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ABSTRACT 

Banking process has been very complicated since years. 

People often want to enquire about bank’s policies on the 

bank counter and since the policies are sometimes confusing, 

it takes time for them to understand the policy and thus, the 

process. This paper presents two approaches - one using 

Natural Language Processing techniques and other using 

AIML, a popular language for building chatbots - for building 

banking assistant which can solve people’s queries and also 

carry out certain banking tasks, thus avoiding loss of 

efficiency and loss of precious time of the people. The paper 

is aimed at providing interface to the users which enables 

communication for solving their queries and completing their 

tasks, thus saving their time and reducing any possible 

confusion.  

Keywords 
Natural Language Processing, Assistant, Artificial 

Intelligence Markup Language (AIML), Chatbot 

1. INTRODUCTION 
Banking is a process which is done daily by hundreds of 

people, some making certain transactions like depositing 

funds or withdrawing funds, some opening accounts whether 

it is a current account or a fixed deposit account, some 

applying for loans for car, home, or business, some submitting 

applications for issue of new cheque books, and some just go 

to the bank for enquiring about certain policies, certain issues, 

or for issuing complaints. 

 

There are lots of such tasks that are time consuming and 

complicated to understand. Even if the policies are well 

documented, understanding the documentation in itself is a 

very tedious task. One person encounters with jargon terms, 

complicated clauses, certain confusing disclaimers, etc. 

Understanding these for a common person is as tedious as 

pulling a truck full of black soil. Other problems include 

inability to understand process by unlettered people and also 

language barrier which is common in a diverse nation like 

India. 

 

This paper thus proposes architectures based on recent 

research in AI and NLP techniques, which will serve as an 

assistant for common people and which will efficiently help 

them to carry out their banking related tasks. Natural 

Language Processing (NLP) involves techniques to 

intelligently process natural language input making it easier 

for the computer for further processing. 

 

The concept of chatbot using AIML / XML came into 

existence with “Alice” [18] which is used to receive question 

from user and it was based on pattern recognition. With the 

advent of time, there were many developments in this field 

and many more bots were built using the AIML methodology. 

In this approach AIML knowledge base is the base of Chatbot 

brain. 

The next section presents some already developed assistants. 

Then some potential problems during the designing phase are 

discussed. Then finally the architectures of the assistant are 

presented which includes the two approaches of building 

assistant. 

2. RELATED WORK 
There are many projects implemented earlier for banking 

assistant. First system is Royal Bank of Scotland’s “Luvo” [1]. 

Luvo, is able to understand questions and then filter through 

huge amounts of information in a split second before 

responding with the answer. If Luvo is unable to find the 

answer, it passes the query on to a member of staff who can 

solve more complex problems. It will support staff to help 

them answer customer queries more quickly and easily. It has 

to be trained when dealing with new subject matter, but 

crucially, it learns from its mistakes and its answers become 

more accurate over time. One problem with Luvo, however, is 

that it can interact only with bank staff and not directly with 

customers. Also, there is still the need for human experts 

despite having AI deployed. 

 

Kasisto’s AI (KAI) banking [2] is a conversational AI 

platform which makes engaging with customers as natural as 

chatting. The AI has deep financial knowledge and banking is 

easy from mundane tasks to complicated tasks – it’s basically 

sending text messages. It is a very fine tool and does most of 

the tasks which is required for general banking like checking 

for previous transactions, making payments, telling 

information about accounts and the main point is that it is 

always learning. It chats with its users in a friendly manner. It 

is a good implementation of banking assistant. 

 

Another such assistant was suggested [3] which was 

implemented as a web service (based on black-box approach) 

able to process multiple client requests simultaneously and 

which generated responses by using a data repository (based 

on AIML).  

3. DESIGN ISSUES 
Designing assistant software which can communicate as 

naturally as a human assistant does is not an easy task! There 

are lots of issues which may come while designing the 

assistant for a bank:  

 There may be huge computational overheads 

because of which large memories, fast processors 

and sometimes, parallel architectures are required. 
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 Also, there is an issue in choosing an appropriate 

interface style – voice-based or text-based or both. 

 It is difficult to design assistant for a particular 

domain like banking, as the data required for it can 

be costly or have to be made manually which is time 

consuming.  

 It consumes lots of time to build an assistant, and if 

the other competitors launch a similar product 

before the bank does, then it creates a business risk 

for the bank. 

 Also, there has to be sufficient investment in 

designing the assistant. Engineers have to be hired, 

tools need to be purchased, licensing, etc. and it 

may get very costly for the bank. 

 If the assistant is dealing with transactions, then 

there is always an issue of providing appropriate 

security features. 

 There is also a problem of choosing how to 

implement the assistant. There are two ways: rule-

based and NLP-based. We will shortly present the 

differences between these two. 

 

Some of the (but not all) design issues in designing assistant 

software for a bank have been discussed. The architecture 

which will be presented in the next section will try to consider 

some of the above issues. 

4. ARCHITECTURE 
In this section, firstly, some of the key differences in the two 

approaches of implementing the assistant – the Rule-based 

approach and the NLP-based approach, will be discussed. 

Then the architecture for both the approaches will be 

presented. 

 

4.1 Rule-based Vs. NLP-based 
In rule-based approach, there are various rules or patterns 

defined for the users’ queries. Based, on what rule or pattern 

is matched, an appropriate predefined and stored answer is 

output or some pattern is defined for the answer which may 

use some information from the query itself. One very good 

example of rule-based or pattern-based approach is ALICE 

[4], which uses AIML [5] as the language for defining patterns 

for queries and its answers. The main limitation of this 

approach, however, is that large numbers of rules are required 

for ensuring proper working of the assistant. However, this 

approach is widely used in building various assistants. Some 

examples of assistants using this approach are, ALICE, 

Chatterbot, Jabberwacky, etc. If combined with machine 

learning, this approach can significantly improve the 

efficiency of the assistant. 

 

In NLP-based approach, various NLP techniques are applied 

to process the sentence, check its grammar, extract 

information out of it, and use this information extracted for 

analysis and then generate an appropriate response with 

respect to the query. Hence, this approach becomes quite 

complicated and complex.  A very good example of NLP-

based assistant is IBM’s Watson [6]. It uses many NLP and 

Machine learning techniques like logistic regression, Named 

Entity Recognition, Co-reference resolution, Relation 

Extraction, etc. It has a very sophisticated architecture which 

extracts data from large number of data sources and uses very 

high performance hardware which includes racks of servers, 

TBs of RAM, thousands of processor cores, and is capable of 

operating at about 80 teraflops. This led to it winning the 

Jeopardy challenge in 2011. One limitation of this approach is 

that this approach is slower if the architectures are not 

parallelized. 

4.2 Architecture using NLP-based 

approach 
Now, that the two approaches have been discussed, the 

architecture proposed for banking assistant will be presented 

which follows a NLP-based approach. The entire architecture 

is shown in Fig 1. 

 
Fig 1: Architecture of NLP-based approach 

In the architecture, there are several modules which play an 

important role in the proper working of the banking assistant. 

Firstly, there is a user interface which provides a way for a 

user to access the functions provided by the assistant. Here the 

user can enter his / her query and submit to the assistant for 

processing. 
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On submitting a query, first the query goes to the Tokenizer. 

The tokenizer is responsible for generating useful tokens out 

of the given query. This is usually done by splitting the query 

sentence into words using delimiters like space, or comma or 

semi-colon, etc.  

 

The tokens generated from Tokenizer are given as input to a 

Normalizer. A normalizer does the necessary pre-processing 

on the tokens which includes spell correction of words (using 

Damerau-Levenshtein distance [7]), expanding of acronyms 

and abbreviations (by looking into a database of common 

acronyms and abbreviations) and conversion of tokens to 

standard format (e.g. all characters in lowercase). 

 

The normalized words are given to a Parts of Speech (POS) 

Tagger, which will assign some meaningful labels to the 

words. This is well understood with an example. Suppose the 

sentence is: 

 

“The bank provides 8% interest on fixed deposit.” 

 

After assigning appropriate labels, we get the output of POS 

Tagger as, 

 

“The/DT bank/NN provides/VBZ 8/CD %/NN interest/NN 

on/IN fixed/VBN deposit/NN ./.” 

 

In the above output, DT, NN, etc. are called tags or labels. 

Here DT stands for Determiner, NN stands for a noun and so 

on. This information is important as it gives important 

grammatical properties (tags) which can be used by other 

modules in the architecture. POS Tagger can be implemented 

using Hidden Markov Models [8] [9] using Viterbi’s 

algorithm [10]. 

 

Next the labelled or tagged output is given to a Phrase 

Structure PCFG Parser. A parser is used to check whether a 

language follows a pre-defined syntax. In case of natural 

language, it’s very difficult to define a standard grammar as 

there will be large number of syntactic rules. Thus, some 

limited number of rules will be used and probability will be 

used as a measure to determine the best parse for a sentence. 

Thus, the grammar must be a Probabilistic Context-free 

Grammar (PCFG). A probabilistic context-free grammar G 

can be defined by the quintuple, G = (M, T, R, S, P) where M 

is the set of non-terminal symbols (like NP, VP, NN, etc.), T 

is the set of terminal symbols, R is the set of production rules, 

S is the start symbol and P is the set of probabilities on 

production rules [11]. 

 

The probabilistic version of Cocke-Younger-Kasami (PCYK) 

algorithm [12] is well suited for the parser. The output of the 

parser will be a parse tree. From the example that we used for 

POS Tagger, the parse tree obtained will be: 

 

(ROOT 

  (S 

    (NP (DT The) (NN bank)) 

    (VP (VBZ provides) 

      (NP 

        (ADJP (CD 8) (NN %)) 

        (NN interest)) 

      (PP (IN on) 

        (NP (VBN fixed) (NN deposit)))) 

    (. .))) 

 

The parse tree obtained from parser is then given to a 

dependency parser which will convert the phrase structure 

rules into dependencies. The Dependency Parser from 

Stanford’s API [13] is preferred for that. The output will be 

the dependencies between various words in the sentence. 

Considering the example from before, 

 

det(bank-2, The-1) 

nsubj(provides-3, bank-2) 

root(ROOT-0, provides-3) 

compound(%-5, 8-4) 

amod(interest-6, %-5) 

dobj(provides-3, interest-6) 

case(deposit-9, on-7) 

amod(deposit-9, fixed-8) 

nmod(provides-3, deposit-9) 

 

Here, det(bank-2, The-1) indicates “bank” is dependent on 

“The” by the relation “det” i.e. determiner and so on. 

 

These dependencies help in relation extraction by following 

some hand-written rules for extracting useful relational 

information from the dependencies. Some typical examples of 

such relations are quantity (which gives quantity of 

something; usually obtained from dependency nummod), 

characteristics (like color; obtained from dependency amod), 

main subject in the sentence (obtained from dependency 

nsubj), etc. Considering the previous example sentence, from 

dependencies we can find relations as mentioned below: 

 

SUBJECT = bank 

OBJECT = interest 

CHARACTERISTIC = fixed, deposit 

ACTION =provides 

QUANTITY = 8%, interest 

 

After obtaining the relations, analysis is made to categorize 

the obtained query in the form of relations into an appropriate 

type. The types are Account related and General queries. This 

step is necessary as Account related information should be 

confidential and for ensuring this, authentication (two-factor) 

is done so that only the legitimate users access such 

information.  

 

After this step, the relations are forwarded to a Relation 

Matcher which tries to match the query relation with the 

relations in a database to find any matching answers. The 

database consists of relations mapped to their respective 

natural language sentences. This matching is done using 

relation scoring as shown in Algorithm 1. The output obtained 

from the matcher will be the sentence corresponding to the 

relation with highest score. Based on the relation output, the 

natural language sentence corresponding to that relation will 

be obtained and given as output to the user, as the response 

from the system. 

 

Algorithm 1: Relation matching 

1. Let            be a set of relations for          in 

the database. 

2. Let             be a set of input query relations for 

         

3. Initialize         

4.              
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5.              

6. end 

4.3 Architecture using Rule-based 

approach 
The architecture of the system is shown in Fig. 2. System 

Modules [17] are: 

1. Customizable Bot engine. 

2. Users questions analytics 

3. AIML Interpreter 

 
Fig. 2: Architecture of Rule-based approach 

4.3.1.   AIML Language: Syntax and 

Semantics 
The purpose of AML language is to make the task of dialog 

modeling easy. Moreover, it is a XML-based markup 

language and it is tag-based. Tags are identifiers that are 

responsible to make code snippets and insert commands in the 

Chatbot. AIML defines a data object class called AIML 

objects, which is responsible for modeling patterns of 

conversation. Technically, AIML objects are language tags 

and each tag corresponds to a language command. The 

general form of an AIML object/command/ tag has the 

following structure: 

<command> ListOfParameters </command> 

An AIML command consists of a start tag (), a closing tag () 

and a text (ListOfParameters) that contain the command's 

parameter list. Each line is read, interpreted and executed by 

software known as AIML interpreter. It is basically a basic 

unit of dialogue, formed by user input patterns and chatbot 

responses. These basic units are known as categories, and the 

set of all categories makes the chatbot Knowledge Base. 

Among the AIML objects, the following tags are worth citing: 

category, pattern and template. The category tag defines a unit 

of knowledge/dialogue of the Knowledge Base. The pattern 

tag defines a possible user input, and the template tag sets the 

chatbot response for a certain user input. 

The AIML format is as follows: 

<aiml> 

  < topic name=” the topic” > 

     <category> 

         <pattern>PATTERN…(Your question)</pattern> 

         <template>Template…(Answer to the 

question)</template> 

     </category> 

     .. 

  </topic> 

</aiml> 

 

Now an AIML command can be presented using different tags 

just to increase the scalability of asking queries and also to 

improve the simplicity of retrieving the answers to the 

queries. 

 

Also there are certain advanced tags such as, <system> and 

<javascript> tags interface with other languages; <that> tag 

stores last response; <topic> tag groups categories together; 

<srai> tag allows recursion and symbolic reduction meaning it 

helps to reduce complex grammatical patterns with simple 

pattern(s); <star/> tag functions the same as a *  wildcard 

[18]. <sr/> is an abbreviation for <srai><star/></srai>. There 

is also another unique tag know as <sraix> tag. The sraix 

element allows a bot to call categories that exist within 

another bot, and return response as if it was its own. This 

enables the creation of many bots, each with a specific 

purpose that may connect with each other to form a sort of bot 

network. 

For example, we have <that> tag as: 

 <category 

      <pattern>What about increase in rate of interest </pattern> 

      <template>Do you like increase in rate of 

interest</template>   

</category> 

<category> 

      <pattern>YES</pattern> 

      <that>What about increase in rate of interest</that> 

      <template>Nice, I like an hike as well. Good for 

customers right ?!.</template> 

</category> 

 

Similarly, for <think> tag we have: 

 

<category> 

      <pattern>My address is *  . I want a new cheque book 

delivered at home </pattern> 

      <template> 

         Hello!  Alright ! <think><set address = "addr_name"> 

<star/></set></think> 

      </template>   

   </category>   

<category> 

      <pattern>Bye. </pattern> 

      <template> 

         Bye. Cheque book will be delivered at   <get name = 

"addr_name"/>   

      </template>   

   </category>  

 

<random> tag which gives random responses from a list of 

templates can be used as: 

   <category> 

         <pattern>HELLO *</pattern> 

         <template>    
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            <random> 

                <li> Hello! </li> 

                <li> Hi! Nice to meet you! </li> 

                <li> Hi! I hope you are doing great! </li> 

                <li> Hi! Ssup ! Hope everythings fine ! </li> 

                <li> Hello! Wish u a great day ahead today </li> 

           </random> 

        </template>  

</category>  

 

Learning in AIML is a bit tedious. Two learning tags that can 

be used are as follows: 

 Learn Tag: One can add new set of Queries-Solutions 

for the bot to answer next time. The new set of Queries-

Solutions can be made available while applying 

updates.(For e.g.: new Banking terminologies).  

 Prefer Tag: One can improve Solutions for a Query. 

This will be done after obtaining feedbacks from users to 

improvise the solutions. 

4.3.2   Pattern Matching Algorithm 

First Step: Normalization is applied for each input, removing 

all punctuations, split in two or more sentences and converted 

to uppercase. 

Second Step: AIML interpreter then tries to match word by 

word the longest pattern match. This is expected to be the 

better approach. In the proposed work this algorithm can be 

implemented using two approaches/methods. 

 

Program AB: In program AB two main components are 

required:  (a) AIML file as interpreter between Database and 

UI, (b) Excel ‘.csv’ file as Database. In this approach, the user 

interface is Command Line run using ‘.bat’ file and it is 

completely data driven. Basically in such approaches what the 

Bot is supposed to do is, once the user asks a Query then, the 

same Query is referred from a list of Query-Solution pairs in 

AIML Files which are present in the format of Pattern-

Template Pairs and these AIML Files have a corresponding 

csv files (of each AIML file) as Databases to retrieve 

Solutions to Queries and then it’s presented to the User.  

Program O: Program O is an implementation of an AIML 

Chatbot written in PHP. In this, patterns are stored in a 

database table and instead of matching the pattern to an input, 

a regular expression is constructed for each input and the 

database is then searched for pattern strings that match this 

regular expression. Here just a back-end Server is required. 

If the above two approaches are compared then Program O is 

faster and simpler to implement than Program AB, because in 

Program AB creation of both AIML files and CSV files is 

required whereas Program O requires to add data in the 

backend which is more simpler and faster than adding each 

Query-Solution pair in CSV files. 

System may offer advantages like easy Deployment, high 

customization, context awareness, and free of cost. 

5. CONCLUSION AND FUTURE WORK 
Thus, architectures for the banking assistant have been 

proposed which uses various NLP techniques and Pattern 

matching techniques for processing the user’s queries.  

 

The architecture can still be improved by following a 3-tier 

architecture [14] where the user interface and some pre-

processing is done on the presentation server (first tier), the 

main processing is done on the application server (second tier) 

and all databases are on the database server (third tier). In case 

the entire system is written on just one platform which uses 

OOP methodology like Java, then the architecture can be 

distributed with the client and server communicating with 

each other by means of objects via Remote Method 

Invocation (RMI) [15]. Alternatively, web service could be 

implemented [3] which will support multiple clients 

simultaneously. 

There are various issues which have to be considered like 

dealing with users asking repeated questions intelligently, co-

reference resolution, and providing appropriate feedbacks to 

users in special cases like when user is not asking anything for 

a long time or when user is continuously asking questions 

(This can be done by using probabilistic analysis to determine 

which question will user ask next and by using a timer to 

determine for how much time the user hasn’t asked any 

question).   

A comparative study between two approaches discussed 

(NLP-based and rule-based) should be done and must be 

implemented and tested. 
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