
International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.2, May 2017

23

SQLi and XSS Attack Introduction and

Prevention Technique

Harshad Gaikwad
Dept. Computer Engg.

Srttc Khamshet,
Pune.

Bhavesh B. Shah
 Dept.Computer Engg.

Srttc Khamshet,
Pune.

Priyanka Chatte

Dept. Computer Engg.
Srttc Khamshet,

Pune.

ABSTRACT

Nowadays, web applications are common around the world.

every major company/organization have a web application

presence. Max of these organizations use web applications to

provide various services to clients. Some of these web

applications employ database driven content. The back-end

database often contains confidential and sensitive information

such Password, credit card number, financial data, medical

data, email details. Typically the web user/client supplies

information, such as a username and password and web server

receive user request and interact with the back-end database

and returned relevant data to the Front-end.

Web Applications penetration testing and security has become

progressively most important these days. A lot numbers of

malicious attacks are being deployed on the web application.

Due to dramatic increase in Web applications usage, Web

application get vulnerable to variety of threats. Most of these

malicious attacks are targeted towards the web application

layer and waf firewall alone cannot prevent these kinds of

attacks. The reason behind success of these attacks is the

ignorance of application developers while coding the web

applications and the predefined vulnerabilities in the existing

technologies. Web application attacks are the latest trend and

hackers are trying to hack/exploit the web application using

different techniques. Various types of solutions are available

as open source and in market. But the selection of suitable

solution for the security of the organizational systems is a

major issue. Some Attack Prevention Technique protect web

applications from attacks they sit in front of web applications

monitors activity, and block malicious traffic.

Keywords

SQL injection attack, SQL query, XSS (cross site scripting),

Web application, Payload, filters.

1. INTRODUCTION
Web applications are wildly spread to provide services and

became usefull communication channel between service

provider and client. this web applications mostly uses java

script for validation and verification instead of web

application firewalls which cause serious security problems.

XSS can steal the user session cookies and use current session

for modification and SQLi attacker can directly access

database.

This two attacks are listed as top 2 attacks by OWASP

community.

2. SQLI MECHANISAM

2.1 Injection through user input
 In the type of injection the attacker injects SQL injection

commands by providing suitably crafted user input. A web

application can read user’s input in several ways based on the

environment in which the application is deployed.

2.2 Injections through cookies (Cookie

injection point)
Cookies are the small stored files that containing state

information generated by Web applications and stored on the

client machine. When a client returns to the Web application

the cookie is used to be restore the client information. Since

the client has control over the storage of cookie, a malicious

client could tamper with the cookie’s content. And then if

Web application uses the cookie content to build SQL queries,

an attacker could easily submit an attack by embedding it in

the cookie.

2.3 Injections through the server variables
 Server variables are collections of variables that contain

HTTP, Network headers and environmental variables. Web

applications used these server variables in a variety of ways

like logging usage. If these servers logged to a database

without sanitization, this could create SQL injection

vulnerability because attacker can forge the values that are

placed in HTTP and network headers. They can exploit this

vulnerability by placing an SQL injection directly into the

headers. And when the query to log the server variable is

issued to the database, the attack in the forged header is

triggered automatically.

2.4 Second order injection
 Not easy to inject this attack.In second order injection,

attacker/hacker need malicious inputs in to a system or

database to indirectly trigger an SQL injection when that input

is used at a later time. The attack takes place when the

malicious input reaches to the database.

Fig 1: SQL injection Flow Diagram.

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.2, May 2017

24

3. CLASSIFICATION OF SQLI

3.1 Tautology based

In the tautology attack the attacker tries to use a conditional

query statement to be evaluated always true. Attacker uses

true and false conditions with WHERE clause to inject and

turn the condition into a tautology which is always true. The

simplest form of tautology.

Example :

$sql_query = "select * from Report where userid = 'user11'

and password = 'anything' or 'a'='a' ";

The result would be all the data in accounts table because the

condition of the WHERE clause is always true

Fig 1: Tautology Based SQL injection.

3.2 Error Based
In this Injection the attacker inputs the different types of

vectors like single quote to break the application to see the

errors and create a payload as per the error to do sql injection

www.vuln-web.com/photo.php?id=111'--

You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right

syntax to use near '' LIMIT 0,1' at line 1

www.vuln-web.com/photo.php?id=111'#

You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right

syntax to use near ''1'' LIMIT 0,1' at line 1

www.vuln-web.com/photo.php?id=111'/*

You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right

syntax to use near '/*' LIMIT 0,1' at line 1

Fig 2: Error Based SQL injection.

3.3 Union Based Queries
In this type of queries unauthorized query is attached with the

authorized query by using UNION clause.

$sql_query = Select * from report where id=”32 “union based

injection here” ;

Example :

http://vul-site.com/report.php?id=32” union all select 1,2,3--+

The result of the first query in the example given above is null

and the second one returns all the data in Report table so the

union of these two queries is the Report table.

Fig 3: Union Based SQL injection.

3.4 Blind Injection
This is little difficult type of attack for attacker. During the

development process sometime the developer hides some

error details which help the attacker to compromise with

database. In this situation the attacker face the generic page

provided by developer in place of an error message

Example :

$sql_query=Select * from Report where id=111' and false%32

www.vuln-site.com/photo.php?id=111' and true%32

Normal Page returned.

www.vuln-site.com/photo.php?id=111' and false%32

Page didn’t Load As normally it do as the query didn’t

returned anything.

Fig 4: Blind SQL Injection.

Blind SQL Injection is used when there is No Output and No

Error from the web application, that means we can’t inject the

Union based injection in which we use to get the output nor

we can Inject the XPATH or Sub Query Injection which use

to get the output in form of Error. While doing a Blind

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.2, May 2017

25

injection we make Queries from the database and ask if we

are right or wrong.

3.5 Time based injection
In the Timing attack the attacker gathers information about

the response time of the database. This technique is used by

executing the if-then statement which results the long running

query or time delay statement depending upon the logic

injected in database and if the injection is true then the

“WAITFOR” keyword which is along with the branches

delays the database response for a specific time.

Example :

$sql_query= select * from report where id=41' wait for delay

’00:00;10’

www.vuln-site.com/photo.php?id=41' wait for delay

’00:00:10’--+

Delay in page loading

Fig 5: Time Based SQL injection.

4. PREVENTION OF SQLI
To prevent sql injection there are some core techniques.

Which helps to prevent sqli injection attack. Listed Below.

4.1 Defensive coding
Developers have approached a range of code based

development practices to counter SQLI. These techniques are

generally based on proper input filtering, potentially harmful

character and rigorous type checking of inputs.

4.2 Manual defensive coding practices
Based on the security reports such as OWSAP’s SQL cheat

sheet

4.3 Parameterized queries or stored

procedures
The attacker take advantage of dynamic SQL by replacing the

original queries and create some parameterized query in

database. These attacks force to developer for first define the

SQL code structure before including parameters in query.

Because parameters are bound to the defined SQL structure,

there after it is not possible to inject additional SQL code

4.4 Escaping
If dynamic queries cannot be avoided, escaping all user-

supplied parameters is the best option. Then the developer

should identify the all input sources to define the parameter

that need escaping, follow database-specific escaping

procedures, and use standard defining libraries instead of the

custom escaping methods.

4.5 Data type validation
After following the steps for the parameterized query and

escaping the developer must properly validate the input data

type. The developer must define the input data type is string

or numeric or any other type and input data given by user is

incorrect then it could easily reject.

4.6 White list filtering

Some of the special character which is normally used during

injection. so the developer should characterize such special

character as the black list filtering.

The filtering approach is suitable for the well structured data.

Such as email address, dates, etc. and developer should keep a

list of legitimate data patterns and accept only matching input

data

5. XSS ATTACK (Cross-site scripting)
Cross-Site Scripting (XSS) attacks are a type of injection, in

which malicious scripts are injected into otherwise benign and

trusted web sites. XSS attacks occur when an attacker uses a

web application to send malicious code, generally in the form

of a browser side script, to a different end user. Flaws that

allow these attacks to succeed are quite widespread and occur

anywhere a web application uses input from a user within the

output it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an

unsuspecting user. The end user’s browser has no way to

know that the script should not be trusted, and will execute the

script. Because it thinks the script came from a trusted source,

the malicious script can access any cookies, session tokens, or

other sensitive information retained by the browser and used

with that site. These scripts can even rewrite the content of the

HTML page

An attacker inserts a XSS payloads <script> alert

(document.cookie) </script> in the input Field and send it to

the server, when server get that request server process it as a

legal request and send back the result to the attacker.

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.2, May 2017

26

Fig 6: XSS Attack.

6. CLASSIFICATION OF XSS

6.1 Stored XSS
Stored attacks are those where the injected script is

permanently stored on the target servers, such as in a

database, in a comment field, message forum, visitor log etc.

The victim then retrieves the malicious script from the server

when it requests the stored information. Stored XSS is also

sometimes referred to as Persistent or Type-I XSS.The most

dangerous XSS type. security risk is high.

6.2 Reflected XSS
Reflected attacks are those where the injected payload is

reflected from the web server, such as in form of error

message, search result, or any other response that includes

some or all of the input sent to the server as part of the

request. Reflected attacks are delivered to victims via another

route, such as in an e-mail message, or on some other web

site. When a user is tricked into clicking on a malicious link,

submitting a specially crafted form, or even just browsing to a

malicious site, the injected code travels to the vulnerable web

site, which reflects the attack back to the user’s browser. The

browser then executes the code because it came from a

"trusted" server. Reflected XSS is also sometimes referred to

as Non-Persistent or Type-II XSS.

6.3 Dom based XSS
DOM Based XSS (or as it is called in some texts, “type-0

XSS”) is an XSS attack wherein the attack payload is

executed as a result of modifying the DOM “environment” in

the victim’s browser used by the original client side script, so

that the client side code runs in an “unexpected” manner. That

is, the page itself (the HTTP response that is) does not change,

but the client side code contained in the page executes

differently due to the malicious modifications that have

occurred in the DOM environment.

7. PREVENTION OF XSS

7.1 XSS Filter to Block Most XSS Vectors
There is a simple rule that should be follow to prevent XSS

attack: Encode every data that is given by a user. If data is not

given by a user but supplied via the GET parameter, encode

these data too. Even a POST form can contain XSS vectors.

So, every time you are going to use a variable value on the

website, try Sanitization for XSS.

These are the main data that must be properly sanitized before

being used on your website.

• The URL

• HTTP referrer objects

• GET parameters from a form

• POST parameters from a form

• Ajax Request

First Thing to do, encode all html tags like <, >, ‘ and “. This

should be the first step of your XSS filter. Encoding should be

:

 & => &

 < => <

 > => >

 ” => "

 ‘ => '

 / => /

For this, you can use the htmlspecialchars() function in PHP.

It encodes all HTML tags and special characters.

$Some_input = htmlspecialchars($input, ENT_QUOTES);

If the $Some_input was= “><script>alert(XSS)</script>

This function would convert it into

"><script>prompt(“XSS”)</script>

A vector may use HTML characters, so you should also filter

these. Add this rule :

$Some_input = preg_replace(‘/(&#*w+)[x00-x20]+;/u’, ‘$1;’,

$data);

$Some_data = preg_replace(‘/(&#x*[0-9A-F]+);*/iu’, ‘$1;’,

$input);

There are many places where input does not need script tags.

An attacker can inject a few event functions to execute scripts.

And there are many ways by which an attacker can bypass

this filter. So, we need to think about all possibilities and add

a few other things to make the filter stronger. And not only

JavaScript, you also need to escape from cascading style

sheets and XML data to prevent XSS.

7.2 Open Source Libraries for Preventing

XSS Attacks
7.2.1 PHP Anti-XSS
This is a great PHP library that can help developers to add an

extra layer of protection from cross site scripting

vulnerabilities. It automatically detects the different types of

encoding of the data that must be filtered. Very easy to apply

on web applications.

7.2.2 HTML Purifier
This is a standard HTML filtering library written in PHP. It

Block all malicious payloads from the input Fields and

protects the web applications from XSS attacks. It is also

available as a plug-in for most PHP frameworks.

7.2.3 XSS HTML Filter
This is another great XSS filter for Java web applications. It is

a simple single-class utility that can be used to properly

filter/sanitize user input against cross site scripting and

malicious HTML code injection.

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.2, May 2017

27

Some of this libraries are also built to prevent different attacks

like command injections. Which by default filters the & (and),

| (pipe) and ; (semicolon) symbols.

8. ACKNOWLEDGMENTS
We would like to take this opportunity to express our

profound gratitude and deep regard to our project guide Prof.

Bhavesh B. Shah, for his guidance, valuable feedback and for

constant encouragement for the project. Working under him

was extremely knowledgeable experience for us.

9. CONCLUSION AND FUTUREWORK
Paper defines various types of XSS and SQL injection attacks.

then investigation of XSS and SQLi detection and prevention

technique. after that examples of XSS and SQLi attacks.

In our future work ,listed prevention technique have some

drawbacks also so Strong technique must implemented to stop

XSS and SQLi. automated separate tool can be implemented

to stop XSS and SQLi attack.

10. REFERENCES
[1] Chaitali Khairnar, “Detection and Automatic Prevention

against SQL Injection Attack and XSS Attacks perform

on web application,” Maharashtra india, vol. 5, issue

11,november 2015. .

[2] Kuldeep Kumar, Dr. Debasish Jena and Ravi Kumar.”A

Novel Appraoch to detect SQL injection injection in

Web application”. 2013,InstaSafe Technologies Pvt. Ltd,

Bangalore-560076.

[3] Atefeh Tajpour, Suhaimi Ibrahim, Maslin Masrom,

“SQL Injection Detection and Prevention Techniques”

International Journal of Advancements in Computing

Technology Volume 3, Number 7, August 2011

[4] Punam Thopate, Purva Bamm, Apeksha Kamble, Snehal

Kunjir, Prof S.M.Chawre"Cross Site Scripting Attack

Detection & Prevention System".International Journal of

Advanced Research in Computer Engineering &

Technology (IJARCET)Volume 3 Issue 11, November 2.

[5] Cross-site Scripting (XSS):

https://www.owasp.org/index.php/Cross-

site_Scripting_(XSS)

[6] Open web Application security project, XSS(cross site

scripting).prevention cheat sheet,2011;

http://www.owasp.org/index.php/Xss_(Cross_site_scripti

ng))_preventation_cheat_Sheet

IJCATM : www.ijcaonline.org

