
International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.3, May 2017

10

Case-based Matching Algorithm for Dynamic Web

Service Discovery

Ibrahim El Bitar
Department of Applied

Mathematics & Computer
Science, Faculty of Sciences,

Lebanese University, Lebanon.

Zouhair Bazzal
Departement of Computer and
Communication Engineering,

School of Engineering,
Lebanese International
University, Lebanon.

Fatima-Zahra Belouadha
SIweb Team, SIR Laboratory

Ecole Mohammadia
d’Ingénieurs, Mohammed Vth

University-Agdal, Rabat,
Morocco

ABSTRACT

With the increasing number of Web services available on the

web, looking for a particular service has become very

difficult, especially with the evolution of the clients’ needs. In

this context, we have previously proposed the CBR-based

system for semantic Web service discovery (CBR4WSD)

which benefits from the advantages of CBR to address the

limitations of existing approaches in terms of efficiency of the

Web service selection. This paper is devoted to the study of

the Retrieval phase, which is the core of our CBR4WSD

system. First, we expose the stage of Retrieval preparation

which is performed in the Offline discovery process. Then, we

present the discoverability checking-rules that help our system

to detect the feasibility of the discovery process for a given

query. We also present our Retrieval algorithm that calculates

the functional and the non-functional similarities before

generating the global similarity measure.

Keywords

Semantic Web Service Discovery, Matchmaking, CBR,

Formalization, Retrieval, Functional properties, Non-

Functional properties

1. INTRODUCTION
The semantic Web service (WS) discovery has been given

massive attention within the last few years. With the

increasing number of WS available on the web, identifying a

particular service has become very difficult, especially with

the evolution of the requesters needs, those who have become

more and more demanding. In this context, various

approaches to discover semantic WS have been proposed. The

integration of semantics in the WS description has

undoubtedly improved their interpretation and subsequently,

their discovery process by identifying and selecting the

appropriate services. However, the integration of semantics

does not mean the automation of the discovery process,

especially with the need for human intervention to refine the

results in many existing approaches [1].

The enduring need for discovery automation has involved

Artificial Intelligence reasoning to guide a dynamic WS

discovery. In the range of the intelligent works, the Case

Based Reasoning (CBR) has scored a great success in the field

compared to existing works as it offers the opportunity of

reusing successful old experiences to solve new problems,

specifically in the case of WS, where normally the behavior of

a service is difficult to presume before its execution.

However, the existing CBR-based approaches for WS

discovery present some limitations that researchers are trying

to fulfill [2][3][4][5][6][7][8]. In fact, they present problems

concerning Case representation and expressiveness, semantic

annotation and ontology use, Case retrieval and matchmaking

process and finally Case Base organization and indexing.

Thus, we have previously proposed our CBR4WSD (CBR for

Web Service Discovery) approach. It is a CBR-based

approach for semantic WS discovery. Its outline contribution

includes a set of aspects which aim to overcome the

limitations of existing approaches and gives the originality of

our CBR4WSD approach. These aspects are mainly related to

the processing rationalization, the control and mastery of the

treated WS volumetry and the alignment with standards,

without forgetting the improvement of the results’ quality in

terms of their ability to meet both functional and non-

functional clients’ needs [9].

The remainder of this paper is structured as follow. The

second section describes the general process of our

CBR4WSD approach. Section 3 highlights the formalization

of the Cases handled in CBR4WSD. The fourth section firstly

provides details about the semantic matching process between

ontology concepts and explains the need of performing this

calculation in the Offline discovery process. Then, it focuses

on the Case Retrieval phase where we present our algorithm

of semantic matchmaking in its three stages: Functional

Similarity, Non-Functional Similarity and Global Similarity.

The fifth and final section releases a conclusion of the

presented work.

2. CBR4WSD PROCESS
In this section, we expose the WS discovery process in our

CBR4WSD approach. As shown in Fig. 1, this process starts

with the transformation of the client’s query into a Target

Case aligned with the W3C standards: SAWSDL and WS-

Policy. This operation is performed by a semantic Target Case

generator and it consists in representing the client’s query as a

Target Case, where its problem part is described by a set of

semantic descriptors reflecting the functional and non-

functional properties. The solution part descriptors are kept

unspecified at this phase and the discovery process will

attempt to instantiate them with a discovered WS.

Alternatively, the problem descriptors represent an abstract

WS, while the solution descriptors represent the

corresponding concrete WS.

The generated Target Case passes into the Target Case

Elaborator that is responsible for completing the Target Case

description by annotating the service community to which it

corresponds. It uses the functional descriptors to identify the

corresponding Service Community from the Community

Base.

Moreover, the overall discovery process continues by

retrieving Source Cases that are similar to the Target Case. At

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.3, May 2017

11

this level, after identifying the Source Cases that belongs to

the same service community as the Target Case, the

"Semantic Online Matchmaker" proceeds to the calculation of

their functional similarity measure (FSM) alongside the

Target Case. Upon completion of this operation, a set of

Source Cases whose calculated FSM meets a defined

threshold will be retrieved. The set of retrieved Source Cases

is then projected into a selector that identifies the best Cases

fulfilling the required non-functional properties. This

component performs a "matching" applied on the Source and

Target policies to calculate the non-functional similarity

measure (NFSM) and subsequently generate the global

similarity measure (GSM) between the Source Cases and the

Target Case. The goal is to identify the WS that will be

recommended to the client. These WS are the solutions

associated with the Source Cases whose GSM are the highest.

Finally, after receiving the results of the test performed by the

client, only the satisfying WS are used to instantiate the

solution descriptors of the Target Case. Resulting Cases will

be introduced in the Case Base via the component called

"Case Retainer".

Semantic

Target Case

Query

Client

Functional

descriptors

Template

Non-

Functional

descriptors

Template

SAWSDL

Abstract Service

(Functional proprieties:FP)

 WS-Policy

Abstract representation

(non Functional proprieties:NFP)

CBR Engine

Target Case

(FP, NFP)

Target Case Elaborator

FP

?
Com

Base

Semantic Target Case Generator

Elaborated

Target Case

Semantic Online

Matchmaker

Case Base indexed by

Service Communities

Cases having

 similar community to

the community

associated to the target

case

(Com, NFP)

Matching FP of

the Target Case

and Source

Cases belonging

to the same

Community

Many Retrieved

Source Cases

Policy

Matching

(NFP)

NFP-based selector

Selected Source

Cases

References of the

selected services

I

N

T

E

R

F

A

C

E
(1)

(2)

(3)

(4)

(5)

New Case to

Retain

(Servi, Comj)

Case Retainer

(6)

Fig 1: WS Discovery process in the CBR4WSD approach

3. REPRESENTATION OF THE CASE

PROBLEM PART
The Case problem part « (pb) » reflects the client's query

seeking a specific operation of a particular service. Our

representation of the problem part of a Case handled in

CBR4WSD is based on our definition of the WS discovery

mechanism as "the act of locating a machine treatable

description, of a previously unknown WS describing some

functional and non-functional requirements". We consider

these functional and non-functional requirements in the Case

formalization that stands on our enriched WS description

model [10]. Thus, in the Case problem part, we distinguish the

functional properties (FP) from the non-functional properties

(NFP), hence the notation:

pb = (FP, NFP)

3.1 Functional descriptors of the Case

problem part
The functional properties expressed in the Case « (pb) » part

will be represented by the attributes «Goal, Input, Output,

Precondition and Postconditon » relating to an operation of a

SAWSDL service. Thus, the descriptors of this part are

illustrated in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.3, May 2017

12

Table 1. Functional descriptors of the Case problem part.

 Number and name of descriptor Definition

F
u

n
ct

io
n

a
l

D
es

cr
ip

to
rs

Mandatory

Descriptors

ds1 : « Goal » Purpose of the required operation of the SAWSDL

service.

ds2 : <Inputs> List of input parameters of the required operation.

ds3 : <Outputs> List of output parameters of the required operation.

 Optional

Descriptors

ds4 : <Preconditions> List of preconditions imposed on the required operation.

ds5 : <Postconditions> List of postconditions imposed on the required operation.

Deducted

Descriptor

ds6 : CommunityID Service Community where the Case belongs

During the «Elaboration» of the Target Case, the first three

functional descriptors (ds1, ds2 and ds3) are absolutely

mandatory and no discovery will be launched if one of them is

incomplete. The ds4 and ds5 descriptors are optional and the

absence of their values does not block the discovery but it can

lead to «false-positive» results, especially in the case of ds4.

However, the existence of information in these descriptors

automatically gives them a mandatory aspect to be considered

while the discovery.

Our system assigned to each descriptor an attribute relative to

the information presence and is noted
 . In the first

three descriptors, this attribute is equal to 1 and in the ds4 and

ds5 descriptors, it can have the value 0 or 1 depending on the

presence of information or not.

In addition, as regards the first three descriptors (Informational

descriptors), our system assigns a second attribute relative to

the value of the descriptor noted
 . It reflects the

considered concepts from the hierarchical model of the

adopted domain ontology. The first three descriptors of the

problem’s functional part (ds1, ds2 and ds3) have therefore

two attributes related to the presence of the information in the

descriptor and the descriptor value:

 = (
 ,

).

However, ds4 and ds5 conditional descriptors require a special

formalization. Whether it is a precondition or a postcondition,

a conditional descriptor expresses a condition that must be met

during discovery. Based on the study we have done on the

conditions and constraint language representation [11][12][13],

we chose to associate a condition, regardless of its type

(precondition or postcondition), to an atomic formula stating a

client’s constraint. This combination does not only facilitate

expressing conditions in a simple format to be handled by

users of our system, but also matching descriptors between the

client’s query and their corresponding in existing services

concerned by these conditions. Our atomic formula is a

constraint on a given concept of the domain ontology. Thus,

this ontological concept is compared to a specific value

(instance) via a comparison operator (=, ! =, <,>, ≤ or ≥).

In order to formalize our functional conditions, we use the

following 5-tuple to represent an atomic formula (AF) such as:

AF= (C, V, O, U, W) where:

 C: represents the operated concept. Normally it should

be a concept of the application domain ontology (color

of the car, etc...).

 V: represents the instance(s) assigned to the concept.

 O: indicates the relational operator (=, ! =, <,>, ≤ or ≥).

 U: represents the unit whether the concept is

measurable (quantitative variable).

 W: represents the weight, by default it is equal to 1 in

ds4 and ds5.

We assign four additional attributes to each one of the two

conditional descriptors in the problem functional part (ds4 and

ds5). Therefore, they will have:

 : the presence of information in the

descriptor,

 : the operated concept,

 : the value assigned to the concept.

 : the considered operator.

 : the concept unit.

 : the descriptor’s weight (by default it is

equal to 1).

Thus, the descriptors ds4 and ds5 are represented as follows:

 = (
 ,

 ,

 ,

 ,

).

We recall that each one of the descriptors ds4 and ds5 is a list

that may contain one or more elementary conditions. We

consider the use of the operators «Logical AND » and

«Logical OR» in the context of complex or composite

conditions.

After defining the functional descriptors of the client’s query,

we return back to our CBR4WSD system, more specifically to

the component «Target Case Elaborator ». This component is

responsible for completing the description of the Target Case

by annotating the service community to which it corresponds.

Using the problem functional descriptors, the «Target Case

Elaborator» must identify from the Community Base, the one

which is associated with the Target Case [9].

The five descriptors presented before are not the sole ones that

functionally describe the Case problem part. In fact, according

to Fuchs [14] who proposed to complete, if possible, a

problem description by collecting other relevant information

to find the solution of the Target problem, we supplement the

set of functional descriptors by a key descriptor noted ds6.

This original descriptor expresses decisive information which

allows us to select the search space to be considered in the

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.3, May 2017

13

« Retrieve» phase. Formally, it provides information on the

Service Community where belongs the Target Case.

However, unlike the first five functional descriptors (ds1, ...,

ds5) whose values are initiated directly in the client's query,

the value assigned to this key descriptor will be deducted after

launching the query in our CBR4WSD system. Thus, using

the « Goal », fundamental descriptor of the functional part of

the client's query, we assign to the descriptor ds6 the identifier

of the community which is associated with the Target Case.

3.2 Non-Functional descriptors of the Case

problem part
We recall that the non-functional properties express the

conditions when interacting with a given Web service and

they are related to different fields. We have chosen to express

them by means of WS-Policy (W3C recommendation) [10]

[15].

For example, the endpoint of a service can use messages

encrypted by specific cryptographic algorithms. These non-

functional properties specify the level of security provided by

the Web service when it is accessed through this endpoint.

Thus, a Web service using different endpoints can provide the

same functional properties with different non-functional

aspects. These aspects are, in fact, the essential criteria of the

selection process.

The description of the problem’s non-functional part is

expressed as policies. A policy is a set of policy

alternatives, each represented by a set of policy

assertions. However, in our CBR system, we have

chosen to represent a policy by a policy alternative

consisting of one or more atomic formulas. Each atomic

formula represents an assertion that corresponds to a certain

preference of the client. This choice aims not only to facilitate

the expression of non-functional properties, but also the

descriptors’ matching between the client’s non-functional

properties and the ones in the existing services.

W3C Office introduced the concept of "Policy Subject" to

finely associate policies to the WSDL elements. To do this, it

defines four types of Policy subjects: Service Policy subject,

Endpoint Policy subject, Operation Policy subject and

Message Policy subject [16]. However, we distinguish three

types of exchanged messages: InMessage (Message for an

input message) OutMessage (Message for an output message)

and FaultMessage (Message for an error message input /

output). To cover all of these subjects, we define seven non-

functional descriptors in part of a case, as shown in Table 2.

While elaborating the Target Case, the non-functional

descriptors are optional and the absence of value at this level

does not block the discovery process. This section is

specifically used to express preferences of the client and not

his requirements. However, keeping so generic the definition

of a non-functional property can lead to matching problems

due to a wrong consideration of the constraint semantic

concepts. This is why we limit our non-functional properties’

diameter to the QoS circle. Accordingly, our atomic formula

represents a constraint on a given characteristic or concept of

the considered QoS ontology. Thus, this concept is formally

compared to a precise value via a comparison operator (=,! =,

<,>, ≤ ,≥, Applied to,…).

Table 2. Non-Functional descriptors of the Case problem part.

Number and name of descriptor Definition

N
o

n
-F

u
n

ct
io

n
a

l
D

es
cr

ip
to

rs

ds7 : <ServicePolicy> List of policy assertions desired on the service.

ds8 : <OperationPolicy> List of policy assertions desired on the operation.

ds9 : <EndpointPolicy> List of policy assertions desired on the endpoint.

ds10 : <InMessagePolicy> List of policy assertions desired on the input message.

ds11 : <OutMessagePolicy> List of policy assertions desired on the output message.

ds12 : <FaultMessagePolicy> List of policy assertions desired on the fault message.

ds13 : <BondingPolicy> List of policy assertions desired on the binding.

A client can have multiple non-functional properties.

However, these properties don’t have the same

importance degree in his priorities. He may has some

properties much more important than others, hence the

need to use a weight assigned to each property so as to

indicate its importance to the client.

We recall that each one of the Non-Functional

descriptors is a list that may contain one or more

elementary conditions. We consider the use of the

operators «Logical AND » and «Logical OR» in the

context of complex or composite conditions.

In order to formalize our non-functional condition, we

use the following 5-tuple to represent an atomic formula

(AF) such as:

AF= (C, V, O, U, W) where:

 C: Normally it should be a concept of the special

ontology of QoS (price, response time, security level,

etc..). This does not mean that this parameter cannot be a

concept of the application domain ontology (the color of

the car, etc..).

 V: represents the instance(s) assigned to the concept. It

can be quantitative or qualitative value (number or

other).

 O: indicates the relational operator (=, ! =, <,>, ≤ , ≥,

applied to).

 U: represents the unit whether the concept is measurable

(quantitative variable).

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.3, May 2017

14

 W: represents the weight and it indicates the degree of

importance of a non-functional property for a client in

his query.

As we have mentioned before, a non-functional property,

relative to an operation of a SAWSDL service, which has

been initially expressed in WS-Policy will be represented in

the client’s query as one or more atomic formulas formalized

by the set of attributes «Concept, Value, Operator and

Weight ».

Thus, in the second part of the problem (pb) dealing with non-

functional properties, we assign five attributes to each atomic

formula of our descriptor. Therefore, each atomic formula will

be described by the following attributes:

 : the presence of information in the

descriptor.

 : the QoS concept in question.

 : the value assigned to the concept.

 : the used operator.

 : the concept unit.

 : the weight assigned to the non-functional

property.

Thus, the descriptors of the non-functional part are

represented as follows:

 =(
 ,

 ,

 ,

,

)

4. SEMANTIC MATCHING

MECHANISM AND OFFLINE

DISCOVERY PROCESS
The semantic matching process must take into account

possible similarities between the concepts used in the

definition of each Case descriptor. Ontology is used to

semantically describe the concepts of a given domain and

their different properties. These concepts are linked together

through semantic relationships providing a hierarchical

ontology structure. Degrees of semantic matching between

concepts belonging to an ontology tree are generally classified

in the literature into four categories [17], namely, "Exact",

"Plug-in", "subsumed" and "Fail" degrees.

- « Exact » Similarity:

The similarity between two concepts C1 and C2, denoted

Sim (C1, C2), is considered "Exact" if both C1 and C2

concepts are equivalent, i.e. they belong to the same

ontological class (annotated by same URI in an

ontology). To express the correspondence « Exact » we

adopt the notation: C1 ≡ C2.

- « Plug-in » Similarity:

The similarity between two concepts C1 and C2 is

considered a « Plug-in» match if C1 is a subclass of C2,

i.e. if the URI used to annotate the concept C1,

references in the considered ontology, a concept defined

as a subclass of the concept referenced by the URI used

to annotate the concept C2. To express the "Plug-in"

matching between C1 and C2 we adopt the notation: C1

⊂ C2.

- « Subsumes » Similarity:

The similarity between two concepts C1 and C2 is

considered a « Subsumes » match if C1 is a superclass of

C2, i.e. if the URI used to annotate the concept C1,

references in the considered ontology, a concept defined

as a superclass of the concept referenced by the URI used

to annotate the concept C2. To express the « Subsumes »

matching between C1 and C2 we adopt the notation: C1

⊃ C2.

- « Fail » Similarity:

The similarity between two concepts C1 and C2 is

considered a « Fail » match if they have no relationship

or equivalence relationship semantics, i.e. they are

annotated by URI referencing two concepts with no

equivalence link or semantic relationship in the ontology

where they are defined.

To express the « Fail » correspondence between concepts

C1 and C2, we adopt the notation: C1 ≠ C2.

According to our overall discovery procedure which consists

of an Offline and an Online processes, the Offline process is

used for configuration and system administration.

During the offline process, we apply the similarity rules

between the concepts of the domain ontology, and we generate

a table of similarity denoted FuncSimTab. Similarly, we apply

these rules of similarity between concepts of Non-Functional

ontology to generate a second table of similarity denoted

NonFuncSimTab. Furthermore, the similarity calculation is a

time consuming process. The choice of performing the inter-

concepts similarity calculation in Offline mode is justified by

the purpose of optimizing the Online discovery process. In

particular, it should significantly reduce the time allotted for

matching Source Cases to the Target Case. Besides, this

practice allows avoiding duplicating the calculation of

semantic similarity between a concept of the Target Case and

another concept that appears in several Source Cases.

Therefore, we generate our semantic similarity tables only

once regardless of the clients’ queries and also the Source

Cases treated for each query.

5. CBR4WSD LAYERS AND MODELS
Once the client launches his query, before starting the retrieval

algorithm, we apply the discoverability verification rules on

the new Target Case. These rules are strict and their results

inform the system whether the discovery process is feasible or

not in its Case Base.

5.1 Discoverability Verification Rules
Rule 1: Check if the WS Community corresponding to the

Target Case is not empty.

The Target Case generator is responsible to complete the

description of the Target Case by annotating the community

service to which it corresponds. However, using the function

Verify_Community() we check if the community is not empty

before starting the matching algorithm. This function takes the

elaborated Target Case as input parameter and returns (True) if

the relevant community is not empty. Otherwise, a notification

is sent to the administrator and the discovery process ends with

the fact of return (False), certainly after displaying a failure

message to the client.

Rule 2: Check the discovery feasibility in the selected

community.

In case that Rule 1 returns "True" the system continues

processing the discoverability verification within the

community corresponding to the Target Case, checking a

single condition concerning Outputs. Indeed, the community

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.3, May 2017

15

must be able to satisfy all Outputs of the client's query. Thus,

each Output concept in the Target Case must necessarily find

its corresponding concept having “Exact” match or “Plugin”

match in the Output list of the community LC(O). There is no

constraint on the Inputs in this first step. Inputs of the Target

Case can find their corresponding or not in the list of Input

concepts of the community LC(I). What matters are the

Outputs or the outcomes.

We use the function VerifyOutpTotalMatch() to check if all

the outputs of the query have their “Exact” or “Plugin”

correspondents from the LC (O). This function takes as input

parameters the elaborated Target Case and the Community

where it is associated and returns (True) if all the query outputs

have their Exact or Plugin correspondents in the list LC(O) of

the community.

Rule 3: Create the set E and verify that it is not empty

If VerifyOutpTotalMatch() function is verified, the system can

initiate the discovery process in the selected community and

continues processing through the creation of the set E

consisting of the Community Source Cases satisfying the

following conditions:

In terms of Outputs, the Source Case must meet at least the

Outputs of the Target Case. We can’t manipulate a Source

Case that does not guarantee all client’s Outputs. The Source

Case Outputs must all have their « Exact » or « Subsumes »

correspondents in the Outputs of the query or the Target Case,

otherwise the Case will be dismissed.

In terms of Inputs, the Source Case should not require more

than the client. We cannot ask the client for Inputs that do not

belong to its context. The Source Cases Inputs must have their

« Exact » or « Plugin » correspondents in the inputs of the

query otherwise the Case will be dismissed.

Moreover, we can come across a Source Case that in terms of

Outputs provides much more than the Outputs requested by the

client and in terms of Inputs the Target Case satisfies the

Inputs of the Source Case and maybe more. This will not cause

any problem in the calculation of matching because in both

cases, the needs are necessarily satisfied.

After creating the set E comprising Source Cases that verify

the client’s needs (Inputs and Outputs) we proceed to calculate

the functional similarity of each of its Source Cases with the

Target Case.

5.2 Functional similarity algorithm
To calculate the functional similarity between a

belonging to set E and the Target Case, we proceed by the

aggregation of local similarities performed on each of the

elements of the problem functional part of a Case illustrated by

the following set (Goal, Inputs, Outputs, Preconditions,

Postconditions and ComId). However, the computation of local

similarity on ds1 and ds6 descriptors is already assumed since

we are handling the Source Cases from the set E which

necessarily have the same Goal as the Target Case and of

course belonging to the same Service Community.

Though, the computation of local similarity between the

descriptors ds2, ds3, ds4 and ds5 is complex, since they are

expandable lists of variable size. We need a method to measure

the degree of similarity between multi-valued descriptors

having each one several attributes that are not necessarily

ordered.

To do this, we must first choose a similarity measure that

complies with our application domain. Generally, the

calculation of the local similarity depends on the type of

descriptor and is based on the distance. The literature refers to

several similarity measures of this type. However, none of

these measures is standard. Therefore the choice depends on

the field of application concerned. For the functional similarity

between the WS Cases, we choose the Manhattan distance

having the following formula:

Sim=

 (1)

Where: n is the number of attributes and is the local

similarity calculated for the attribute i.

We use the function FunctionalSimilarity() that compares the

functional parts of a Source Case and Target Case given as

input parameters, while browsing their descriptors and their

attributes to calculate their local similarities. These local

similarities are aggregated by means of the Manhattan formula

to generate the degree of functional similarity between the

Source Case and the Target Case.

We apply the function FunctionalSimilarity() on each Case of

the set E to generate its functional similarity against the Target

Case.

After performing our functional treatment, only Cases, having

a degree of similarity higher than the threshold of Functional

Similarity (FSThreshold), will be considered in the next step

where a measure of Non-Functional Similarity (NFSM) is

calculated. The similarity threshold is defined by the domain

expert and depends on the application domain. In the case of

WS, two services are functionally similar if their functional

similarity degree is greater than or equal to 60%. Thus, two

Service Cases are not similar if the differences between their

attributes are obvious i.e. if the degree of similarity does not

exceed the threshold defined by the domain expert.

5.3 Non-Functional similarity algorithm
We apply the function NonFunctionalSimilarity on the Cases

of the set E that have a functional similarity degree (FSimDeg)

greater than or equal to 60% to generate their Non-Functional

Similarity against the Target Case.

This function takes as input parameters a Source Case from the

selected ones and the Target Case (query), and returns the

degree of Non-Functional similarity by matching the Non-

Functional descriptors of the two compared Cases.

5.4 Global Similarity
After performing our non-functional treatment, only Cases,

having a degree of similarity higher than the threshold of Non-

Functional Similarity (NFSThreshold), will be considered at

the final stage where a measure of overall similarity (GSM) is

calculated. The non-functional similarity threshold is defined

by the domain expert and depends on the application domain.

In the case of WS, two services are non-functionally similar if

their Non-Functional Similarity degree is greater than or equal

to 60%. We complete our algorithm by the final treatment that

allows first to select among the set E, the Source Cases

meeting the clients’ Functional and Non-Functional

requirements and then calculate their global similarity measure

(GSM) against the Target Case.

6. SYNTHESIS
In this paper, we have focused on the « Case Retrieval » phase

in our CBR4WSD system which is dedicated for the automatic

discovery of WS.

We have firstly presented an overall view of our CBR4WSD

system. Then we have described how to represent our WS

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.3, May 2017

16

Cases, while respecting our initial goal as regards the

alignment with W3C standards. Thus, based on our enriched

semantic WS description model, we have extracted our needs

in terms of data or significant information to formalize our

Case « pb » part.

In the study of the « Case Retrieval » phase, we have exposed

both Offline and Online discovery process. In the Offline

process we have exposed the importance of calculating the

similarity between the ontology concepts before launching the

Online process so as to reduce the discovery process time.

In addition, it was necessary to define a mechanism of "Case

Retrieval" focused on the specific needs of each client,

ensuring efficient and rapid selection of WS. To do this, we

have proposed a semantic matching algorithm to calculate the

functional similarity measure (FSM) consisting of the

aggregation of local similarities performed on Cases functional

descriptors. Only Cases having a functional similarity degree

greater than or equal to the functional similarity threshold are

considered in the next step where a measure of Non-Functional

Similarity (NFSM) is calculated. This measure is the

aggregation of local similarities performed on the Cases non-

functional descriptors. This latter is self-aggregated to the

(FSM) to generate a global similarity measure (GSM) that

identifies the most appropriate services which better meet both

functional and non-functional requirements expressed in the

Target Case.

Finally, our approach allows, through its enriched semantics

and its coverage of functional and nonfunctional aspects, to not

only hearten the discovery of the WS responding to the client’s

query but also to select the finest from the top covering

services of non-functional properties using its efficient

Retrieval algorithm. This algorithm spreads over CBR

mechanisms and the indexation of the Case Base by service

communities in order to rationalize the processing and to

optimize the time of discovery and the performance of the

Retrieval phase.

7. REFERENCES
[1] 1. El Bitar, I., Belaoudha, F.Z., Roudies, O.: Semantic

Web Service Discovery Approaches: Overview and

Limitations. International Journal of Computer Science

and Engineering Survey, ISSN: 0976-2760, Volume 5,

Number 4, 2014.

[2] F. De Franco Rosa et J.M. De Oliviera. “An approach to

search Web Services using Ontologies and CBR”, The

11th IEEE International Conference on Computational

Science and Engineering – Workshops, 2008.

[3] S. Lajmi, C. Ghedira, K. Ghedira, “How to apply CBR

method in web service composition”, 2nd International

Conference on Signal-Image Technology & Internet

based Systems (SITIS’2006), Springer Verlag ed.

Hammamet (Tunisie). LNCS series, 2006a.

[4] S. Lajmi, C. Ghedira, K. Ghedira, D. Benslimane,

“Wesco_cbr : How to compose web services via case

based reasoning”, IEEE International Symposium on

Service-Oriented Applications, Integration and

Collaboration held with the IEEE International

Conference on e-Business Engineering (ICEBE 2006),

Shanghai, China, 2006b.

[5] T. Osman, D. Thakker, D. Al-Dabass; “Semantic-Driven

Matchmaking of Web Services Using Case-Based

Reasoning”. School of Computing and Informatics,

Nottingham Trent University, Nottingham, UK, Naval

Academy of France, Ecole Navale, BP 600, 29240 Brest,

France, 2006

[6] T. Osman, D. Thakker, D. Al-Dabass; “S-CBR: Semantic

Case Based Reasoner for Web Services Discovery and

Matchmaking”, School of Computing and Informatics,

Nottingham Trent University, Nottingham, UK, Naval

Academy of France, Ecole Navale, BP 600, 29240 Brest,

France, 2006.

[7] Z. Sun, J. Han, D. Ma. “A Unified CBR Approach for

Web Services Discovery, Composition and

Recommendation”, 2009 International Conference on

Machine Learning and Computing IPCSIT vol.3 (2011)

© (2011) IACSIT Press, Singapore.

[8] L. Wang, and J. Cao; “Web Services Semantic Searching

enhanced by Case Reasoning”, 18th International

Workshop on Database and Expert Systems

Applications, 2007.

[9] El Bitar, I., Belaoudha, F.Z., Roudies, O.: A CBR based

approach for web service automatic discovery. Journal of

Theoretical and Applied Information Technology (ISSN

1992-8645), Volume X No Y 2014, http://www.jatit.org.

[10] El Bitar, I., Belaoudha, F.Z., Roudies, O.: Towards a

semantic description model aligned with W3C standards

for WS automatic discovery. The 4th International

Conference on Multimedia Computing and Systems

(ICMCS'14) April 14-16 2014, Marrakesh, Morocco.

[11] Warmer J., Kleppe A.: The Object Constraint Language:

Getting Your Models Ready for MDA, book, Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA

©2003 ISBN:0321179366.

[12] Benthem V., Fak J.: Tense Logic and Standard Logic in

Tense Logic. Logique et Analyse Louvain, 1977, vol. 20,

no 80, p. 395-437.

[13] Codognet P.: Programmation logique avec contraintes :

une introduction Technique et Sciences Informatiques,

1995 - info.ucl.ac.be

[14] Fuchs, B. : Représentation des connaissances pour le

raisonnement à partir de cas, le système ROCADE,

Thèse de doctorat, Université Jean Monnet de Saint-

Etienne, France.(1997)

[15] Web Services Policy 1.2 - Framework (WS-Policy) :

http://www.w3.org/Submission/WS-Policy/

[16] Web Services Policy 1.5 – Attachment W3C

Recommendation 04 September 2007:

http://www.w3.org/TR/ws-policy-

attach/#ServicePolicySubject

[17] Hatzi, O., Vrakas, D., Bassiliades, N., Anagnostopoulos,

D., and Vlahavas, I. (2011). The PORSCE II frame-

work: Using AI planning for automated semantic web

service composition. The Knowledge Engineering

ReView, 2011.

IJCATM : www.ijcaonline.org

http://scholar.google.com/citations?user=hunRumsAAAAJ&hl=fr&oi=sra
http://www.w3.org/TR/ws-policy-attach/#ServicePolicySubject
http://www.w3.org/TR/ws-policy-attach/#ServicePolicySubject

