
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.10, May 2017

8

A Prototype Framework for High Performance Push

Notifications

Emre Isikligil
Senior Backend Developer

Monitise MEA

Semih Samakay
Senior Automation Engineer

Monitise MEA

Deniz Kılınç, PhD
Manisa Celal Bayar University

Department of Software
Engineering

ABSTRACT

Push notifications are the significant tools to increase

engagement with your app and improve user retention rates.

Push notifications notify users with new information about an

application, so they provide valuable and relevant updates

even when the application is not running. This paper describes

a software prototype framework, which is designed to send

millions of push notifications using GCM and APNS cloud

services. 13 separate test scenarios designed to measure its

performance are run, upon which final results are discussed

and conclusions are drawn.

General Terms

Software Design and Architecture, Software Performance

Test

Keywords

Push notification, performance, system design, messaging,

producer/consumer.

1. INTRODUCTION
There has been significant growth and evolvement in internet

and mobile technologies in the last couple of years which

caused mobile applications to spread out into various business

areas. According to Statista, the overall number of mobile

phone users reached 4.61 billion in 2016 and it is expected to

grow to 4.77 billion in 2017 [1]. With the widespread use of

smartphones, mobile applications have become an important

element of our daily lives. Google's report “Micro-moments”

indicates that 87% of mobile phone users have their

smartphones with them all the time. Furthermore, they check

their phones and mobile applications 150 times per day with

an average of 177 minutes usage.

The outstanding growth of the mobile application world led to

the emergence of two mobile application metrics named app

engagement and app retention, different but related metrics

used to define app performance. Mobile applications should

provide users with up-to-date and relevant data to increase

user-app engagement and maximize user retention rates.

Traditional web applications poll data source constantly to

fetch new data. Considering power consumption, processing

power and mobile data usage polling becomes extremely

expensive for mobile devices. This is where push notifications

comes on the scene. Using it, data source notifies mobile

clients when new data arrive. Notifying users with new

information, users are provided with valuable and relevant

updates even when the application is not running. How push

notifications are used mostly depends on the business

preferences and standard approaches [3]. Some of the most

common uses are automated banking alerts, marketing offers,

breaking news, location-based messages, application centered

task reminders, and order updates.

Since push notifications are a must, manufacturers of most

widely used mobile devices have come up with cloud-based

push service solutions. Today Google Cloud Messaging

(GCM) or Firebase Cloud Messaging (FCM), Apple Push

Notification Service (APNS) and Windows Push Notification

System (WNS) are used for sending push notifications to

Android, IOS and Windows devices, consecutively. FCM and

WNS are out of scope of this paper.

Both GCM and APNS enable developers to send data from

3rd party servers to mobile applications. Although push

notifications are useful for providing users with relevant data,

they must not be relied upon for carrying sensitive data.

GCM does not guarantee that messages are delivered to

mobile clients in time [4]. Moreover, persistent TCP/IP push

technique which is used by both GCM and APNS is stated to

be unreliable [5].

Designing an architectural infrastructure to send millions of

push notifications is a challenging task, which requires

talented staff to develop expertise in architectural topics such

as availability, scalability, performance, multi-

processing/threading, caching, and queue management.

This paper will discuss the software prototype framework

designed and developed by Monitise MEA, which develops

mobile-based software applications in the domains of

banking, e-commerce, payment, security and travel to many

leading companies (İş Bank, Yapı Kredi, TEB, THY, First

Gulf Bank, Qatar Islamic Bank) [6].

The structure of this paper is organized as follows;

In next section, general methods and approaches are

presented. Section 3 gives information about the architectural

design of the proposed system. Section 4 presents the

performance test results. Finally, section 5 concludes the

outcomes and provides information about our future work.

2. METHODS
The proposed system uses GCM and APNS cloud services to

send mobile push notifications to devices running Android

and IOS, consecutively. First, individual devices register

themselves to these cloud services and get unique IDs. When

new data arrives, the system sends them to GCM or APNS

with these unique IDs. Then, messages are delivered to

mobile devices by these cloud services. Following steps

explain methodology for sending push notification to Android

devices using GCM.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.10, May 2017

9

Figure 1: Android GCM architecture

1. A sender ID and app ID is sent to GCM by an

Android device to register device.

2. If a successful registration is done, GCM sends a

registration ID to Android device.

3. After receiving registration ID, the device sends the

registration ID to server.

4. Server stores the registration ID in the database for

later use.

5a. Server sends new data to GCM with registration ID.

5b. GCM delivers message to the mobile client.

They way iOS push notifications work is similar to Android

push notifications. Required steps are given below.

1. iOS device requests a device token from APNS.

2. Device receives the token, which functions as the

address to send a push notification to.

3. Device sends the token to application server.

4. Server stores the token for later use

5a. When prompted, server sends a push notification

with the device token to APNS.

5b. APNS sends push notification to the mobile device.

3. PROPOSED SYSTEM DESIGN
The architecture of the prototype system consists of 6

modules; REST interface, service layer, database, message

producer, message consumer and queue manager.

3.1 REST Interface
The REST interface is preferred because of its simplicity and

ease of use in order to make the application communicate with

the external world.

Figure 2: Architecture of Push Server

3.2 Service Layer
The service layer is the module that manages the application.

It provides inter-module communication. The data provided

from the interface is stored in the database by the services in

this layer. This layer is also where the notification process is

initiated to process the data in the database.

The scheduling service in the service layer can handle

notifications scheduled to be sent later. In this way, it is also

possible to process repetitive notification operations, such as

forward notification procedures.

3.3 Database
The database is where the data needed by the application are

stored. The data of mobile users, user groups, and information

of notification processes are all stored in database. Database

performance is directly related to push server performance.

3.4 Message Producers

The message producers are created by the service layer

depending on the device type. They are used for preparation

of notifications to be sent out and lining them up in the queues

to be delivered to the consumers. During the dispatch of a

notification process, a producer thread is created for each

device type. These producers are responsible for generating

notification messages by retrieving data from the related data

tables.

Each producer is responsible for only one notification process.
Threads are terminated after all messages have been created.

If a new notification transaction is generated when another

notification transaction is in progress, new message producers

are created for the device types and current ones are not used

for the new transaction.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.10, May 2017

10

3.5 Message Consumers
The message consumers receive messages waiting in the

queue and send them to the notification systems depending on

device type. Connection between the system and the cloud

services is established by message consumers over HTTP.

They can be positioned as threads in the main process, or they

can operate as separate processes. In the scope of this paper,

message consumers were created as threads. There are usually

more than one consumer for a device type. Consumer

numbers can be configured.

The queue manager has a different queue for each device type.

Depending on the needs of the system, the number of

consumers corresponding to these queues can vary and the

transmission speed can be set within certain limits. The

number of consumer varies dynamically depending on the

instantaneous load of the application. Consumers do not know

anything about of notification transactions they are

processing. A consumer can send messages generated from

multiple transactions. However, each consumer is created to

send messages to only one notification system. Consumers do

not have a specific running order. Any available consumer

gets the message from the queue and continues with its

process. Consumer threads keep running as long as there exist

messages in the queue. When there is no message left to be

consumed, message consumers are terminated by the

application.

3.6 Queue Manager
The queue manager provides asynchronous operation of

message producers and consumers. Incoming messages are

queued up and served to consumers on a first come first

served basis. Connection between the system and queue

manager is established over JMS. With its own database, the

queue manager can keep messages in the queue in case the

system crashes.

4. EXPERIMENTAL RESULTS

Table 1: Configuration details of the environment

Application/

Component

Operating

System

CPU Type Clock Speed

(GHz)

RAM

(GB)

Software

Server Ubuntu Intel Xeon E5-2666 v3 2.9 3.75 Tomcat 8.0.33 JDK 1.8.0_91

Database Server Ubuntu Intel Xeon E5- 2670 v2 2.5 7.5 MySQL 5.6.23

Table 1 shows the hardware and software configuration

details of performance test environment. In this study, 13 test

scenarios were designed to measure the performance of the

proposed system and each one was tested separately. Table 2

shows name, system version and load for each test scenario.

Table 2: Test scenarios

Test Version Load

T1 0.1.0.2 1m GCM

T2 0.1.0.2 1m APNS

T3 0.1.0.2 500k GCM + 500k APNS

T4 0.1.0.2 1m GCM

T5 0.1.0.24 1m GCM

T6 0.1.0.24 1m APNS

T7 0.1.0.24 1m GCM

T8 0.1.0.24 1m APNS

T9 0.1.0.24 1m GCM

T10 0.1.0.24 1m APNS

T11 0.1.0.24 500k GCM + 500k APNS

T12 0.1.0.24 500k GCM + 500k APNS

T13 0.1.0.24 500k GCM + 500k APNS

Non-physical iOS and Android devices were added to the

database with random push IDs for one time only before

running tests. Also physically known two devices (Nexus 5,

Android 6.0 and iPhone 6s, iOS 9.2) were included in order to

see actual push notification on device screen.

Push notifications were sent to 1 million devices in each test.

In order to be able to compare performance test results, 3

million devices were added to the database in 2 different

applications since total number of devices in database might

adversely affect the performance of the application. 1 million

Android devices and 1 million iOS devices were added to

App1 and 500k Android devices and 500k iOS devices were

added to App2. Tests containing only one of the platforms

were run with App1 while tests containing both of them were

run with App2. During the tests, asynchronous requests for

saving device and user were made to the system to make

scenarios more realistic. Table 3 shows test durations and

throughputs for all tests. Concurrent threads is the number of

consumers threads running concurrently. This parameter is

configured separately for GCM and APNS. Tests were run for

two different version of the application. In version 0.1.0.24,

connection pools are employed for both HTTP and JMS

connections.

Sending push messages to 1 million Android devices took

01:02:50 for the first test and the throughput of this test was

154 push messages per second (pps). Then, in the second test,

1 million push messages were sent to iOS devices and it took

01:25:33 with throughput of 195 pps. Number of consumer

threads was 20 for both tests. Third test was done with mixed

device types, 500k GCM and 500k APNS, where number of

concurrent threads for each device type was 20. Application

completed the task in 00:58:35 yielding throughput of 284

pps.

Before the fourth test, concurrent thread count was increased

to 50 and 1 million push messages were sent to Android

devices. The test was stopped because it has not finished after

2 hours and throughput was decreasing over time constantly.

During the execution of the test, we figured out application

run out of the memory. It can be said that T4 is an outlier

since performance of the application could not be measured

correctly because of the problem faced during the test.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.10, May 2017

11

Table 3: Test results

Test Version Concurrent Threads Load Duration Throughput

T1 0.1.0.2 20 1m GCM 01:02:50 265

T2 0.1.0.2 20 1m APNS 01:25:33 195

T3 0.1.0.2 20 - 20 500k GCM, 500k APNS 00:58:35 284

T4 0.1.0.2 50 1m GCM 02:05:31 98

T5 0.1.0.24 50 1m GCM 00:33:18 501

T6 0.1.0.24 50 1m APNS 00:32:11 518

T7 0.1.0.24 100 1m GCM 00:36:13 460

T8 0.1.0.24 100 1m APNS 00:40:21 413

T9 0.1.0.24 20 1m GCM 00:29:26 566

T10 0.1.0.24 20 1m APNS 00:29:51 558

T11 0.1.0.24 20 - 20 500k GCM, 500k APNS 00:20:49 801

T12 0.1.0.24 50 - 50 500k GCM, 500k APNS 00:20.14 824

T13 0.1.0.24 100 - 100 500k GCM, 500k APNS 00:23:25 712

Memory problem was fixed, connection pools were added to

the implementation. Then, the application was tested with

different combinations of consumer thread count and device

type after this point. Options for consumer thread count are

20, 50 and 100 where that of device type are GCM-only,

APNS-only and mix of GCM and APNS

Throughput of the application in tests T5, T7 and T9 where

push messages were only sent to GCM was 501, 460 and 566

pps, consecutively. In tests T6, T8 and T10 where push

messages were only sent to APNS, throughput was 518, 413

and 558 pps. When tests were repeated with mixed device

types throughput became 801, 824 and 712 pps in tests T11,

T2 and T13.

Figure 3: Throughput achieved with different number of

consumer threads

Figure 3 shows how application performance is affected by

number of consumer threads in terms of throughput. When

messages were sent to only one device type performance

decreased as the number of consumer threads exceeded 20.

Similar behaviour were observed when push messages were

sent to both device types. But, this time, performance started

to decrease after the number of consumer threads exceeded

50.

5. CONCLUSION
Test results indicate that number of consumer threads have

different influence on the performance of the application

depending on the type of target devices. If target audience

consist of people having mobile device of one platform only,

number of consumer threads may be configured to be 20 for

the best performance. On the other hand, if application is used

for sending push notifications to both platform, consumer

thread count may be set to 50. In order to achieve best

performance the system can be configured accordingly

depending on characteristics of the target audience.

Size of pools for HTTP and JMS connections was constant

during performance tests. We anticipate that connection pool

size would be another factor affecting application

performance. In addition, processing power and hardware

configuration would have an impact on performance. Similar

tests can be conducted by adding these parameters to

combinations of test scenarios as a future work. Furthermore,

considering possibility of offering this system as a cloud

solution, tests can be repeated by sending push notifications to

more than one application at the same time.

6. REFERENCES
[1] Statista, “Number of mobile phone users worldwide from

2013 to 2019 (in billions)”, [Online], Available:

https://www.appannie.com/insights/mwc-2016-top-stats-

show-growth-mobile-market/

[2] Google, “Micro-Moments: Your Guide to Winning the

Shift to Mobile”, [Online], Available:

https://think.storage.googleapis.com/images/micromome

nts-guide-to-winning-shift-to-mobile-download.pdf

[3] Podnar, I., Manfred, H., and Mehdi, J. 2002. Mobile

push: Delivering content to mobile users. In 22nd

International Conference on. IEEE.

[4] Selim, Y., Aydin, B., and Demirbas, M. 2014. Google

cloud messaging (GCM): An evaluation. In Global

Communications Conference (GLOBECOM), 2014

IEEE.

[5] Li, N., Yanhui, D., and Guangxuan, C. 2013. Survey of

cloud messaging push notification service. Information

Science and Cloud Computing Companion (ISCC-C). In

2013 International Conference on. IEEE.

[6] Monitise MEA, “Monitise MEA web site”, [Online],

Available: https://www.monitise.com/mea/mea

IJCATM : www.ijcaonline.org

