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ABSTRACT 
A subset S of vertices in a graph G is said to be an independent 

set of G if each edge in the graph has at most one endpoint in S 

and a set W  V  is said to be a resolving set of G, if the vertices 

in G have distinct representations with respect to W. A 

resolving set W is said to be an independent resolving set, or an 

ir-set, if it is both resolving and independent. The minimum 

cardinality of W is called the independent resolving number and 

is denoted by ir(G). In this paper, we determine the independent 

resolving number of Fibonacci Cubes and Extended Fibonacci 

cubes. 
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1. INTRODUCTION 
For an ordered set W = {w1, w2, ..., wk} subset of V and a vertex.  

v  V(G), the representation of v with respect to W is defined as 

the k-vector r(v | W) = (d(v, w1), d(v, w2), ..., d(v, wk)). The set 

W is a resolving set of G if r(x | W)  r(y | W) for any two 

distinct vertices x, y  V. A minimum resolving set or a basis of 

G is a resolving set of G with minimum number of vertices. The 

metric (dimension) dim(G) is the number of vertices in a basis 

for G. A resolving set W of G is connected if the sub graph 

    induced by W is a connected sub graph of G and the 

minimum cardinality of a connected resolving set W in a graph 

G is called the connected resolving number which is denoted by 

cr(G) [1]. A set W  V is said to be an independent set of G if 

there is no edge connecting every two vertices in W. A 

resolving set W is said to be an independent resolving set, or an 

ir-set, if it is both resolving and independent. The cardinality of 

a minimum independent resolving set in a graph G is known as 

the independent resolving number ir(G). [1] 

 

For every connected graph G of order n, every independent 

resolving set is a resolving set. Saenpholphat et al. [1] have 

proved that                            where 

dim(G) is the number of vertices in a basis for G and β(G) is the 

number of vertices in a maximum independent set in a graph G. 

 

One of the basic problems in chemistry is to provide distinct 

mathematical representations for a set of chemical compounds. 

The structure of a chemical compound is labeled graphically 

where the vertex and edge labels specify the atom and bond 

types, respectively. Under graph theoretical concept, this 

problem is to find a resolving set of the graph. Further this 

concept has wide applications in problems of network discovery 

and verification [2], pattern recognition and image processing,  

coin weighing problems, strategies for master mind game, 

geometrical routing protocols, sonar and loran stations [3], 

pharmaceutical chemistry, Combinatorial Search and 

Optimization, robot navigation, etc. 
 

In this paper, we determine the independent resolving number 

of Fibonacci cube, Extended Fibonacci cubes EFC1(n) and 

EFC2(n). 

 

2. FIBONACCI CUBES AND EXTENDED 

FIBONACCI CUBES 
One of the most popular and efficient topological structure of 

interconnection network is hypercube [4]. This led to the 

introduction of a special sub cube of hypercube, called 

Fibonacci cube proposed by Hsu [5].  Fibonacci cubes are the 

sub graphs of hypercube induced by the vertices that no two 

consecutive 1’s are there in the binary representation. When 

comparing the hypercube of dimension n with an n-dimensional 

Fibonacci cubes, it is found that there are 1/5 fewer edges [6] 

and does not increase rapidly in size as the dimension increases. 

Without affecting the properties of Fibonacci cubes a new cube, 

known as extended Fibonacci cube, [7], has been introduced. 

Extended Fibonacci cubes are used to construct parallel 

machines with arbitrary size since it eliminates the restriction 

on the number of vertices. 

 

A Fibonacci sequence is defined as f0 = 0. f1 = 1,  

fi = fi – 1 + fi – 2 for i  2. The symbol ║ denotes concatenation 

operation for, 01║{0, 1} = {010, 011} and 01║{} = 01. The 

Fibonacci cube            of order n, n > 1, is defined 

recursively as Vn = 0║Vn – 1  10║ Vn – 2, where Vn − 1 and Vn – 2 

are the set of vertices of the order n – 1 and n − 2 respectively 

and there is an edge between two vertices if their binary 

representations differ exactly in one position. The initial 

conditions are            and                   . A 

Fibonacci cube of order n has fn vertices where fn denotes the nth 

Fibonacci number [5]. The Fibonacci cube    contains two 

disjoint subgraphs that are isomorphic to      and     , and 

there are exactly fn–2 edges connecting the two subgraphs. The 

degree of a vertex in the Fibonacci cube   , lies between  
   

 
  

and    , for n  3 [5]. Fibonacci cubes of orders 2, 3, 4 are 

depicted in Figure 1. 

 

0             1

(c)(b)(a)
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Figure 1: (a) 2 (b) 3 (c) 4 

 

Based on the Fibonacci sequence the extended Fibonacci cubes 

are defined by changing the initial conditions.   
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A series of Extended Fibonacci Cubes, denoted by EFCk, k  1 

is defined as EFCk(n) = {Vk(n), Ek(n)}, EFCk(n –  1) =  

(Vk(n – 1), Ek(n – 1)), and EFCk(n – 2) = (Vk(n – 2), Ek(n – 2)). 

Then Vk(n) = 0 ║ Vk(n – 1)  10 ║Vk(n – 2). Two vertices in 

EFCk(n) are connected by an edge in Ek(n) if and only if their 

labels differ in exactly one bit. As initial conditions for 

recursion, Vk(k + 2) =       , Vk(k + 3) =          where 

       denotes the set of binary strings of length k [7].  

 

A Fibonacci cube n is a proper subgraph of EFC1(n), for n  4. 

For any n  i + 3 and n  j + 3, EFCi(n) is a proper subgraph of 

EFCj(n) if i < j. The degree of vertices in EFCk(n) is between 

 
       

 
        and n – 2. 

 

(b)(a)

00         01           10         11

 
Figure 2: (a) EFC1(3) (b) EFC1(4) 

 

The vertices of an EFCk(n) are labelled with binary strings of 

length n − 2,where the first n − k − 2 bits represent a Fibonacci 

number and the last k represents a binary number. The number 

of vertices in EFCk(n) is 2kfn − k, where fn − k is the (n − k)th 

Fibonacci number, n > k+1. The diameter of EFCk(n) is n − 2 

for all k ≥ 0 [8]. An extended Fibonacci cube EFC0(n) is a 

Fibonacci cube n. EFC1(n) and EFC2(n) are shown in Figures 

2 and 3. 
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Figure 3: (a) EFC2(3)  (b) EFC2(4) 

 

Theorem 2.1: Let G = EFC2(n). Then ir(G ) = 3 for n  ≥  5. 

 

Proof: Vertices of G are denoted by a1, a2, a3, …, am where m is 

the number of vertices in G and any two vertices in G are 

connected if and only if their Hamming distance is one. 

Consider W = {a1}. Then there exist vertices ai, 2 ≤  i ≤  m and i 

≠ m  –  1  with identical representation with respect to W. Thus 

W does not resolve G as an ir-set.  Therefore, ir(G ) >1.   

 

Include a3 into W, that is, W = {a1, a3}. The vertices a2i, 

     
 

 
 are at equidistant from both a1 and a3. Hence ir(G) > 

2. 

 

Now include am in W. It follows that d(am-4, am) = 1.  

Then for     
 

 
, 

                                         

Similarly for      
 

 
   , 

                                       

                              
 

Thus any two vertices have distinct W-coordinates and W 

resolves G.  

Further the vertices a1, a3 and am are non-adjacent vertices in G.  

Therefore W is a minimum independent set. Hence W resolves 

G as an independent resolving set and ir(G) = 3. 

a1

a9

a7a8

a6a5

a3a4

a2

a11a12

a10

 
Figure 4: EFC2(6) with its resolving set { a1,  a3, a12} 

 

Lemma 2.2: Let G = EFC1(n). Then ir(G ) ≥ n – 3 for n  ≥  5. 

 

Proof: Let W = {ak} where    
            

 

 
    

             
 

 
    

   

be an independent set in G such that ǀ W ǀ ≤  n – 4. Then there 

exist vertices {a2n – 9, am} which have identical representation 

with respect to W. Thus W does not resolve G and ir(G) ≥ n – 3.  

 

Theorem 2.2: For G = EFC1(n), ir(G)  = n – 3 for n  ≥  5. 

 

Proof:  By Lemma 2.2, ir(G) ≥ n – 3. 

 

Let us assume that ir(G )  = n – 3. We will prove this by 

induction on the number of vertices n. 

 

Let G = EFC1(5) and W = {a4, a6} be an independent resolving 

set in G. Then it can be easily verified that every vertex in G is 

resolved by W. Thus W is an ir-set and ir(G) = 2. Figure 5 

represents the distinct representation in W with respect to G. 

Now let us assume that the result is true for EFC1(n).  

  W = { ak, aj } where     
            

 

 
    

             
 

 
    

   

 

and j = m(EFC1(n – 1) ) + 2 is an independent resolving set of 

G where m(EFC1(n)) denotes the number of vertices in 

EFC1(n).  

 

By the structure of extended Fibonacci cubes, EFC1(n + 1), 

contains a copy of EFC1(n) and EFC1(n – 1). Now we have to 

show that W is an independent resolving set of EFC1(n + 1). 

That is, we have to prove that any two vertices, say, x and y, do 

not have same distance with respect to W. 

 

a1

203102131122

a6a5a4a3a2

Figure 5:  EFC1(5) and its distinct representations with  

respect to W 
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Case i: If  x, y  EFC1(n) (or)  x, y  EFC1(n – 1), by induction 

hypothesis W resolves x and y. 

Case ii: If x  EFC1(n) and y  EFC1(n – 1). 

In this case,  

                                                   

 =                                   

          ,          
 

 
  

Thus representations of x and y with respect to W are distinct. 

Thus W is an ir-set and ir(G) = n – 3.  

Theorem 2.3: The independent resolving number of n is given 

by  

         
 
 

 
                 

 
 

 
             

  

The proof of this theorem is obtained by using the same strategy 

as in Theorem 2.2. 

3. CONCLUSION 
The exact values of independent resolving number for 

Fibonacci and extended Fibonacci cubes are determined. The 

problem is open for other networks like hypercube, hexagonal, 

etc.  
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