
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

27

Heuristic based Independent Task Scheduling

Techniques in Cloud Computing: A Review

Puneet Banga
Research Scholar

MMU, Mullana
CSE Deptt.

Sanjeev Rana, PhD
Professor MMU, Mullana

CSE Deptt.

ABSTRACT
Cloud computing, a buzzword of today’s that combines the

power of both parallel and distributed computing. It delivers

its output in the form of service(s) that can be IaaS, SaaS and

PaaS (Infrastructure, Software and Platform- as a Service). In

Cloud computing, we won’t compute on local machines, but

on someone premises operated by someone else. Actually

Cloud environment deals with dissimilar kinds of virtualized

resources. So, to allocate and schedule resources efficiently it

requires noticeable efforts. One of the core phases is task

scheduling which plays a vital role. It can be seen as the

finding an optimal assignment of set of task(s) over the

available resource set to obtain desired goals like: cost, quality

of service and makespan etc. Even, most of the organizations

already started implementing CTQ model (less COST,

minimum TIME and assured QUALITY) for attaining

maximum return with assured quality. The objective of this

paper is to review various independent task scheduling

techniques under heuristic mapping category so that we can

apply techniques according to current requirement.

Keywords
Cloud Computing, Scheduling, Heuristic, Independent Task,

Immediate mode, Batch mode.

1. INTRODUCTION
Cloud computing can be seen as a technology which

comprises of many others like: Grid computing, Utility

computing, Autonomic computing, SOA and Web services

along with hardware virtualization as shown in the diagram

below.

Figure 1: Advent of Cloud computing

It is the distributed computing where everything from tasks to

resources are distributed in some manner for the purpose of

communication and resource sharing as two prime purposes.

In this paper we reviewed various independent task scheduling

techniques under heuristic mapping category based on their

important parameters like: makespan, resource utilization rate

and some QoS parameters. It starts from general model that

shares similarity with Grid computing model in general way

and then in next section we have described the meaning task

scheduling along with its classification. Then this research

paper reviewed various techniques of both types of categories

under heuristic mapping that are immediate and batch mode

with their inherent characteristics.

2. GENERAL MODEL FOR GRID AND

CLOUD COMPUTING
Both, Grid and Cloud computing shares a common model

which basically consist of four building blocks that are:

Clients/Users, Resource Broker/Scheduler, Grid/Cloud

Information Service (GIS/CIS) and available Resource(s).

Below, mentioned four steps will show their interaction

among entities for the purpose of executing user’s job

respectively.

Figure 2: General Model for Grid and Cloud Computing

I. User will submit job(s) to the resource

broker/scheduler for execution.

II. Resource broker acquire information about

resources from GIS/CIS and then divide the job into

various tasks or subtasks if needed. Then map the

same to resources distributed geographically

according to user’s requirements and availability of

resources or based on some optimized scheduling

technique discussed in next section.

III. GIS/CIS are responsible for providing information

about status of available resources which helps the

broker for scheduling, monitoring and further

communication if required.

IV. After execution of all tasks, result is combined and

sends back to user via broker.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

28

3. TASK SCHEDULING AND

CLASSIFICATION
It is the one of crucial phase which plays a significant role for

overall performance in the system. It is the course of action

for mapping tasks to the available and selected resources

based on requirement(s). The overall performance should be

enhanced by reducing the task completion time. This will be

achieved by ensuring that selected resources are used without

being idle. Another term which plays a vital role here is Meta

task: [4] defined as collection of tasks or subtasks. For

example: jobs submitted to a supercomputer by different kind

of users would be an example of Meta task. Meta task can be

seen as batch of tasks which may include either similar kind

of attributes or share some basic characteristics.

Figure 3: Classification of Task Scheduling

Different categories of task scheduling are:

3.1 Centralized vs. Decentralized – In

Centralized scheduling, decision is made by a central

node. The advantages are: efficiency, ease of operation

and monitoring on resources [5]. On the other hand they

have some pitfalls like: scalability issue, inherent

complexity and fault tolerance. Decentralized or

Distributed type of scheduling is more practical for real

cloud environment regardless of its poor efficiency

compared to its counterpart. As there is no central entity

for overall control, so role of local schedulers plays

considerable role for maintaining the state of

scheduling.

3.2 Static vs. Dynamic scheduling - In static mode,

everything from task execution time to resource

capabilities is known in advance. A task assigned once to

a resource remains same [5], so it’s much simpler to

implement specially from scheduler’s perspective. In

case of dynamic task scheduling, resources are

dynamically available for scheduling. It is further flexible

than static scheduling as decision is to be taken is not

fixed where its receive complexity in addition.

3.3 Preemptive vs. Non-Preemptive – In

preemptive scheduling, task can be interrupted while in

execution and can be transferred to another machine. If

constraints such as priority, deadline and cost are to be

imposed then this type of scheduling is become

mandatory. In Non-Preemptive scheduling resources [6]

are not permissible to be re-allocated until scheduled

task(s) finished its execution or willingly they transfer

their control.

3.4 Immediate vs. Batch Mode scheduling -

In Immediate mode, the task is scheduled to resource

immediately without any time lag. It is also known as on-

line mode, each task is considered only once [7] i.e., the

mapping decision is not altered once it is computed.

Whereas in Batch mode: tasks are collected into a set

(Meta task) and then entire batch is examined for

mapping at prescheduled times called mapping events. It

is also recognized as offline mode which is the hottest

area of research now.

3.5 Heuristic vs. Meta-Heuristic scheduling

- Heuristics techniques are specific in terms of solving

problems. Meta-heuristic’s [8] on the other hand, are

problem-independent techniques. They are also known as

Guided Random Search or Nature’s Heuristic approach.

They can be used as black box in a general way for wide

range of problems.

3.6 Independent vs. Workflow scheduling –
A task which do not require any communication

(dependency) with other tasks is called independent task,

where as dependent tasks are different as they have some

precedence order to be followed [9] during the

scheduling process. Let there are 7 tasks: T0 to T7, if

they are independent then scheduler can map those

independently means without keeping any order. But

dependent tasks are executed in order according to

precedence in mind like shown in figure:

Figure 4: Directed Acyclic Graph (DAG)

DAG can be represented by three types like: Sequence,

Parallelism and Choice where in sequence: an ordered chain

of tasks where one task will start after a previous task has

completed. Parallelism denotes tasks which are running all

together. In choice control, a task executed dynamically when

it’s associated evaluator criteria turns out to be true [10].

4. IMMEDIATE MODE SCHEDULING

4.1 Opportunistic Load Balancing (OLB)

[11] – In this, each task is assigned to machine in arbitrary

order that is expected to be available, regardless of the task's

expected execution time and its completion time on that

machine. The intuition behind OLB is to keep all machines as

busy as possible. But it may results in poor load balancing

level due to non-consideration of current workload. In some

special cases OLB will act as First Come First Serve (FCFS)

or Myopic scheduling.

4.2 Minimum Execution Time (MET) [11] –
It schedule tasks based on their expected execution time on

that machine. Here, a task is assigned to a resource on which it

can be executed in minimum time. [5] [6] Allocation a task in

such a way (without knowing resource availability time) may

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

29

lead to load imbalance among resources. Heuristic MET can

solve problem in O(tm) time. Here, t denotes number of

independent tasks whereas m represents number of allocated

machines.

4.3 Minimum Completion Time (MCT) [11]
– Unlike MET which consider execution time only, here task

is assigned to a resource that gives minimum completion time

Cij. (ith task execution time on the jth resource + availability of

jth resource) [5][6] This technique considers availability time

as key parameter but allocation in this manner may results in

execution of jobs on less high speed Cloud machines. But, it

tries to balance the load among resources quite smoothly. Like

MET, here problem is solvable in O(nm) time is another good

point.

4.4 Classifier MCT [12] – An enhanced form of

MCT algorithm which categorized allocated resource(s) and

task(s) into two types of classes to achieve better QoS. First

one is HIGH class for HIGH computational task(s) and LOW

computational task(s) are scheduled to LOW class resources

respectively. Each task is examined for its respective class so

if it is of HIGH class then it will be scheduled to set of HIGH

class resources else it will schedule to LOW class resources

and then traditional MCT is applied on it. Experimental

results show that CMCT outperforms MET and MCT in terms

of makespan and average resource utilization rate. Till now, in

this category it is the one the best technique in terms of QoS.

Table 1: Immediate mode independent task scheduling techniques

Parameter/

Technique

OLB MET MCT CMCT

Category Static Static Static Static

Factor(s)

achieved

Keep the resources busy Minimum execution

time

Minimum completion

time

Makespan with load

balancing

QoS NO NO NO YES

Phases ONE ONE ONE TWO

Speciality Blind approach To consider fastest

resources

Less makespan with

resource availability

info

Less makespan with

assured quality

5. BATCH MODE SCHEDULING

5.1 Min-Min [11] - It starts with a Meta task (MT) of

all unmapped tasks. Out of two phases, its first phase finds

minimum expected completion time over all the allocated

machines for each task and then in second phase starts. Task

with the overall minimum expected completion time from MT

is selected in phase two and then scheduled to the

corresponding machine [3] [5] [6]. Then, this task is deleted

from pool and the process is continues until all tasks are

mapped successfully. This heuristic takes O (t2m) time.

5.2 Max-Min [11] - Max-Min is analogous to Min-

Min, except in second phase which finds maximum expected

completion time instead of minimum. As this technique

believes to execute longer task first and allows shorter tasks to

be executed concurrently. This phenomenon results in lesser

makespan, better resource utilization rate and even better load

balancing level.

5.3 Sufferage [13] – As the name indicates, the task

suffers the most will be scheduled first. Then, that task will be

mapped to machine which will execute it in minimum

completion time. In this algorithm, a sufferage value is

calculated for every task in the batch based on difference

between first and second minimum completion time. Most

suffered task is executed first and then process will continue

untill all unmapped tasks are mapped successfully.

5.4 RASA [14] – Resource Aware Scheduling

Algorithm is a hybrid scheduling technique which combines

the good traits of both Min-Min and Max-Min alternatively

depending on resource count. If the number of available

resources is odd then Min-Min is executed to assign the first

task, else Max-Min strategy is applied. The cycle continues

until all unmapped tasks are assigned. Results show better

performance over Min-Min and Max-Min.

5.5 TASS [15] - Task Aware Switcher Scheduling,

another hybrid scheduling algorithm which is inspired from

RASA. It considers task count rather than resource. In this, if

the number of task count is even then Max-Min strategy is

performed to assign the first task; otherwise Suffrage strategy

is applied till all unmapped tasks are scheduled to respective

resources. Experimental results show that TASS perform

better compare to Min-Min, Max-Min, Sufferage and RASA

in terms of makespan and average resource utilization rate.

Further this technique can be tailored according user priority,

their deadline and other QoS parameters.

5.6 QoS Guided Min-Min [16] - The term QoS

defines different things to different people, but here it means

network bandwidth. In his research, one dimension QoS is

considered that is network bandwidth along with conventional

Min-Min. If a normal task can be executed on both high QoS

and low QoS resources, but a task that requests a high QoS

can only be executed on a resource providing high quality of

service is the key to success. This algorithm provides

improved results than the conventional Min-Min. Further the

work can be extended by adding more QoS parameters to it.

5.7 QoS Priority Grouping Scheduling [17]

- Rather than bandwidth as a major parameter, this algorithm

looks into deadline and acceptation rate of the tasks as

foremost factor. It is based on the concept that, if a task can be

executed on fewer hosts then that task has higher priority. If

we compare this with Min-Min and QoS guided Min-Min, this

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

30

algorithm achieves better acceptance rate and reduction in

makespan. In next section of this paper author has introduced

another parameter i.e., deadline of task, so QD-Sufferage is

applied to task with deadline and those tasks without deadline

are scheduled according to QoS priority grouping. Result

shows better throughput but it still required more QoS

parameters as future work.

5.8 Scheduling Framework for Bandwidth-

Aware Job Grouping-Based Scheduling

[18] – It considers jobs by two factors that are

computational and the communication capabilities of the

resources. It uses bandwidth capacity of links to decide the

priority of each resource. The resources are selected based on

priority by scheduler itself and it groups independent fine-

grained jobs together based on chosen resources processing

capability (MIPS). The purpose behind grouping of jobs is to

maximize the resource utilization rate and to decrease

transmission time.

5.9 QoS Sufferage [19] – A refinement of Sufferage

algorithm which takes network bandwidth into account and

schedules the tasks based on their network bandwidth. But

this algorithm tries to achieve smaller value of Makespan as

compared with the Max-Min, Min-Min, QoS guided Min-Min

and QoS priority grouping algorithms. But the proposed work

considers only bandwidth as prime parameter for QoS, so in

future multiple factors for QoS can be considered to maximize

the overall performance.

5.10 A Min-Min Max-Min Selective

Algorithm [20] – For every decision this algorithm

takes the advantageous of both Min-Min and Max-Min. Here,

all tasks are sorted according to execution time in ascending

order. Then, it calculates the standard deviation (sd) of all

unmapped tasks based on their completion time. Then a place

is found in the sorted list where the difference between the

two consecutive values is more than sd, if this place is in the

first half of the list, then conventional Min-Min is applied else

Max-Min is used to map the task. Result shows better

performance over Min-Min and Max-Min in each round.

5.11 Load Balanced Min-Min (LBMM) [21]

– Another variant of Min-Min which takes load balancing

factor as one of the vision in this work. LBMM in its first

round executes Min-Min followed by selecting the heavy load

resources and then reassigns them to the resources with light

load in its second round. Then that task’s completion time is

calculated for all resources and the maximum completion time

of that task is compared with the makespan produced by Min-

Min. If calculated value is shorter than makespan produced

then the task is rescheduled to resource that produces it. Now

ready time of both resources (old and latest) are updated else

steps are repeated again for a task with next maximum

completion time. When all resources and all tasks assigned are

considered for rescheduling then the process stops.

Experimental results show that LBMM outperforms Min-Min

with respect to makespan and average resource utilization

rate.

5.12 Improved Max-Min Algorithm in

Cloud [22] - In this, we picked longest task (in terms of

MI) first as this algorithm considers expected execution time

instead of completion time for mapping user’s task. Allocation

to the slowest resource for longest task permits us to finish

other smaller tasks concurrently on high speed resources. In

future, proposed work can be improved by applying some

Meta heuristic techniques like: GA, PSO and ACO etc and

can be tested on real environment too.

5.13 Mid-Max Algorithm [23] - The Mid-Max

heuristic starts with all unmapped tasks by calculating their

completion. Then the task having overall midst completion

time is picked and allocated to fastest resources (highest

MIPS). The newly mapped task is removed from the set (MT)

and the process repeats until all tasks are mapped successfully.

5.14 Grouping based User Demand Aware

Job Scheduling approach for

Computational Grid (GUDA) [24] - It is based

on the concept of grouping user jobs and taking user’s

deadline as QoS parameter. Here fine grained jobs are

grouped into coarse grained jobs where group of jobs is

prepared according to some grouping scheme and then that

group is scheduled to resources based on user’s deadline.

Result shows reduction in makespan and communication time

compare to users’ demand aware scheduling (UDDA) by

means of grouping concept. Further the work can be extended

by accounting load balancing as new angle of research.

5.15 Best-Min [25] –The basic idea was build around

the conventional Min-Min, but this algorithm considers the

rescheduling unlike fixed scheduling procedure in Min-Min.

In Best-Min algorithm minimum completion time is compared

against the makespan produced by Min-Min. If makespan

value by Min-Min is smaller, then the task is rescheduled on

the resource that produced it and the available time for all

resources is updated. Otherwise task is scheduled in current

resource as usual. No doubt rescheduling lead’s to cost more.

5.16 Load Balance Improved Min-Min

(LBIMM) and User-Priority Awared

LBIMM (PA-LBIMM) [26] - A new scheduling

algorithm for load balancing in cloud with respect to user’s

priority that was based on conventional Min-Min mapping.

The experimental results show that under all possible

situations both the LBIMM and PA-LBIMM are capable of

decreasing completion time of tasks, improving load balance

of resources and gain better overall performance than Min-

Min algorithm.

5.17 Enhanced Max-Min [27] – It is a refinement

of Improved Max-Min based on conventional Max-Min. In

Improved Max-min algorithm, task is assigned to resource

produces minimum completion time (slowest resource in

terms of MIPS) while Enhanced Max-min assign task with

average execution time (average or nearest greater than

average task) to resource produces minimum completion time

which leads to reduces overall makespan and balance load

across resources over Improved Max-Min.

5.18 Enhanced Load Balanced Min-min

(ELBMM) algorithm [28] - It is based on LBMM

but with one difference that rather than choosing minimum

execution time of task on heavy load resource, it chooses

maximum execution time while rescheduling process. Results

show ELBMM produces better result compare to LBMM.

5.19 Credit based scheduling algorithm in

Cloud [29] - Another static scheduling technique under

batch mode mapping which consider mainly two parameters

that are: (1) Task Length (MI) and (2) User Priority (an

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

31

integer number). Here the algorithm is duly based on credit

system, where each task is assigned a credit based on their

task length and priority. From the simulation results it is

concluded that, the proposed algorithm works efficiently in

terms of makespan. In future, the proposed scheme can be

enhanced by considering task’s deadline and other vital QoS

parameters.

5.20 Credit based scheduling using deadline

in Cloud [30] - This algorithm is enhanced version of its

predecessor [29]. Here each task credit is calculated based on

three parameters that are: (1) Task’s Length (2) User’s

Priority and (3) User’s Deadline using a predefined formula.

Results show proposed work performs better in terms of

makespan compare to its predecessor, but further it requires

cost of data transfer and rescheduling as future work.

Table 2: Batch mode independent task scheduling techniques

Technique/Parameters Factors achieved QoS Hybrid Remarks

1. Min-Min Makespan × × 2 phases with smallest overall MCT

2. Max-Min Makespan × × 2 phases with maximum overall MCT

3. Sufferage Makespan × × Execute a task that suffers the most

4. RASA Makespan ×

YES

Based on resource count, applies Min-

Min and Max-Min one by one

5. TASS Makespan,

Resource Utilization rate
×

YES

Based on task count, applies Max-Min

and Sufferage one by one

6. QoS Guided Min-

Min

Makespan

YES
× Considers network bandwidth into

account with Min-Min

7. QoS Priority

Grouping

Makespan, Deadline,

Acceptance rate

YES × Achieved better throughput

8. BAJGS Transmission time,

Resource utilization rate

YES × Based on both computation and

communication

9. QoS Sufferage Makespan YES × Considers network bandwidth into

account with Sufferage

10. Min-Min Max-Min

Selective

Makespan × × Considers task length (MI) and based on

Standard deviation

11. LBMM Load balancing,

Makespan
× × Rely on re-scheduling

12. Improved Max-Min Load balancing × × Based on execution time, for future it can

opt meta-heuristic

13. Mid-Max Makespan × × Based on fastest resource(s)

14. GUDA Deadline YES × Grouping of fine grained jobs into coarse

grain

15. Best-Min Makespan × × Re-scheduling

16. LBIMM and PA-

LBIMM

User’s priority, Load

balancing

YES × Consider both load balancing and user’s

priority

17. Enhanced Max-Min Makespan, Load

balancing
× × Enhancement of Max-Min

18. ELBMM Makespan × × Re-scheduling

19. Credit based Makespan, User’s

priority

YES × Based on credit= Task length + user’s

priority

20. Credit based with

Deadline

Makespan, User’s

priority, Deadline

YES × Here deadline is added as one of the QoS

parameter

6. CONCLUSION
This paper reviews famous independent task scheduling

techniques under heuristic mapping for both immediate as

well as batch mode in the area of Cloud and Grid

environment. Heuristic techniques are usually faster than

Meta-heuristic techniques and the generated solutions by

heuristic techniques are usually optimal for problem that is not

large enough as per experiments performed. During literature

survey, we have found that most of the researchers have

focused on makespan, average resource utilization rate of

resources and QoS parameters. To achieve all the required

factors in a single technique is yet another challenging task to

be resolved in future. In this paper we have discussed

techniques so that one can select any with respect to their

speciality and their pitfalls (if any) accordingly.

7. REFERENCES
[1] Mell P and Grance T. The NIST definition of cloud

computing. US department of Commerce. 2011, Sep.

[2] Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I.

Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th

utility. Future Generation computer systems. 2009 Jun

30;25(6):599-616.

[3] Desai T, Prajapati J. A survey of various load balancing

techniques and challenges in cloud computing.

International Journal of Scientific & Technology

Research. 2013 Nov 25;2(11):158-61.

[4] Kokilavani T, Amalarethinam DD. Load balanced min-

min algorithm for static meta-task scheduling in grid

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

32

computing. International Journal of Computer

Applications. 2011 Apr;20(2):43-9.

[5] Henzinger TA, Singh AV, Singh V, Wies T, Zufferey D.

Static scheduling in clouds. memory. 2011 Jun

14;200(o1):i1.

[6] Xhafa F, Abraham A. Computational models and

heuristic methods for Grid scheduling problems. Future

generation computer systems. 2010 Apr 30;26(4):608-21.

[7] Maheswaran M, Ali S, Siegal HJ, Hensgen D, Freund

RF. Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing

systems. InHeterogeneous Computing Workshop,

1999.(HCW'99) Proceedings. Eighth 1999 (pp. 30-44).

IEEE.

[8] What are the differences between heuristics and

metaheuristics?

https://www.researchgate.net/post/What_are_the_differe

nces_between_heuristics_and_metaheuristics.

[9] Annette J R, Banu W A, Shriram S. A taxonomy and

survey of scheduling algorithms in cloud: based on task

dependency. International Journal of Computer

Applications. 2013 Nov;82(15):20-6.

[10] Mangla N, Singh M. Workflow Scheduling In Grid

Environment, IJERA, 2014.

[11] Braun TD, Siegel HJ, Beck N, Bölöni LL, Maheswaran

M, Reuther AI, Robertson JP, Theys MD, Yao B,

Hensgen D, Freund RF. A comparison of eleven static

heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems. Journal of

Parallel and Distributed computing. 2001 Jun

30;61(6):810-37.

[12] Sharma G, Banga P. Classifier MCT for immediate mode

independent task scheduling in Computational Grid.

International Journal of Engineering Trends and

Techonology.;1(4):2722-6.

[13] Gupta K, Singh M. Heuristic based task scheduling in

Grid. International Journal of Engineering and

Technology. 2012 Aug;4(4):254-60.

[14] Parsa S, Entezari-Maleki R. RASA: A new task

scheduling algorithm in grid environment. World

Applied sciences journal. 2009;7:152-60.

[15] Sharma G, Banga P. Task aware switcher scheduling for

batch mode mapping in computational grid environment.

International Journal of Advanced Research in Computer

Science and Software Engineering. 2013 Jun;3.

[16] He X, Sun X, Von Laszewski G. QoS guided min-min

heuristic for grid task scheduling. Journal of Computer

Science and Technology. 2003 Jul 1;18(4):442-51.

[17] Dong F, Luo J, Gao L, Ge L. A grid task scheduling

algorithm based on QoS priority grouping. In2006 Fifth

International Conference on Grid and Cooperative

Computing (GCC'06) 2006 Oct (pp. 58-61). IEEE.

[18] Keat NW, Fong AT, Chaw LT, Sun LC. Scheduling

framework for bandwidth-aware job grouping-based

scheduling in grid computing. Malaysian Journal of

Computer Science. 2006;19(2):117-26.

[19] Munir EU, Li J, Shi S. QoS sufferage heuristic for

independent task scheduling in grid. Information

Technology Journal. 2007 Aug;6(8):1166-70.

[20] Etminani K, Naghibzadeh M. A min-min max-min

selective algorihtm for grid task scheduling. InInternet,

2007. ICI 2007. 3rd IEEE/IFIP International Conference

in Central Asia on 2007 Sep 26 (pp. 1-7). IEEE.

[21] Kokilavani T, Amalarethinam DD. Load balanced min-

min algorithm for static meta-task scheduling in grid

computing. International Journal of Computer

Applications. 2011 Apr;20(2):43-9.

[22] Elzeki OM, Reshad MZ, Elsoud MA. Improved max-min

algorithm in Cloud computing. International Journal of

Computer Applications. 2012 Jan 1;50(12).

[23] Laxmi V, Kaur N. Batch Mode Scheduling-Mid_Max

Algorithm. International Journal of Computer

Applications. 2012 Jan 1;49(15).

[24] Suresh P, Balasubramanie P. Grouping based user

demand aware job scheduling approach for

computational grid. International Journal of Engineering

Science and Technology. 2012 Dec;4(12):4922-8.

[25] Meraji S, Salehnamadi MR. A batch mode scheduling

algorithm for grid computing. Journal of Basic and

Applied Scientific Research. 2013;3(4):173-81.

[26] Chen H, Wang F, Helian N, Akanmu G. User-priority

guided Min-Min scheduling algorithm for load balancing

in cloud computing. InParallel Computing Technologies

(PARCOMPTECH), 2013 National Conference on 2013

Feb 21 (pp. 1-8). IEEE.

[27] Bhoi U, Ramanuj PN. Enhanced max-min task

scheduling algorithm in cloud computing. International

Journal of Application or Innovation in Engineering and

Management. 2013 Apr;2(4):259-64.

[28] Patel G, Mehta R, Bhoi U. Enhanced Load Balanced

Min-min Algorithm for Static Meta Task Scheduling in

Cloud Computing. Procedia Computer Science. 2015

Dec 31;57:545-53.

[29] Thomas A, Krishnalal G, Raj VJ. Credit based

scheduling algorithm in cloud computing environment.

Procedia Computer Science. 2015 Dec 31;46:913-20.

[30] Sharma A, Sharma S. Credit based scheduling using

deadline in Cloud Computing environment. 2016 Feb:

4(2): 1588-1594.

IJCATM : www.ijcaonline.org

