estimate battery SOC. 

Electrochemical behavior of the battery is represented in 

differential equation form. A second order battery equivalent 

circuit is chosen to establish state  space equation for 

lithium- ion battery. A relation is defined between VOC and 

SOC. Kalman filter is applied for battery modeling. This 

paper contributes in getting better results in terms of 

experimental results and simulation results. 

The paper is organized as follow, section 2 comprises of 

description of the equivalent circuit model of the battery and 

simplification of the model. Section 3 comprises of modeling 

of given circuit model using Kalman filter. Section 4 

comprises of Matlab simulation and results. Section 5 

comprises of application of battery modeling and section 6 

comprises of  conclusion 

 

Figure 1: Electrical Equivalent Model of Battery 
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2. EQUIVALENT CIRCUIT MODEL 
A battery cell is an electrochemical system. The battery 

comprises of three main section namely, a positive electrode, a 

negative electrode, and separator. A lithium-ion battery is a 

type of rechargeable battery. The movement of the ion from 

one electrode to another electrode is a repeated process, which 

causes charging and discharging of the battery. Due to 

electrochemical behavior, a case study is required to 

understand the behavior of batteries to prevent cell aging. 

A proper relation needs to be established between electrical 

equivalent circuit model and electrochemical model. 

Impedance model helps to set relation between both the 

models. Impedance model describes electrochemical processes 

in a cell with the electrical equivalent model. 

An equivalent circuit model is build using the common circuit 

elements. The resulting equivalent circuit model is strong 

enough to describe the chemical reaction which takes place 

inside the battery cell. The equivalent circuit model of 

battery is shown in Fig. 1 [9]. The  electrical  equivalent  

circuit  model  of  lithium ion battery consists of capacitance 

Coc  which represents battery storage, voltage across it is 

given by Voc  which represents open circuit voltage, an internal 

resistance Ro   which is an electrolyte resistance and a pair of 

RC component where R1   is the resistance at the junction of 

electrode and electrolyte. It is a charge-transfer resistance. C1 

is the interior capacitance responsible for the charge building 

in the electrolyte. V1   is the diffusion voltage which causes 

degradation in the terminal voltage. From the equivalent 

circuit model of the lithium ion battery, we will get the 

following equation  

  Vt  = Voc  + I Ro  + V1                                                  (1)                                                        

    = - 
  

    

 + 
 

  
                                                                       (2) 

    = - 
 

   
                                                                              (3) 

Voc = f (Soc)                                                                          (4) 

The relation between Voc  and Soc is a piecewise linear 

function,[10] thus it can be taken as 

Voc  = kSoc + d                                                               (5)                                                       

Where k and d are the variable parameters which cannot be 

zero, but for a given range of SOC as every 10 % rise in 

SOC it can be considered as almost constant. Thus the above 

equations describes the battery model, the given system can 

be written in  a state equation form as 

 

Figure 2: Voc vs. Soc 

ẋ = At x + Bt u                                                              (6)                                     

y = Ct x + Dt u                                                              (7)       

For the above system the state variables are defined as 

x  = [ 
   

  
]                                                                           (8)                                                         

with this state variables, we can define  
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] +      I                                                   (9)       

These are the equations we got as battery model equations 

in the state matrix form. To solve this set of state equations 

we are using Kalman Filter. As we have defined a relation 

between VOC and SOC in equation (4), with the help of 

experimental values with every 10 % rise in SOC we get a 

constant value of  k and d which we have defined in equation 

(5).Thus with the help of this values and considering the 

relation between SOC and VOC we get the plot as shown in 

Fig 2. 

SOC estimation cannot take place directly, the value of Voc 

at each SOC should be known. A linear plot between VOC 

and SOC is helpful in determining the state estimation as the 

plot validates the value of constant k and d which get 

through the experimental values. 

3. KALMAN FILTER 
The Kalman Filter can be summed up as an estimator used to 

recursively obtains a solution for linear optimal filtering 

[11]. It is a member of a Bayes Filter.  It includes the scenario 

that the next step calculation includes the effect of current state 

and the previous step calculation includes the effect of current 

state and  the previous state. In other words, the Kalman filter 

is essentially a set of mathematical equations wh i c h  provides 

an efficient recursive method of estimation of the state of the 

process. It supports estimation of past, present and future [12].  

The Kalman filter considers the fact that time instance t can 

be calculated by considering the effect of time instance t-1. 

The equations are explained as 

xt  = At xt−1  + Bt ut  + wt                                                                         (11) 

Where the notation xt , Bt  and ut   have been explained 

already in equivalent circuit model and notation A t  is state 

transition matrix which applies the effect of each system 

parameter at time t-1 on the system state at time t, and 

measurement equation of the   system can be given as 

zt  = Ct xt  + vt                                                                                                    (12) 

Here  yt   is a measurement vector and ct  is the transformation 

matrix. The estimated state vector equation can be given as 

   =        +      +                                                         (13)  

 

x0  = N (m0 , P0 ), wt  = N (0, Qt ), vt  = N (0, Rt )           (14) 

Where Qt  is the noise covariance matrix associate with the 

noise control input. Rt covariance matrix of measurement 

noise. To find the best estimated value one need to minimize 

the mean square error which is given by 

Pt|t−1 = E[(xt− X̂t|t−1)( xt − X̂t|t−1)T ]                         (15) 
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Where Pt|t−1 is covariance  of the original states. Estimation 

of next step based on previous is given by 

P̂t|t−1 = AP̂t−1|t−1AT   + Qt                                          (16) 

The measurement updated equations are 

X̂t|t  = X̂t|t−1  + Kt (zt Ct (X̂t|t−1 )                                     (17) 

P̂t|t  = (I − Kt Ct )Pt|t−1                                                                              (18) 

Where Kt  is Kalman gain of the system and it can be given as 

    =           
             

         
                            (19)    

4. SIMULATION AND RESULTS 
The initial value of SOC is taken as 0.8 and for diffusion voltage 

(V1)  it is taken as 3.5V. The parameter value used for simulation 

is given in Table 1 [13]. The sum square error of an estimator 

measures the average of the squares of the error, that is the 

difference between the true value and measured value. The 

difference can be due to the noise in the system or due to 

insufficient information. Sum square error can be calculated as 

                         SSE  = ∑ (x̂t  − xt )
2                                                                          

Table 1. Parameter of Equivalent Circuit Model 

Parameter Values 

             Ro 0.025 

R1              0.08 

C1 3.31 

Cb 12100 

k 5.38 

d 25.21 

 

The SSE is a measure of quality of the estimator. It is always 

nonnegative value and close to zero. The lesser the SSE, the 

better will be the estimated value. The simulation is carried 

out at different value of measurement noise and process 

parameter noise, to see the effect of noise on SSE.  

The process noise and measurement noise variance matrices 

are given as in table 2. The simulation is taken out  in  such a  

 

Figure 3: Soc vs. time for case study 1 

 

Figure 4: V1 vs. time for case study 1 

 

Figure 5: Soc vs. time for case study 2 

manner that for three consecutive cases the value of one 

parameter varied and the value of other two parameters kept 

constant accordingly. Here, the measurement noise is taken as 

R, the process parameter noise for the first state is taken as Q1    

and  for the second state is taken as Q2. 

The observations are taken for the case study 1 as the Q1  is 

kept as .0025 and Q2   is kept as .0025, and value of R is 

kept as .25. The change in the true value and the measured 

value is very less in the case of SOC as shown in Fig-3. 

Similarly the variation is very less in the case of diffusion 

voltage Fig-4. Thus it results in very less value of SSE and it 

comes out as 0.014. 

In the case study 2, the Q1  and  Q2  is kept as in case study 1 and 

R is kept as 1. The variation is very less in the true value and 

measured value in case of SOC as shown in Fig-5. Similarly 

the variation is very less in the case of diffusion voltage as 

shown in Fig-6. Thus it results in very less value of SSE and it 

comes out as .0015. 

In the case study 3, as the value of Q1  is kept as .0025 and Q2  

is kept as .075, and R is kept as 1. There is a slight variation 

in the true value and measured value, which can be observed 

in the case of SOC as shown in Fig-7. Similarly  the  variation 

is  very  random  in the case of   diffusion    voltage as  

 

Figure 6: V1 vs. time for case study 2 
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Figure 7: Soc vs. time for case study 3 

 

Figure 8 : V1 vs. time for case study 3 

as shown in Fig-8. Thus it results in a very high value of SSE 

and it comes out as 2. 

The observations are taken for case study 4 as the Q1  0.25 

and the value of Q2 and R is same as case 3. The change in 

the true value and measured value is very less in the case of 

SOC as shown in Fig-9. Similarly the variation is very less in 

the case of diffusion voltage as shown in the Fog-10. Thus it 

results in a very less value of SSE and it comes out as  0.06. 

 

In the case study 5 the Q1 is kept as .025 and Q2 and R is same 

as in the previous case. The variation in the true value and 

the measured value is significantly low in case of SOC as 

shown in Fig-11. Similarly the variation is very less in the                                                                                                       
case of diffusion voltage as shown in Fig -12. Thus it results 

in very less value of SSE and it comes out as 0.12. 

 

In the case study 6 the Q1 and R is kept as in the previous  

case but Q2   is kept as .075. The irregular change in the true 

value and measured value can be observed in the case of SOC. 

Similarly the variation is high for   the   another state   vector.  

Thus it results in very high value of SSE and it is given as 1.2. 

 

 
Figure 9 : Soc vs time for case study 4 

 

Figure 10 : V1 vs. time for case study 4 

 

Figure 11: Soc vs. time for case study 5 

Thus from this case studies, we can depict that when we set 

the Measurement noise value between 0.25 and 1, it gives 

better results. Process parameter noise factor of first state 

best works between .0025 to .25, and Process parameter 

noise factor of the second state should be between 0.0025 to 

.075. The case study depicts that the change in noise value 

for the second state from .0025 to.075, results in increased 

SSE. Thus it can be conclude that second state is more 

sensitive to noise. 

The variation of SOC within a range demonstrates low 

variation in open circuit voltage. Similarly, almost constant 

variation in diffusion voltage reflects the small internal 

decay within the battery which results in the desired value of 

open circuit voltage. It can be inferred from the model that 

noise plays an important role in the estimator because of the 

recursive nature of Kalman filter, it can estimate SOC value 

to some extent of accuracy. A constant current profile leads to 

oscillating SOC within a range, with a proper value of the 

parameter noise value, SOC error can be reduced to a certain 

extent. 

 

Figure 12:  V1 vs. time for case study 5 
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Figure 13 : Soc vs. time for case study 6 

 
Figure 14: V1 vs. time for case study 6 

Table 2. Values used for simulation 

Case Study R Q1 Q2 SSE 

1 .25 .0025 .0025 .0014 

2 1 .0025 .0025 .0015 

3 1 .25 .075     2 

4 1 .25 .025    .06 

5 1 .025 .025    .12 

6 1 .025 .075    1.2 

 

5. PHOTOVOLTAIC ARRAY 

MODELING 
There are several applications of battery modeling: 

Photovoltaic array modeling is one of the example, as shown 

in Fig-15. The maximum power point is extracted from the 

PV module. Perturb and Observe and Incremental 

Conductance are several methods for MPP tracking. The 

obtained maximum power is applied to the boost converter so 

that power characteristics of the PV module can be matched 

with the battery characteristics. The output power from the 

boost converter is applied to the charge controller. The charge 
Controller and the battery SOC play an important role. The 

linear relation between SOC and VOC as given in equation 

no. 5, defines the dependency of open circuit voltage on SOC. 

Thus recursively estimated SOC value is detected by the 

charge controller on some instant of time.   

 

    Figure 15 : Battery Storage Modeling of PV panel 

According to the SOC at a particular instance, what amount of 

power should be given to battery is decided by the charge 

controller. The charge controller and battery leads to an 

intelligent system and improves performance. 

6. CONCLUSION 
In this paper, the electrical equivalent model of the battery is 

applied to Kalman filter for the state of charge estimation of 

the battery. Linear set of state equation is derived for the 

formulation of Kalman filter. The experimental values are 

used to find out the dependent model parameter and later that 

parameter is used to find the state estimation of the model. 

The MATLAB simulation is carried out at a constant current 

profile. From the different result, we can conclude that 

different noise affects the estimated SOC value and sum 

square error value. However, Kalman filter can deal 

efficiently and reasonably with the limitation of SOC 

estimation, and bound the sum squared error within range. 
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