
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

12

Controlling a Wireless Sensor Network using a

Android Smartphone

Umme Hafsa
M.Sc Students

Dept. of Information and Communication
Technology

Mawlana Bhashani Science and Technology
University

Mohammad Badrul Alam Miah
Associate Professor

Dept. of Information and Communication
Technology

Mawlana Bhashani Science and Technology
University

ABSTRACT

The use of smartphone devices over the past years seems to

follow a growing trend. This great acceptance along with the

endless possibilities that go hand to hand with having a mini

computer at all times within reach, can explain this vast

interest shown by solo developers and major companies in the

mobile industry. As a result, many innovative applications roll

out daily to the various online stores, making the lives of the

smartphone users a lot better. This thesis describes the design

and implementation of a mobile app, a Web Service and a

TinyOS application, that bind together allowing the user to

execute a variety of queries on a sensor network from any

place in the world.

Keywords

Smartphone, Wireless Sensor Network, Sensor Network

Control Smartphone, Android Phone Control of Sensor

Network, iOS Phone Control of Sensor Network;

1. INTRODUCTION
The role of applications combined with the flexibility they

offer, are the major factors behind the popularity of

smartphone usage. The time spent on applications compared

to the time spent on websites has grown from 73% (2011) to

81% (present). The number of new subscriptions to Android

and iOS systems, which at the moment lead the smartphone

market share, in the first half of this year had already crossed

84 million compared to the total number of 2011 year

subscriptions which was 38 million. The average number of

applications per smartphone has increased from 32% to 41%.

Moreover, the percentage of app downloads in Android and

iOS operating system phones has grown from 74% to 88%.

All these statistics indicate that mobile industry is without

question on a raise.

These figures also show that mobile development offers

opportunities for profit not only to software companies but to

solo developers as well. Innovative software can easily be

built and help users in their personal and professional lives. In

addition, due to the fact that more and more developers get

involved into mobile development, it is not unusual for

companies and simple users to hire experienced solo

developers to build customized applications that satisfy their

needs completely.

Android is, at the moment, one of the most popular mobile

platforms, with hundreds of millions of mobile devices in

more than 190 countries around the world, with daily

activations surged from a million Android devices back in

June of 2012 to today’s number of 1.3 million.

Additionally, Android is a Linux-based operating system

designed primarily for touchscreen mobile devices. It is

developed by Google in conjunction with the Open Handset

Alliance, which is a consortium of 86 hardware, software, and

telecommunication companies devoted to advancing open

standards for mobile devices.

1.1 Sensor Network and TinyOS

A wireless sensor network (WSN) consists of spatially

distributed autonomous sensors that monitor physical or

environmental conditions, such as temperature, sound,

pressure and so forth while they cooperatively pass their data

wirelessly through the network to the base station. The

development of wireless sensor networks was motivated by

military applications such as battlefield surveillance. Today

such networks are used in many industrial and consumer

applications, such as in the industrial process of monitoring

and control, machine health monitoring, and so forth.

The sensor nodes used in this application use TinyOS as their

operating system. TinyOS is a free open source, BSD-

licensed, component-based operating system, designed for

low-power wireless devices. TinyOS is written in

nesC(network embedded systems C) programming language.

There is a worldwide community from academia and industry

that uses, develops and supports TinyOS and its associated

tools. This operating system is less common in the embedded

world of sensing and control. In the area of the embedded

systems, applications are usually bound to a specific

hardware. This is preferred due to the very limited hardware

resources and the degree of specialization of the applications.

1.2 Web Services
 The Android device had to be able to connect to the sensor

network, without any proximity limitations to the area where

the sensor network was installed, a web service had to be

used. The primary concept of web services is that a client

sends a request over HTTP (or any similar protocol) to an

address in which the web service is hosted and ”listens to”.

When the web service receives it, it sends a response back to

the client with the requested data. The developer of the client

does not have to be aware of what is happening in the server

side, he only needs to make sure that the messages that are

sent and received follow the rules that the provider of the

service has set. On the other hand, the business logic that runs

on the server side is completely up to the developer of the

Web Service as long as the data returned to the client, again,

follow the rules he set.

1.3 Thesis Contribution
The main object of this thesis was to find a way to assemble

these three parts, the sensor network, the android application

and the web service, in such manner that will let users use a

sensor network without any prior knowledge to any of these

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

13

fields. In order to achieve that goal, it was important to make

sure that final user would not have to worry about technical

issues since that user could be virtually anyone. Any user that

just wants to keep track of the temperature, light or humidity

levels of an area, which could be his house or his office, had

to be able to do so without any technical concerns. Thus, the

interface of the application had to successfully inform the

user, providing him with the data he needs in a clean and

minimalistic design, without demanding too much effort on

his part. Of course since the target user of this system can be

anyone with or without any prior technological knowledge we

had to make sure that precautions had to be taken in order to

avoid destructive use of the system.

It should be mentioned that this application works in the same

way no matter what it measures. The fact that TinyOS is a

component-based OS provides the option to use components

that especially measure what the end user wants without any

changes to the main code of the application with just a minor

change on the wiring. That way, it is possible to satisfy the

needs of a broader audience and use the system in a variety of

situations since it is possible to receive any kind of

measurement and not be limited to a specific one.

In order for someone to use this system a number of sensors

running TinyOS have to be acquired. Right after the

installation of the provided application on each and every one

of them, they should be placed into the area on which they

will operate. The base station of this network must be

connected to a computer system with internet access. After

acquiring a unique internet address and having initiated the

service on the computer system, it is ready to accept incoming

messages from the client. The client in this case, is the

Android App. When the user creates an account with his

personal details, through the application he can log in and

start using the system.

2. DEVELOPING A TINYOS

APPLICATION
TinyOS programmers everything about this system with a

step-by-step procedure. Additionally, ”TinyOS Programming”

[1] is a great book that will certainly be useful not only to a

beginner in TinyOS but to more experienced programmers as

well.

Figure 2.1: Iris mote.

What is more Yeti [2] is a plugin for eclipse IDE that can be

very useful while development tinyOS applications. Although

it is not currently under development, it is a tool that

undoubtedly will save a lot of time to any programmer.

Additionally, a syntax highlighter for nesc is available for the

famous editors gEdit and Kate.

2.1 Simulating TinyOS Networks
TinyOS applications are expected to run on motes with very

limited resources in extremely uncontrollable physical

environments. If that was not enough the embedded nature of

those sensors makes controllable experiments difficult,

therefore reproducing a bug is virtually impossible. As a result

debugging is a really difficult procedure.

What adds to that statement, is the fact that no mechanism can

be used to control the execution of the program. No

breakpoints can be used to check if the program runs correctly

and printing out messages can be truly problematic as the

buffer is very limited and messages are frequently lost. Not to

mention that in order for these messages to be printed on the

screen of a conventional computer, every mote has to be

connected with it. However connecting the motes an entire

sensor network to a PC can be extremely inconvenient.
TOSSIM is a very useful mote simulator that can be used to

easily develop sensor network applications. This simulator

scales to thousands of nodes and compiles directly from the

source code. TOSSIM simulates the TinyOS network stack at

the bit level, this means that the programmer can use this

simulator to experiment not just with top level applications

but with low level protocols as well.

2.2 Power Consumption
Since these motes are supposed to run independently in

remote areas for a long time they should be energy efficient.

Limiting power consumption has been the main purpose of

many publications in the field of Wireless Sensor Networks

this definitely shows the importance of energy efficiency on

such networks. Certain mechanisms were used to limit the

power consumption in this application as well.

Firstly, it should be mentioned that there are two ways to

accomplish energy efficient algorithms. The first one is by

limiting the information transmitted by individual nodes and

the second one is by increasing the amount of time the nodes

remain inactive.

Both of these ways were used to make our application more

energy efficient. Two algorithms were used to accomplish

this, TAG and TiNA.

2.3 TAG (Tiny AGgregation Service for Ad-

Hoc Sensor Networks)
TAG [3] (Tiny AGgregation Service for Ad-Hoc Sensor

Networks) among others, states that the processing and

computation of aggregate queries can be performed within the

network to limit the transmitted amount of data. In TAG the

base-station generates an aggregate query that the user

specifies and it is being transmitted towards the sensor motes

within the network.

Messages are transmitted from the base station to the nearest

nodes and these messages are forwarded to their

neighborhood nodes, thus creating a tree. At the end of this

distribution phase, a tree is being created and the base station

is positioned at the root of this tree while each node belongs to

a certain depth and has a unique ID. Additionally, each node

is aware of the parent node to whom it will be periodically

sending the outcome of the aggregate query computed by the

measurement it receives along with the measurement received

from the sub-tree formed under it.

2.4 TiNA (A Scheme for Temporal

Coherency-Aware in- Network

Aggregation)
TiNA [4] was also used to limit the power consumption. The

main idea of this publication is that two sequential

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

14

measurements retrieved by a sensor usually are not that

different from one another. As a result sending sequential

values that are very similar does not significantly change the

result of the aggregate query of the sensor network. However

it does result in higher power consumption since identical

values are sent periodically. Therefore, a tolerance clause can

be used to avoid sending the same value over and over again.

If the newer value is different enough from the last one it is

being transmitted, otherwise it is not.

This mechanism lowers the number of messages that are

being transmitted within a network since new measurements

that do not provide any useful information are withheld. Since

sensor network applications are intended to run on different

environments, some measurements that are considered useful

in one occasion may not be so useful in another. Therefore,

the user is able to select which measurements are in fact

useful and which are not by specifying the tolerance clause at

the beginning of the application.

2.5 Description of Sensor Measurement

TinyOS Application
This thesis implementation contains two TinyOS applications.

The first one is used to collect the aggregate values of the

sensor network. The main object of this application is to

retrieve the measurements of the network and use the serial

communication mentioned earlier to transmit these

measurements to a server. That way the measurements can be

stored into a database and can be later retrieved from the

mobile application.

2.6 Routing Phase
At first this application begins with the routing phase. During

this phase a message is broadcasted by the base-station and is

being forwarded from node to node until an entire tree is

formed. This message contains information about the

aggregate query that is going to be executed and it includes

data about the current depth and the parent node.

2.7 Synchronization Phase
As mentioned above each node turns on and off the radio on

specific time slots to receive and send packets. In order for

this to happen every node on this network has to be

synchronized. A special component is used for this purpose

that makes use of a global clock. After syncing every node

can estimate the exact moment to turn the radio on and off.

2.8 Collection Phase
After the motes have been synced they are ready to collect

measurements and calculate the result of the aggregate query.

The aggregate query demands the calculation of the summary,

average, maximum, minimum or count value of the tree. This

process is performed periodically until the user selects to stop

the measurement gathering. The result of the aggregate query

is sent to the base station and is being forwarded through the

serial port. On the receiving end of this serial port there is a

web service listening for new packets. When a new packet is

received it is un-serialized and stored into the database.

2.9 Ending Phase

If the user selects to stop the execution of a query the motes

have to be informed. However since the motes turn on and off

the radio if such decision is made by the user and a

cancellation query is sent there is no guarantee that it will

reach every node. In order to be certain that no problems will

occur while stopping the query a special window is opened

periodically. During this window every node on the tree turns

on the radio. If the user desires to stop the execution, a special

message will be transmitted through the nodes of the tree.

After receiving such a packet every mote re-initializes its

variables, the timers are stopped and the radio is turned on.

That way when the user decides to execute another aggregate

query every mote will be in his disposal again.

2.10 Outlier Detection

The second application is about outlier detection. This is the

process of detecting abnormal node measurements within a

sensor network. This information is useful since it may lead to

interesting findings. Abnormal measurements may be due to

malfunctioning motes or due to other physical phenomena,

such as fires. This application was created by Mr. Antonis

Igglezakis as a part of his thesis implementation and was

included in this project. The implementation was based on a

recent paper from Mr. Sabbas Burdakis about an algorithm for

detecting outliers in sensor networks, based on a geometric

approach [5][6].

3. IMPLEMENTATION
The main objective of this thesis implementation is to be able

to control the described sensor network via a mobile device

from any place in the world. In order to accomplish that an

intermediate layer had to be used since the sensor network

cannot directly connect with the mobile device. The reason

why this step was necessary is because no web service is

bundled with the TinyOS architecture, so we had to build our

own.

This intermediate level has to accept connections from the

mobile device through the internet and interact with the sensor

network to manipulate it. Apart from that this level has to be

able to receive the messages from the sensor network through

the serial port, store them in a database and send those data to

the client as well.

3.1 Right Architecture & Framework
SOAP (Simple Object Access Protocol) and REST

(REpresentational State Transfer) are the two approaches

available in this field. Each of these two architectures has a

series of available frameworks and tools that can be used.

Every single one of these architectures and respectively their

frameworks and tools has their own advantages and

disadvantages so the best option depends on the occasion in

which they will be used.

Figure 3.1: JAX-WS communication between the server &

the client.

REST approach is praised for its ease of use and the fact that

it is extremely lightweight. It has recently been used by many

well-known companies and organizations. This approach is

very easy to understand and it can be used by virtually any

client and server that has HTTP/HTTPS support. SOAP on the

other hand has been used extensively for the past few years

and it will continue to do so. The majority of the initial issues

have been fixed since it has been around for quite a while.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

15

SOAP has some additional overhead compared to REST, but

it also comes with some advantages over it. SOAP is more

”generic” than REST which means that while REST

architecture can only be used on HTTP/HTTPS protocols,

SOAP can additionally be used over SMTP (Simple Mail

Transfer Protocol), JMS (Java Messaging Service) and more.

On the other hand SOAP relies on XML to represent the

transmitted information which is more verbose compared to

REST. After weighting each option we decided to go with

SOAP Architecture as we noted in the section: ”REST vs

SOAP”

3.2 JAX-WS
JAX-WS stands for Java API for XML Web Services. JAX-

WS is a framework used to build web services and clients that

communicate using XML. Although SOAP message

transaction can be very complex, this API hides this

complexity from the developer.

3.3 Web Service - TinyOS Interaction
After describing the way the client-server interaction was

implemented, it is time to describe how the sensor network

interacts with the web service. As mentioned earlier TinyOS

provides a tool that allows us to generate Java Classes and

Python or C files describing the messages transmitted from

the sensor motes to the computer and vise versa. This tool is

named MIG (Message Interface Generator). Every message is

in reality a sequence of bytes. What this tool does is parsing

and un-parsing this sequence to a packet with usable fields.
Finally, after implementing the above-mentioned system the

communication between the computer and the base-station

was completed.

3.4 Database Design
In this section we will analyze the entities of the database

system and the attributes each of these entities possesses.
User

The user is the actual operator of the system. No functionality

can be performed if no user account has been created. The

required attributes are the following:

• Username. It is used as the primary key of this entity

• Password. It is used along with the username to identify a

user

• Name

• Lastname

• Avatar. It is an optional profile picture the user can enter

• AccountCreatedOn. It keeps the exact moment in which

the user created the account

• LastLoggedin. It keeps the last time the user logged into

our system

• Mail. It keeps the user’s e-mail address. In future work

thiattribute can be used to send e-mails with

additional features provided by the system, to

restore the user’s password and so forth   6.2.2

Session   The session is the central entity related to

every action that takes place on the sensor network.

No session can be created if the user has not logged

in or signed up, since the username is used as a

foreign key in this entity. This is a vital component

while

3.5 Session

The session is the central entity related to every action that

takes place on the sensor network.

• sid. It is used as the primary key of this entity

• UserFK. It is used as a foreign key pointing to the user

entity. Every time, a new session is created the

username of the user that chose to execute the

query, is stored here. The reason why this is

necessary, is because we want to be able to retrieve

every previously executed session along with the

measurements, edges and so forth if the user

chooses to see the history log

• hasFinished. This is a boolean attribute used to identify if

the session has been completed or not. This

becomes true when the user presses the stop query

• startedAt. It keeps the precise time in which the session

started

• finishedAt. It keeps the precise time in which the session

finished

• isitoutlier. This attribute is used in order to specify which

application runs on the sensor network. If false, the

executed application is the sensor measurement

application, if true the executed application is the

outlier detection app.

• QueryOrFunc. This attribute is used to specify the exact

query or function that is being executed. If during

this session the sensor measurement application is

executed this field can take one of the values: sum,

average, maximum, minimum or count. On the

other hand, if the outlier detection application was

executed it can get one of the L1, L2 or L inf

options.

• thresholdOrTct. This is used to keep the threshold used

by the outlier detection, or the TCT of the sensor

measurement application. In case the sensor

measurement application is executed, it gets the

value ”-1” if no TCT has been selected.

• period. This value shows how often new measurements

arrive from the sensor network.

isTemperature. It keeps information about the physical

quantity that is being measured by the sensor network. The

most convenient quantity is the light intensity because it

allows us to easily change the retrieved measurements by just

turning on and off the lights or by covering the sensor motes

with another object. This quantity has been extensively used

to test the application because it enables us to test the

application without having to wait for a long time, as we

would have, if we tested it using the room temperature, or any

other physical quantity.

measurementReceivedOn. This keeps the exact time in

which a measurement was retrieved.

sessionFKey. Foreign key pointing to the session entity. 6.2.4

Edges   When the sensor measurement application is

initialized, an actual representation of the tree created on the

sensor network has to be visualized on the Android

application. In order for this to happen the edges created by

the sensor network have to be stored in the database.The

attributes of this entity are the following:

id. It is used as the primary key of this entity  

parentNode. This keeps the id of the node that is closer to the

root.

childNode. This keeps the id of the node that is further away

from the root.

depth. This keeps the exact depth of the child node, in order

to be easily visualized on the Android application.

sessionFKey. Foreign key pointing to the session entity.

6.2.5 outliersEdges - outlierEdgesFinal

When the sensor outlier detection application is initialized, the

sensor network has to be visualized. Apart from a simple

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

16

visualization, information about the similarity of the nodes

also have to appear on the client’s screen. In order to achieve

these visual effects this entity has to be used. Specifically, the

attributes of this entity are the following:

• id. It is used as the primary key of this entity

• nodeOne. This keeps the id of the first node.

nodeTwo. This keeps the id of the second node.

createdOn. This keeps the exact moment when this edge

arrived at the web service from the base-station.

hasChanged. This keeps information about changes that

occur on the edges.

similarity. This keeps the exact similarity these two nodes

have with each other, according to the outlier detection

application.

threshold. This keeps the exact threshold the user chose when

he started the application. It is used along with the actual

similarity the nodes have with each other by the client to draw

the edge with the appropriate color. An edge has a green color

if the two connecting motes are similar or red if they are not.

Since this entity is being changed periodically, these data are

stored on the memory. When the user decides to stop the

execution of the query, the stored data are transferred to the

outlierEdgesFinal table which includes the id of the current

session as a foreign key for future reference. 6.2.6 Occupied

The sensor network can only be operated by a single user.

Therefore a mechanism had to be implemented to avoid the

access of multiple users on the same network. The

”Occupied” table is used as a part of this mechanism. When a

user chooses to execute a query on the network the occ value

turns from false to true.   Now, if a new user chooses to run a

new query while the system is busy, a message shows up,

informing the user that this action is not allowed. Since

responsible for the interconnection between the server and the

client is actually the python script, as we mentioned on the

previous chapter, there is an expected latency between the

time in which the user presses the stop button and the actual

execution of the stopping query on the sensor network. So this

table changes back to false only when this procedure has been

completed and the sensor network has been reinitialized and is

therefore ready to accept new connection.
Finally, in this chapter we described the database design

implemented for this application. This design operates as the

backbone of our system. Since the web service is stateless,

database tables are used to represent some sort of state when

this is required. To sum up, in this section we described the

analysis of the database design, by analyzing the enhanced

entity relationship model (EER) and the relational schema

used for the synthesis of the database tables.

4. IMPLEMENTATION WITH

ANDROID

4.1 Application
In this chapter, we describe the implementation of the

Android application. This app is what the end user utilizes to

interact with our system. This application should provide

easy-to-use functionality, as the end-user could be virtually

anyone. Additionally, a certain level of abstraction had to be

implemented, because users without any prior knowledge of

sensor networks, databases or web services should be able to

operate our system without any problems.

4.2 Mobile Limitations
Since the targeted medium in our occasion is a mobile device,

we should take into account several limitations that are bound

together with these devices. Firstly, their processing power is

significantly lower when compared to conventional

computers. Therefore, it is preferable to execute complex

calculations on the server side, and just let the client consume

these results.

Additionally, battery consumption is undoubtedly a major

factor. Poorly written applications, often use resources that are

not really necessary, thus resulting in higher power

consumption. A higher battery consumption results in a lower

battery life and in a disappointed user   that will uninstall our

application in no time.

Storage is another important issue on these devices.

Especially older devices, have very limited space that can be

used by third-party applications. Since we wanted to allow the

vast majority of the Android users to be able to run our

application, we had to make sure that the size of our

executable file was kept to the minimum.

4.3 Abstraction
Certain elements/actions can require a specific knowledge of

the terminology in order to   be used correctly. However it is

essential to be able to hide any unnecessary elements/actions

that can confuse the user. Additionally, while it is important

for the user to be informed about the current state of the

application at all times, a certain level of abstraction had   to

be implemented in order to avoid the display of unnecessary

data that may confuse him or her.

In order to achieve this, many operations are performed on the

background, thus creating a more natural flow of the UI

4.4 Blocking - Non-blocking Operations
There are two kinds of actions that involve the execution of

code on the background, blocking and non-blocking. The first

one requires the completion of a specific piece of code, before

continuing to any further actions.

The reason why this operation is performed on the

background is because a loading screen has to pop up in the

foreground. If these operations take place on the foreground,

the application will freeze.

4.5 Android’s AsyncTask

Thankfully Android OS provides a useful Class that enables

the execution of background operations without having to

manipulate threads and handlers. Thread is a concurrent unit

of execution. Each thread has its own call stack for methods

being invoked, their arguments and local variables.

While AsyncTask is a very useful tool that makes the

execution of background operations a specifically easy task, it

does not constitute a generic threading framework. It should

be used for short operations with a small duration of a couple

of seconds at most. An asynchronous task is defined by 3

generic types, called Params, Progress and Result, and 4 steps,

called onPreExecute, doInBackground, onProgressUpdate and

onPostExecute.

4.6 Android’s Background Service
Let’s say that an Android application requests some

measurements from the server but the returning values have to

be displayed on more than one screens. Since the data that are

about to be displayed are the same, it is rather inefficient to

use AsyncTasks on each of those screens to request them

multiple times. On the other hand, we could request the data

using a single background operation and store them locally on

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

17

the phone. That way when these data are needed again they

can be accessed directly from the phone.

4.7 kSOAP2

As we mentioned earlier we used a SOAP web service to feed

the client with the needed information. Unfortunately,

Android OS does not natively support the interaction with

SOAP web services. Additionally, while JAX-WS framework

(which was used for the development of the web service)

could also be used to generate the client stubs, which would

enable the client-server communication, the overall size of the

application would have been extremely big for a mobile

application.

KSOAP2-android provides a lightweight and efficient SOAP

client library for the Android platform. It is a fork of the

kSOAP2 library that is tested mostly on the Android platform,

but should also work on other platforms that use Java

libraries. KSOAP2 is also still using Java 1.3, so it should

work fine on Java ME, Blackberry and so on. Furthermore,

ksoap2-android is licensed under MIT and can therefore be

included in any commercial application.

4.8 Canvas
As we have mentioned multiple times, the main purpose of

this application is to help the user operate a sensor network.

Two operations are supported. The first one is to detect outlier

nodes within the sensor network and the second one is to

execute an aggregation query and inform the user about the

measurements received from the sensor network. In both these

occasions, the user has to be aware of the formed network.

During the outlier detection functionality, the user has to be

able to get information such as the outlier nodes and precisely

view how different these nodes are from the neighboring ones.

On the sensor measurement functionality, information about

the created tree by the sensor network, has to be displayed.
Figures 4.1 show some of the drawings on the canvas.

Figure 4.1: Canvas Drawings for Sensor Measurements

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

18

Figure 4.2: Canvas Drawings for Outlier Detection

AChartEngine - A Charting Library for Android

Applications

AChartEngine is a charting library available for use in

Android Applications. It supports all the Android SDK

versions starting from 1.6. Since as we mentioned versions

prior to Android 1.6 do not support pinch to zoom gestures, it

displays zoom in and out buttons to cover this functionality.

By the time these words were written the devices that used a

version of Android from 1.6 and above were more than 99%

in a global scale.
AChartEngine currently supports the following chart

types:

• Line Chart

• Area Chart

• Scatter Chart

• Time Chart

• Bar Chart

• Pie Chart

• Bubble Chart

• Doughnut Chart

• Range (high-low) Bar Chart

• Dial Chart / Gauge

• Combined (any combination of Line, Cubic Line, Scatter,

Bar, Range Bar, Bubble) Chart

Cubic Line Chart All the above supported chart types can

contain multiple series, can be displayed with the X axis

horizontally or vertically and support many other custom

features. The model and the graphing code is well optimized

such as it can handle and display huge number of values. In

figures 4.3

Figure 4.3: AChartEngine examples for mobile phone

Finally the client application is perhaps the most important

component of our system. While the code itself is not as

challenging as the TinyOS application (even if the overall

number of lines was extremely high when compared to the

web service or the TinyOS application), there were many

aspects that had to be taken into consideration. Firstly, the

look and feel of the application had to be appealing. It is

important to make the user feel satisfied after using our

application, so we had to make sure that warm, and cheerful

colors were used instead of cold or dark colors which are

known to generate negative emotions. Apart from good-

looking, the application had to be useful. Users are expected

to operate a sensor network while on the go, so it is very

important to have an easy-to-use interface. In order to achieve

this, we used graphic elements that are already well-known to

Android users as they have been used extensively on other

famous Android applications.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

19

5. CONCLUSIONS
In this thesis implementation, we created a complete system

that enables the manipulation of a sensor network using a

mobile application. The user of this system is able to execute

operations such as simple sensor measurement retrievals or

outlier detection functionalities, without having to deal with

bloated software that requires advanced programming skills to

run. Additionally, while several applications have been

developed in the past, enabling the direct manipulation of a

sensor network, neither of them was free from certain

limitations.

The vast majority of these applications is intended to run on

older versions of the Windows operating system.

Undoubtedly, there were some obvious restrictions that arose

from this fact. The user had to specifically install outdated

versions of an operating system he would not use for anything

else. Dual/Triple-booting, installations of virtual machines

and other complicated operations had to be performed in order

for him to be able to operate a simple sensor network. Apart

from that, he was forced to sit behind a screen in order to

operate on the sensor network since Windows is a desktop

operating system.

These limitations, certainly do not apply to our system.

Firstly, the client program used by the end user to enable him

interact with our system is an Android application. This

application was developed while keeping in mind that it had

to run flawlessly both on older and newer versions of

Android. Additionally, since Android is a very popular

operating system with millions of activations per day, it is

rather self-explanatory that the target audience is particularly

big in number, so there should not be any real limitations

there. It is worth mentioning that, the fact that Android is such

a successful.

Figure 5.1: Architecture of the Implemented System.

Operating system, works in our favor. A new cheap Android

device can be purchased in a price lower than that of a sensor

mote. This is far cheaper than buying a brand new computer,

so there is also a certain advantage on this part too.

Perhaps the most important advantage of this system is the

mobility factor. The users can be virtually anywhere and still

be able to use our system, provided that there is an internet

connection. The fact that this system is using a web service, as

an intermediate level between the Android application and the

actual sensor network can verify the flexibility that comes

with our system. The web service also guarantees the security

of our system, since the client cannot not operate directly on

the sensor network. That way several activities performed by

potential hackers with intentions to cause problems to our

system, are limited. Additionally, since this is a SOAP

application, there is literally no limitations concerning the

operating system the server uses. The web service is hosted on

conventional HTTP servers, such as Glassfish or Tomcat

which run both on Windows and Linux operating systems.

6. REFERENCES
[1] Philip Levis and David Gay. TinyOS Programming.

Cambridge University Press, New York, NY, USA, 1st

edition, 2009.
[2] Nicolas Burri, Roland Flury, Silvan Nellen, Benjamin

Sigg, Philipp Sommer, and Roger Wattenhofer. Yeti: an

eclipse plug-in for tinyos 2.1. In David E. Culler, Jie Liu,

and Matt Welsh, editors, SenSys, pages 295–296. ACM,

2009.

[3] Mohamed A. Sharaf, Jonathan Beaver, Alexandros

Labrinidis, and Panos K. Chrysanthis. Tina: a scheme for

temporal coherency-aware in-network aggregation. pages

69–76, 2003.
[4] Samuel Madden, Michael J. Franklin, Joseph M.

Hellerstein, and Wei Hong. Tag: a tiny aggregation

service for ad-hoc sensor networks. SIGOPS Oper. Syst.

Rev., 36(SI):131–146, December 2002.
[5] Sabbas Burdakis and Antonios Deligiannakis. Detecting

outliers in sensor networks using the geometric approach.

In Kementsietsidis and Salles [6], pages 1108–1119.
[6] Anastasios Kementsietsidis and Marcos Antonio Vaz

Salles, editors. IEEE 28th International Conference on

Data Engineering (ICDE 2012), Washington, DC, USA

(Arlington, Virginia), 1-5 April, 2012. IEEE Computer

Society, 2012.

IJCATM : www.ijcaonline.org

