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ABSTRACT 

In this paper, it is proposed a solution to the problem of 

positioning a set of agents that play the role of pursing a set of 

moving targets, while the global connectivity among such 

agents is maintained throughout positioning a second set of 

relay agents. The role of the agents consists of organizing 

themselves in order to allow the underlying network to stretch 

at its maximum (maximizing the action of pursuers), while 

ensuring the connectivity. In order to do that, this work 

proposes a positioning algorithm that uses the Minimum 

Spanning Tree (MST) in a way that maximizes the mobility of 

the nodes while deciding on the position of relays and 

pursuers. The approach is validated through experimental 

simulations using a set of behaviors to some deployed targets 

showing the feasibility of the proposed solution. 

General Terms 

Connectivity Problem, Pursuer-evasion, Dynamic positioning 

problem. 

Keywords 

Connectivity Problem, Pursuer-evasion, Minimum Spanning 

Tree, Dynamic positioning problem. 

1. INTRODUCTION 
In disaster scenarios, dynamic connectivity among search 

agents may be of vital importance to the success of a rescue 

mission. This scenario can be modelled as the problem of 

given a set of possible moving targets, a set of pursuers for 

which the mission is to reach the set of targets, and an 

additional set of relay agents, the problem asks for the 

positioning of the latter set in order to maximize the action of 

the pursuers and ensure global connectivity. Figure 1 shows 

the considered scenario. 

In [1], the authors considered the challenges of dealing with a 

simple situation: given two static pursuers and a set of relays 

deployed around them, how to move the minimum number of 

relays with minimal effort in order to establish connectivity 

between the static pursuers. Despite the simplicity of the 

scenario, the authors showed that in order to find the optimal 

configuration of movements, there should be a known 

ordering of such relays. Furthermore, in [2], it is proposed an 

approach to the problem of computing the minimum number 

of robotic routers (and their motion strategies) in order to 

maintain the connectivity of a single pursuer to a base station. 

It was considered the case where the polygon is concave in 

order to calculate optimally the positioning based on the 

velocity vector acting over each agent. 

Kim et.al. [3] proposed an optimization model based on the 

weighted Laplacian matrix of the underlying graph induced by 

the positions of the agents. As long as the second smallest 

eigenvalue of the Laplacian matrix remains greater than zero, 

the network graph remains connected [4]. With such 

information, they proposed a solution using an iterative 

algorithm that optimizes the control of each agent, to perform 

missions such as rendezvous without losing connectivity. 

Furthermore, in [5] the authors reached the same objectives as 

[3] but in a distributed way, i.e., the agent needed only to 

know about its local neighborhood in order to decide the next 

position and still ensuring global connectivity. 

In addition, in [6] the authors showed a mixed integer linear 

programming approach for a pursuit-evasion which included 

optional connectivity constraints. They considered deciding 

over an occupancy grid for which the set of pursuers are 

trying to cover a given area. The discretized area included 

obstacles and the cells were labeled over a discrete time 

horizon. 

In [7], the authors presented an extension to the Darwinian 

Particle Swarm Optimization (DPSO) algorithm, which they 

named Robot DPSO (RDPSO). The RDPSO main three key 

aspects are: a) ensuring network connectivity; b) social 

exclusion and inclusion, and c) obstacle avoidance. The 

Darwinian PSO [8] is an extended version of the traditional 

PSO algorithm in a way that natural selection or survival-of-

the-fittest is added in order to enhance the chances for 

escaping from local optima. 

 

 

Fig 1: General view of the pursuer-evasion problem under 

connectivity constraints. 

Despite the existence of many approaches for this problem, in 

this paper it is proposed a quadratic model for which the 

positioning of the relays is based on a minimum spanning tree 

(MST) approach. MST is a fundamental algorithm found in 

the graph theory and as shown by this work, it can be used to 
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drive a set of pursuers and relays in order to maintain them 

connected, while the pursuers still fulfill their mission. 

The general structure of this paper is as follows: Section 2 

shows the fundamental theories as well as the mathematical 

model of the problem.  Section 3 describes the proposed 

approach to the problem. In addition, Section 4 presents the 

computational simulations showing the feasibility of the 

proposed solution. Lastly, Section 5 points the general 

discussion about the results and points some future directions 

to this research. 

2. THEORETICAL REVIEW 
Let                be a set of agents whose objective is 

to move towards their respective targets of the set   
              Let                be a set of relay agents 

whose objective is to position themselves in order to provide 

connectivity to the elements of  . Two elements of 

              can communicate only if          , 

the maximum communication distance. In order to describe 

the movement of the agents, and better represent the 

limitations of a real-time implementation, the time is discrete, 

i.e., from instant   to instant    , with interval of    time, 

each agent must decide on its new position based on the 

distance it can travel in that time interval and the connectivity 

constraints. This problem can be defined as a quadratic 

programming model for which it is desired to minimize the 

average distance among the elements of   and their 

counterparts of  , subject to the connectivity restriction of the 

proximity graph induced by the position of the elements of 

   . 

To denote time, let                            be the 

positions of the pursuers at time  . For this work, it is assumed 

that        
 . The sets      and      are defined in a 

similar way. In this way, the quadratic model of the 

aforementioned problem is given by: 

   
                                  

  

 

 
                

 

 

     

     

             
 
      

            

                                   

Where      is the proximity graph induced by the position in 

  of the elements of the set  , and       is the maximum 

distance that any agent can move from instant   to     

The problem asks for solutions to move the relays in order to 

provide connectivity and mobility to the pursuers in the 

directions of their targets, and how to move the pursuers given 

the restriction of the positions of the relays. However, the 

restrictions imply as well in finding which edges should be 

broken in order to increase the reachability of the objectives, 

while still maintaining global connectivity. 

Let us define the restriction topology as the set of edges of the 

network whose integrity we decide to maintain in order to 

assure connectivity.  

As the hosts move independently and have limited 

information about their neighbors, in order to achieve the 

objective (1), we want to avoid restricting the movement of 

some node while the graph is still able to stretch. This 

approach gives rise to the following problems: 

Problem 1: Given the current node positions      of a 

network                  , which restriction topology 

        maximizes the mobility of the nodes without 

disconnecting the network? 

Problem 2: Given the restriction topology     , where to 

move the relays in order to maximize the mobility of the 

nodes? 

Problem 3: How each node deals with the uncertainty of the 

movement of their neighbors in order to assure connectivity? 

The next section presents the proposed the connectivity 

maintenance solution, with detailed discussions of the above 

sub-problems in subsections 3.3, 3.4, and 3.5, respectively. 

3. MST-BASED APPROACH 
The proposed method consists in keeping the network 

connected by the edges of its Minimum Spanning Tree 

(MST), ignoring completely the others edges and letting them 

break freely, this way we can substitute the restriction 3 by: 

                      
 
          

where   is the set of edges of the MST. 

The relays, then, move to the middle of their neighbors with 

the intent of increasing the network reach. 

The MST is recomputed in each iteration to guarantee 

optimality in case the movements of the hosts make the 

previous tree not minimal. The pursuers just move in the 

direction of theirs targets, with the only restriction of not 

breaking any MST edge, and the relays move to middle of 

their neighbors in the MST to increase the reach of the 

network, as if the edges exerted traction on them. Figure 2 

illustrates this procedure. 

 

Fig 2: Movement of the relay – the highlighted relay 

moves to the middle of its neighbors, increasing their 

mobility. 

3.1 Problem Variations 
We defined the problem as it is, with pursuers and relays, to 

simplify discussion and focus on the more relevant aspects. 

However, the proposed solution also applies to more broader 

scenarios. 

There could be static nodes representing fixed base stations, 

and they would be treated similarly as the pursuers, or nodes 

that transition between the state of pursuing, static and 
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relaying, and the relays would move to increase the mobility 

of the network. 

In this work when we refer as relaying node or relay to any 

node that in a given moment has the sole purpose of routing 

packages and move only-and-always to maintain connectivity 

and provide mobility to other nodes. To all the other types of 

nodes, we may refer as active nodes or pursuers. To nodes 

that can transit between these states we refer as auto-nodes. 

3.1.1 Routing pursuers 
Another variation the problem may have is: whether or not 

active nodes are allowed to route network packages. 

If there are active nodes not allowed to route packages, we 

compute a connected subgraph with only the routing nodes. 

Then, to form the restriction subgraph, we connect each non-

routing actives to its closest routing node so as to insure non-

routing actives always have degree 1. In this case, we call the 

immediate relay of an active node the relay provider. 

However, regardless of being able to route packages, there is a 

problem in allowing actives as branch nodes in the restriction 

tree: As, in principle, the relays rely only on the position of 

the neighbors to decide their movement, actives can be 

trapped in a branch of the network, as illustrated by Figure 3. 

 

 

Fig 3: Pursuer trapped in the MST. The relays (green) 

could link the two static nodes (gray) directly, allowing the 

pursuer (blue) to reach the target. 

Our strategy to overcome this is to always make the active 

nodes as leaves of the restriction tree, even when it’s not a 

routing requirement. This imposes some restrictions in 

scenarios where there is auto-nodes, where is preferable to 

activate auto-nodes in leaves, as actives in branches could 

become trapped. 

3.2 Computation of the MST 
The simplest method to compute the MST is to elect one node 

as the leader, which will compute the MST every round. As 

the network is connected, every node informs its position to 

the leader through network messages in the beginning of the 

round, and after computing the MST, the leader informs the 

edges that the hosts must not break. In a round where the 

MST changes, the leader first request the conservation of the 

new links. Only after acknowledgement of the request by all 

involved hosts, with confirmation of the integrity of the links, 

the leader informs which links may now be broken. Here we 

use the Kruskal Algorithm [9]. 

As the connectivity doesn’t rely on the MST being up-to-date, 

but in it being the same for every host, the MST doesn’t need 

to be recomputed every round. This could allow less overhead 

in network traffic and higher frequency in updating the relay 

function, making the relays more responsive to movements of 

the neighbors. 

3.3 MST as Restriction Subgraph 
At first sight, one could think that using the MST to restrict 

the movement would result in a network with small reach, 

since it has smaller edges than other subgraphs. However, we 

do not use the MST to define the position of the nodes, but 

only to choose which edges to avoid breaking. In addition, the 

limit of distance of a node to its neighbor is not the edge 

between them, but  , and smaller edges allow for a greater 

stretch until reaching this limit. 

Let’s define the mobility of a node  ,                 
     , as the greater distance it can move in any direction 

without breaking an edge assuming the others remain still. 

And the mobility of the network                  as the 

greater distance any node can move in any direction without 

breaking an edge. 

First, let’s prove that a non-tree connected spanning subgraph 

is redundant as a restriction subgraph, and that there is always 

an optimum spanning tree to be used as the restriction 

subgraph. 

Let           be a non-tree connected spanning subgraph 

of  , that is,    has cycles.    has a node   that belongs to a 

cycle, therefore   is connected to other nodes by two (or 

more) paths that start from itself by distinct edges. If we opt 

by maintain the edges of   ,   would have its movement 

limited by the neighbors of this two paths, that is,    
                    

As these edges belongs to a cycle, one of them, say      , 
may be broke without disconnecting the graph, which may 

increase mobility to x. That is, by removing       of the 

restriction subgraph, the mobility of   becomes: 

      
                

             
        

               

3.3.1 Optimality of the MST 
Given a connected spanning subgraph          , it’s easy 

to see that           , where    is the longest edge of   . 

The reason for choosing the MST to restrict connectivity is 

that it minimizes the longest edge in the network, that is, it 

maximizes the network’s mobility. 

Proof: Suppose a MST of a network  ,        , whose 

longest edge is  , and a non-minimum spanning tree of  , 

         , whose the longest edge    is smaller than  . By 

removing   from  , we get two connected components that 

induce a 2-partition of  . Any spanning tree of   has one and 

only one edge connecting some node of one set of any 2-

partition of   to the other. So, let    the edge of   that connects 

the sets induced by removing  . By supposition     , and 

we could insert    in   making it connected again but with 

smaller weight, that is,   was not minimum, a contradiction. 

Therefore   minimizes the longest edge between all the 

connected spanning subgraphs of  , and hence is a spanning 

connected subgraph that maximizes its mobility . 

3.4 Moving the relays 
To simplify the discussion, this section explains the 

movement of a relay   as if its neighbors remained still 

throughout the rounds. We also assume the restriction tree 

always maintain active nodes as leaves. 
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In time  ,   compute its ideal final position    and spend the 

next round moving at full speed to the desired position until it 

reaches it or the round ends. So, 
       

 
                            

              

             
     

 

To ensure all the nodes of the network have mobility, we wish 

to, in each iteration, move the relays so as to minimize the 

distance to their neighbors. Thus, we need to choose a 

function upon the distance of the neighbors to minimize. 

3.4.1 Desired Properties 
Assuming stationary neighbors, it is desirable to compute the 

final desired position in the first round, regardless of the 

actual position of   in the current round, so the relay can 

move at full speed to this final position, restricted only by its 

physical limits of speed, acceleration and deceleration. This 

would result in faster response of the relays to the movement 

of the active nodes 

3.4.2 Relay Objective Function 
Since the longest edges are more restrictive, we wish to give 

more weight to the farthest neighbors. Let    be the set of 

neighbors of the node   in the restriction tree, and    be the 

next position we want to move   to. 

The chosen function was: 

               
    

        

        

       

Which, if unrestricted by (3), results in 

 

 
    

     

     

This simple function is easily minimized algebraically, and 

the computation of the minimum takes       time, and does 

not varies with the current position of  , resulting in the final 

position been known in the first round (assuming the 

neighbors don’t move). This way we can compute the optimal 

position for the relay very fast in only one round, even for 

dense graphs, since we only consider the neighbors on the 

restriction tree. 

The procedure to guaranteeing a solution inside the restriction 

(3) is described below. 

3.5 Preventing Disconnection 
To ensure connectivity, we let the nodes free to move at their 

maximum velocity to the next desired position, unless they are 

able to break one edge until the next round with their 

maximum velocity. Since one node does not have information 

about the next movement of its neighbors, it has to prevent for 

the worst movement possible. For the node    and one 

neighbor   , we split this restriction between both: The 

maximum distance    can move to a given direction, is half 

the remaining distance to reaching the maximum radius in 

such direction, so    can move the same distance in the 

opposite direction. 

We achieve this by pruning the movement vector of    with a 

circle of radius 
 

 
 centered in the middle of    and   . It is 

easy to see the correctness of this procedure: Since the circle 

is the same for both, both can move to whatever position 

inside the circle and                       

Let     be the disc centered in 
   

 
 with radius 

 

 
, and    be the 

objective of the node   if it’s a pursuer, or the position 

obtained by the relay moving function, if it’s a relay. 

Let            . Since   lies inside   , 

                     

We define then   
                     

      , and 

substitute the restriction (2) by: 

                    

  
        

                      
              

  
            

     

 

  

This can be done in      , by pruning the line segment          
with          

Such procedure can slow down the progress of   only when 

      
       

 
, for some      , which, for small values of 

  , will happen only when the edge       is near its maximum 

stretch. 

4. COMPUTATIONAL EXPERIMENTS 
To test the efficacy of the technic we ran the algorithm in the 

test scenarios described in [10], with simple heuristics for 

assignment of the targets. As in that work, we used the 

Hungarian method [11] to assign pursuers to targets, which 

minimizes the sum of the distances from the pursuers to their 

respective targets. Although this method is not ideal for 

instances where the targets are out of the network’s reach and 

the swarm need to move itself entirely to reach an objective, 

these scenarios can give good evidence on how the technic 

performs when it is possible to reach the targets by changing 

the topology of the network. 

4.1 Out-of-reach Targets 
To avoid the network of being stuck when the targets are out 

of reach, we implemented two counter-measures: 

4.1.1 Swarm direction 
When some pursuer has its velocity restricted by the stretch of 

the network, we make all the pursuers headed in an opposite 

direction of the swarm to retreat, that is, move toward its relay 

provider. 

We defined the swarm direction as: 

         
 

       
     

    

      

So, when             and 

                                                            

We make all    such that                        retreat. 

4.1.2 Inactive pursuers 
When the above measure fails to insure progress, a more 

aggressive measure is taken, which can deactivate even nodes 

aligned with the direction of the swarm. Let’s partition   into 

two always disjoint sets   , the set of active pursuers, and   , 

the set of inactive pursuers, which always retreat. Initially, 

     and all pursuers start retreating when put in this set.  

If during       consecutive rounds 
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and     , then: 

                     
     

              

When any active pursuer changes its target,      

4.2 Test Scenarios and Results 
The benchmarking scenarios presented in [10] consist of two 

arbitrary placements of targets in    with different behaviors 

displayed by the targets. Table 1 presents the targets’ 

positions of the scenarios, and Table 2 describes the behavior 

schemes. 

 

Table 1. Targets locations 

Point AllLeft Symmetric 

1                 

2                  

3                  

4                 

5                     

6                    

7                   

8 -          

 

Table 2. Behavior schemes description 

Scheme Behavior 

Escape The targets move at the direction opposite to 

their closest pursuer 

Static The targets remain still during all simulation 

Spiral The targets follow a discretized counter-

clockwise logarithmic spiral      

    centered in their initial position, with 

   ,       , and   sampled at an interval 

of       starting at      . If a target reaches 

a point of the spiral, it stops, sample the next 

point, and head to it in the next round. 

Cooperative The targets move towards their closest 

pursuer 

Random At each round, the targets pick a random 

direction and velocity. 

 

In the benchmark,     , the maximum velocities were 

       ,        ,        , and every target, except 

those with random behavior, always move at their maximum 

velocity. 

When a pursuer has its target in an effective range of 5 units, 

it captures the target and is assigned to another. 

All nodes are deployed at position       and the simulation 

ends when the last target is captured, or when 200 simulated 

second have passed. 

We simulated with a         , which was computed faster 

than real-time. 

The results are presented in Figure 4. 

 

 

Fig 4: Simulation results 

 

The Symmetric scenario has targets in opposite direction too 

distant for the pursuers to be able to reach to their assigned 

targets at the same time, requiring the use of some counter-

measure. 

The static and escape instances of the symmetric scenario 

made the first counter-measure impossible: During initial 

spreading, all pursuers remain at symmetrically opposing 

direction and with same distance of their targets, making 

           , this caused the pursuers stop for a brief moment 

until the more aggressive counter-measure took place. 

Only the Symmetric-escape instance was not completed 

within 200 seconds, with only 3 targets captured of a total of 

8. This is due to the increasing distance between the targets: 

From the moment the targets become distant form each other 

more than the maximum diameter of the network, it becomes 

impossible to pursue more than one target at a time, and the 

relay positioning and topology control become less relevant as 

the distance increases, whereas the assignment order becomes 

crucial. 

In the AllLeft scenario – with exception of the escape 

instance, where opposing targets reach distance greater than 

the maximum diameter of the network – the relays provided 

uncompromised connectivity to the pursuers, that is, all the 

pursuers moved at maximum speed toward their targets during 

the entire simulation. 

5. CONCLUSION 
In this work, it has been presented an approach that deals with 

the connectivity problem in a scenario of pursuit-evasion. In a 

simplified version of an MST-based approach, the developed 

protocol could ensure global connectivity while allowing the 

pursuers to reach their objectives. In the literature, there are 

many different approaches which uses a discretized version of 

the area, or more complex approaches such as using the 

Laplacian matrices and eigenvalues decomposition and 

optimization.  

Experiments confirmed that the solution is able to change 

topology under demand of the pursuers. There was significant 

loss of performance only when the targets were beyond 

simultaneous reach of the swarm. 

A future appointment to overcome this problem is the 

development of an integrated assignment protocol to enable 

the swarm to receive higher level tasks and decide a near 

optimum order for completion. 
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