
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

20

Results and Inference Obtained from a Small

Implementation of the DF-ICF- The Modified TF-IDF

Vidya Kamath

Assistant Professor
Dept of Computer Science and Engineering
Srinivas School of Engineering, Mangalore

Affiliated to Visvesvaraya Technological University, Belgaum
Karnataka, India

ABSTRACT

DF-ICF is an algorithm designed by modifying the well

known TF-IDF, for the purpose of improving the performance

and reliability. The work mainly presents the validation of this

new algorithm. The algorithm has been implemented with

Hadoop using Cloudera, VMware and WampServer in order

to conduct experiments. It also presents the results of an

experiment conducted on the algorithm. Finally, the

performance of the algorithm is predicted based on

assumptions by comparing it with that of the TF-IDF. Overall
it was found out that DF-ICF is actually better than TF-IDF.

General Terms

Page Ranking Algorithm, Performance, Validation

Keywords

TF-IDF, DF-ICF, Cosine Similarity, Document, Term, Corpus

1. INTRODUCTION
Term Frequency-Inverse Document Frequency- is a well

known algorithm which is used to find out the importance of a

term within a given document. It is mostly used in massive

applications and its performance hence is very important.

Document Frequency- Inverse Corpus Frequency is a

modification of the TF-IDF where the center of focus is

shifted to documents instead of terms. The term found out to

be important in a less cherished document obviously does not

retain its importance. Hence DF-ICF is designed with an aim

to find out the importance of the document even before you

apply your TF-IDF, so that you need not waste your time in

calculating the TF-IDF of terms in unwanted documents.

The algorithm DF-ICF was first proposed in [1]. Although the

algorithm was a mere proposal without any strong ground, its

worthiness was yet quite visible. The work on the DF-ICF

was kept on the flow and finally a small implementation has

been successfully made and the results obtained prove the

relevance of the algorithm.

This work is entirely dedicated to exhibit the results and

inference of the DF-ICF. The main contributions of the work

can be summarized as follows

 Validation of the DF-ICF algorithm based on cosine

similarity.

 The implementation details of the DF-ICF using Big

Data Platforms for the purpose of this experiment.

 The findings of this experiment with the algorithm

by taking different input values.

 The inference on performance of DF-ICF based on

the ground of relative assumptions along with a

comparison of the algorithm with the TF-IDF.

2. VALIDATING THE DF-ICF
The TF-IDF has a unique property. The TF-IDF associates a

number with the documents you are dealing with and hence,

you can use these numbers as vectors. And moreover, these

vectors follow the cosine similarity. Cosine similarity is one

of the similarities metric which depends upon envisioning

user preferences as points in space [7].

 A small example set had been taken to find out the

relationship of the TF-IDF with the cosine similarity. A trial

was made to find out whether DF-ICF has a similar relation

with the cosine similarity. And it was found out that it does.

Since DF-ICF is a modification of TF-IDF, the algorithm can

be proved to be valid if it has similar properties as that of TF-

IDF. This is what was observed.

Fig 1: Graphical view of the findings for TF-IDF

Fig 1 shows the plot of TF-IDF for documents and a query

and Fig 2 plots the DF-ICF for corpus with a consideration.

Refer appendix at the end for details. The document 1 was

major candidate which matched the query and it is visible

from Fig 1. The minimum is the angle between to vectors, the

maximum is their similarity

Similarly the corpus 3 matches best with the consideration

and this is visible in Fig 2 as well. This proves that DF-ICF

also follows the properties of TF-IDF and hence establishes

its validity.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

21

Fig 2: Graphical view of the findings for DF-ICF

3. IMPLEMENTING THE DF-ICF
The algorithm was implemented using 3 softwares- namely

the VMware (to create a virtual machine), Cloudera (to use

the Hadoop) and Wamp Server (to create websites as inputs to

DF-ICF). These softwares are easily available and easy to use.

The coding was done in java since it is the language supported

by the Hadoop.

The system requirements for successfully running the

algorithm was as follows

 Microsoft Windows 7 or higher.

 64 bit Operating System

 Minimum of 8 GB server

 Support of virtualization

 First the coding of TF-IDF was done in the Cloudera which

used the Hadoop Map/Reduce for parallelization of the run

according to guidelines given in [4]. The Cloudera in turn

runs within the VMware as it is a separate OS. Once the TF-

IDF is successfully implemented, the DF-ICF was coded

using same theory. To create inputs for the DF-ICF which

needs corpuses, web sites were created using the Wamp

Server. The web sites were considered as collection of

corpuses. And each of the corpus contained one or more

documents in them. Once the algorithms were successfully

deployed, this experiment was ready to be conducted.

4. A SMALL EXPERIMENT
In order to find out whether the algorithm is reliable, an

experiment was conducted. The process is as follows

 Take 5 sets of documents as inputs in order to start

your experiment.

 Find out the outcome by applying only TF-IDF on

the input data set.

 Find out the outcome by applying the DF-ICF

before TF-IDF is applied.

 Compare the result to check if there is any

improvement.

Table 1: Outcome of the Experiment

RUNS No of

documents

present

No of documents

which passed the

filter

Run 1 10 5

Run 2 20 9

Run 3 25 18

Run 4 30 21

Run 5 40 30

The results so obtained by doing the above process, is as

shown in Table 1.

It is clear that while using DF-ICF, the TF-IDF has to be

calculated only on those documents which have passed the

filter. But when TF-IDF alone is taken into consideration, the

number of documents considered is equal to number of

documents present since TF-IDF is calculated on all the

documents. The Fig 3 below shows the outcome of Table 1

graphically.

Fig 3: Outcome of the Experiment

For ideal case, keeping the number of documents constant, if

you take the total number of documents to be N then TF-IDF

has to be calculated for the entire set N while DF-ICF always

eliminates a few documents and hence lies below the TF-IDF

region as shown in Fig 4 below.

Fig 4: Ideal case

This shows that the more you save your time without wasting

on unnecessary calculations on unreliable documents, the

more reliable will be your algorithm. This in turn means that

the DF-ICF is reliable enough when compared to the TF-IDF.

5. PERFORMANCE EVALUATION
Reliability alone does not make the algorithm worth enough.

Time which has more value than gold or platinum in today’s

era, also counts on while deciding about your proposals. The

reason why it was chosen to do the performance estimations

of the DF-ICF; taking time as the metric focused.

5.1 Assumption
Assume that you are considering 100 documents. And each of

the documents has 100 words/ terms within them. The TF-IDF

and DF-ICF are similar and hence their time of calculation

will be same. Let us assume it to be 0.1 seconds for now.

654321

runs

n
o

 o
f

d
o

c
u

m
e
n

ts

area of df icf values in ideal case

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

22

Using TF-IDF alone you need to calculate the TF-IDF weight

on every document and every term in it. The time taken will

hence be as follows:

Total time taken = (time for TF-IDF calculation X Number

of documents X number of terms)

 = (0.1 s X 100 X 100)

 =1000 s

Now consider the scenario when you use DF-ICF. Let x be the

number of documents which have passed the filter. You can

note that x is always less than the total number of documents.

Let x= 99 (only one document eliminated taking the value

next to the worst case)

Total time taken = time for calculating DF-ICF for all

documents + time for calculating TF-IDF

for filtered documents only.

= (time for calculating DF-ICF X number

of documents) + (Time for calculating TF-

IDF X Number of terms X Number of

filtered documents.)

 = (0.1s X 100) + (0.1 s X 100 X 99)

 = 10 s + 990 s = 1000 s

Note that the time taken is yet the same and not more than that

for TF-IDF even though we have used extra algorithm. More

over; this is the worst case. Taking average cases, the time

taken will be as shown in Table 2 below.

Table 2: Time comparison between the algorithms

x Time using

TF-IDF alone

Time using

DF-ICF and TF-IDF

99 1000 s 1000 s

80 1000 s 810 s

70 1000 s 710 s

60 1000 s 610 s

50 1000 s 510 s

40 1000 s 410 s

30 1000 s 310 s

20 1000 s 210 s

It is clear from the Table 2 that DF-ICF performs better than

the TF-IDF while the time consumed is on addition lower than

that of consumed by TF-IDF. This is more clearly visible in

the Fig 5 shown below.

Fig 5: Performance Estimations based on time

This proves that the algorithm not only reliable but also faster

than the TF-IDF, while it comes to performance.

6. CONCLUSIONS
The DF-ICF is a successful modification of the TF-IDF. Its

validity has been proved on the basis of cosine similarity. The

algorithm was also successfully implemented in a small scale.

The result of experiment conducted on the algorithm proves

its relevance. The performance of the algorithm is also proved

to be better as compared to the TF-IDF.

All these infer that the algorithm is suggestible to be deployed

on large scale basis. In the Big Data era, even a second saved

can make revolutions and hence DF-ICF can prove to be very

useful.

7. APPENDIX

7.1 The TF-IDF and Cosine Similarity

Calculations
Procedure: Take the example documents given in Table 3 and

find out TF-IDF of the terms in the documents.

Now taking an example query- Life and attitude, find the TF-

IDF of the query. When you find cosine similarities between

the query and the 3 documents, the query matches most with

document 1, which is obvious as it contains all the three

terms. Table 4 gives the cosine similarity values of query with

documents.

Table 3 : Three Example Documents

Document 1 Choosing to be positive and having a grateful attitude is going to determine how you are going to live your

life.

Document 2 Attitude is a little thing that makes a big difference.

Document 3 Life is ten percent what you make it and ninety percent how you take it.

Table 4 : Cosine Similarities for query with all documents

 Document

1

Document

2

Document

3

Cosine Similarity 1 0.57735026919 0.816496580928

Table 5: Cosine Similarities for the ‘Consideration’ with the 4 Corpus.

 Corpus 1 Corpus 2 Corpus 3 Corpus 4

Cosine Similarity 0.57866605 0 0.905973287 0

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.1, May 2017

23

Table 6: Example Corpus details

Da The game of life is a game of everlasting learning.

Db The unexamined life is not worth living.

Dc Never stop learning.

Dd Choosing to be positive and having a grateful attitude is going to

determine how you are going to live your life.

De Attitude is a little thing that makes a big difference.

Df Life is ten percent what you make it and ninety percent how you take it.

Dg Better late than never.

Number of views in the corpus and its documents

Corpus 1= 50 Corpus 2= 150 Corpus 3= 80 Corpus 4= 10

Da= 5 Dd= 40 Da= 20 Db=10

Db=10 De=60 Df=35 Dg=0

Dc=35 Df=50 Dg=45

Corpus 1 Corpus 2 Corpus 3 Corpus 4

Da, Db, Dc Dd, De, Df Da, Df, Dg Db, Dg

7.2 The DF-ICF and Cosine Similarity

Calculations
Procedure: To find the DF-ICF, take the example corpus

shown in Table 6. Again as done before, calculate the DF-ICF

for documents within corpus. Taking an example

consideration which includes documents Da and Dg, find the

DF-ICF of the consideration. Now find cosine similarities of

consideration with all corpuses. Table 5 gives the values

obtained. The most matched is corpus 3 which is obvious.

8. REFERENCES
[1] Puneet Goswami, Vidya Kamath, “The DF-ICF

algorithm- Modified TF-IDF”, International Journal of

Computer Applications, Volume 93, No 13, May 2014.

[2] SALTON G, BUCKLEY C. Term-weighting approaches

in automatic text retrieval [J]. Information Processing

and Management, 1988, PP513 - 523.

[3] SALTON G, CLEMENT T Y. On the construction of

effective vocabularies for information

retrieval[C].Proceedings of the 1973

[4] Bin Li, Yuan Guoyong- “ Improvement of tf-idf for

Hadoop Framework” The 2nd International Conference

on Computer Application and System Modeling (2012)

[5] Moty Fania, John David Miller- White paper- “Mining

Big Data in the Enterprise for Better Business

Intelligence”, Intel July 2012

[6] Puneet Goswami, Vidya Kamath-“Big Data- Driving

force for innovation and Value Recreation”, IJARCSSE

Volume 4, Issue 3-March 2014.

[7] Jana Vembunarayanan, “ TF-IDF and cosine

simililarity”, Seeking Wisdom, Oct 2013

[8] “Making data Analytics Work- three Key Challenges.

McKinsey and Company. IDC Digital Universe Study,

sponsored by EMC, June 2011

[9] Stamatis Karnouskos-“ Big data analytics for Smart Grid

Cities” . Eurescom mess@ge 1- 2013.

[10] LiThomas H Davenport, Jill Dyche- “Big Data in Big

Companies” International Institute for Analytics, may

2013

[11] M. Santhanakumar , C. Christopher Columbus- “A

modified frequency based term weighting approach for

information retrieval ” , Int. J. Chem. Sci.: 14(1), 2016,

449-457 ISSN 0972-768X.

[12] Liu Zhenyan, Meng Dan, Wang Weiping, Zhang

Chunxia - “ A Supervised Parameter Estimation Method

of LDA” , 17th Asia-Specific Web Conference, APWeb

2015, China, 2015 proceedings- Springer .

[13] Chengzhi Zhang, Huilin Wang, Yao Liu , and Hongjiao

“Document Clustering Description Extraction and Its

Application” , XuW. Li and D. Mollá-Aliod (Eds.):

ICCPOL 2009, LNAI 5459, pp. 370–377, 2009,

Springer.

IJCATM : www.ijcaonline.org

