
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

1

Approaches towards Building a Banking Assistant

Kiner B. Shah
Department of Computer

Engineering
K. J. Somaiya College of

Engineering, Mumbai,
India

Mohit S. Shetty
Department of Computer

Engineering
K. J. Somaiya College of

Engineering, Mumbai,
India

Darshan P. Shah
Department of Computer

Engineering
K. J. Somaiya College of

Engineering, Mumbai,
India

Rajni Pamnani
Assistant Professor,

Department of Computer
Engineering

K. J. Somaiya College of
Engineering, Mumbai,

India

ABSTRACT

Banking process has been very complicated since years.

People often want to enquire about bank’s policies on the

bank counter and since the policies are sometimes confusing,

it takes time for them to understand the policy and thus, the

process. This paper presents two approaches - one using

Natural Language Processing techniques and other using

AIML, a popular language for building chatbots - for building

banking assistant which can solve people’s queries and also

carry out certain banking tasks, thus avoiding loss of

efficiency and loss of precious time of the people. The paper

is aimed at providing interface to the users which enables

communication for solving their queries and completing their

tasks, thus saving their time and reducing any possible

confusion.

Keywords
Natural Language Processing, Assistant, Artificial

Intelligence Markup Language (AIML), Chatbot

1. INTRODUCTION
Banking is a process which is done daily by hundreds of

people, some making certain transactions like depositing

funds or withdrawing funds, some opening accounts whether

it is a current account or a fixed deposit account, some

applying for loans for car, home, or business, some submitting

applications for issue of new cheque books, and some just go

to the bank for enquiring about certain policies, certain issues,

or for issuing complaints.

There are lots of such tasks that are time consuming and

complicated to understand. Even if the policies are well

documented, understanding the documentation in itself is a

very tedious task. One person encounters with jargon terms,

complicated clauses, certain confusing disclaimers, etc.

Understanding these for a common person is as tedious as

pulling a truck full of black soil. Other problems include

inability to understand process by unlettered people and also

language barrier which is common in a diverse nation like

India.

This paper thus proposes architectures based on recent

research in AI and NLP techniques, which will serve as an

assistant for common people and which will efficiently help

them to carry out their banking related tasks. Natural

Language Processing (NLP) involves techniques to

intelligently process natural language input making it easier

for the computer for further processing.

The concept of chatbot using AIML / XML came into

existence with “Alice” [18] which is used to receive question

from user and it was based on pattern recognition. With the

advent of time, there were many developments in this field

and many more bots were built using the AIML methodology.

In this approach AIML knowledge base is the base of Chatbot

brain.

The next section presents some already developed assistants.

Then some potential problems during the designing phase are

discussed. Then finally the architectures of the assistant are

presented which includes the two approaches of building

assistant.

2. RELATED WORK
There are many projects implemented earlier for banking

assistant. First system is Royal Bank of Scotland’s “Luvo” [1].

Luvo, is able to understand questions and then filter through

huge amounts of information in a split second before

responding with the answer. If Luvo is unable to find the

answer, it passes the query on to a member of staff who can

solve more complex problems. It will support staff to help

them answer customer queries more quickly and easily. It has

to be trained when dealing with new subject matter, but

crucially, it learns from its mistakes and its answers become

more accurate over time. One problem with Luvo, however, is

that it can interact only with bank staff and not directly with

customers. Also, there is still the need for human experts

despite having AI deployed.

Kasisto’s AI (KAI) banking [2] is a conversational AI

platform which makes engaging with customers as natural as

chatting. The AI has deep financial knowledge and banking is

easy from mundane tasks to complicated tasks – it’s basically

sending text messages. It is a very fine tool and does most of

the tasks which is required for general banking like checking

for previous transactions, making payments, telling

information about accounts and the main point is that it is

always learning. It chats with its users in a friendly manner. It

is a good implementation of banking assistant.

Another such assistant was suggested [3] which was

implemented as a web service (based on black-box approach)

able to process multiple client requests simultaneously and

which generated responses by using a data repository (based

on AIML).

3. DESIGN ISSUES
Designing assistant software which can communicate as

naturally as a human assistant does is not an easy task! There

are lots of issues which may come while designing the

assistant for a bank:

 There may be huge computational overheads

because of which large memories, fast processors

and sometimes, parallel architectures are required.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

2

 Also, there is an issue in choosing an appropriate

interface style – voice-based or text-based or both.

 It is difficult to design assistant for a particular

domain like banking, as the data required for it can

be costly or have to be made manually which is time

consuming.

 It consumes lots of time to build an assistant, and if

the other competitors launch a similar product

before the bank does, then it creates a business risk

for the bank.

 Also, there has to be sufficient investment in

designing the assistant. Engineers have to be hired,

tools need to be purchased, licensing, etc. and it

may get very costly for the bank.

 If the assistant is dealing with transactions, then

there is always an issue of providing appropriate

security features.

 There is also a problem of choosing how to

implement the assistant. There are two ways: rule-

based and NLP-based. We will shortly present the

differences between these two.

Some of the (but not all) design issues in designing assistant

software for a bank have been discussed. The architecture

which will be presented in the next section will try to consider

some of the above issues.

4. ARCHITECTURE
In this section, firstly, some of the key differences in the two

approaches of implementing the assistant – the Rule-based

approach and the NLP-based approach, will be discussed.

Then the architecture for both the approaches will be

presented.

4.1 Rule-based Vs. NLP-based
In rule-based approach, there are various rules or patterns

defined for the users’ queries. Based, on what rule or pattern

is matched, an appropriate predefined and stored answer is

output or some pattern is defined for the answer which may

use some information from the query itself. One very good

example of rule-based or pattern-based approach is ALICE

[4], which uses AIML [5] as the language for defining patterns

for queries and its answers. The main limitation of this

approach, however, is that large numbers of rules are required

for ensuring proper working of the assistant. However, this

approach is widely used in building various assistants. Some

examples of assistants using this approach are, ALICE,

Chatterbot, Jabberwacky, etc. If combined with machine

learning, this approach can significantly improve the

efficiency of the assistant.

In NLP-based approach, various NLP techniques are applied

to process the sentence, check its grammar, extract

information out of it, and use this information extracted for

analysis and then generate an appropriate response with

respect to the query. Hence, this approach becomes quite

complicated and complex. A very good example of NLP-

based assistant is IBM’s Watson [6]. It uses many NLP and

Machine learning techniques like logistic regression, Named

Entity Recognition, Co-reference resolution, Relation

Extraction, etc. It has a very sophisticated architecture which

extracts data from large number of data sources and uses very

high performance hardware which includes racks of servers,

TBs of RAM, thousands of processor cores, and is capable of

operating at about 80 teraflops. This led to it winning the

Jeopardy challenge in 2011. One limitation of this approach is

that this approach is slower if the architectures are not

parallelized.

4.2 Architecture using NLP-based

approach
Now, that the two approaches have been discussed, the

architecture proposed for banking assistant will be presented

which follows a NLP-based approach. The entire architecture

is shown in Fig 1.

Fig 1: Architecture of NLP-based approach

In the architecture, there are several modules which play an

important role in the proper working of the banking assistant.

Firstly, there is a user interface which provides a way for a

user to access the functions provided by the assistant. Here the

user can enter his / her query and submit to the assistant for

processing.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

3

On submitting a query, first the query goes to the Tokenizer.

The tokenizer is responsible for generating useful tokens out

of the given query. This is usually done by splitting the query

sentence into words using delimiters like space, or comma or

semi-colon, etc.

The tokens generated from Tokenizer are given as input to a

Normalizer. A normalizer does the necessary pre-processing

on the tokens which includes spell correction of words (using

Damerau-Levenshtein distance [7]), expanding of acronyms

and abbreviations (by looking into a database of common

acronyms and abbreviations) and conversion of tokens to

standard format (e.g. all characters in lowercase).

The normalized words are given to a Parts of Speech (POS)

Tagger, which will assign some meaningful labels to the

words. This is well understood with an example. Suppose the

sentence is:

“The bank provides 8% interest on fixed deposit.”

After assigning appropriate labels, we get the output of POS

Tagger as,

“The/DT bank/NN provides/VBZ 8/CD %/NN interest/NN

on/IN fixed/VBN deposit/NN ./.”

In the above output, DT, NN, etc. are called tags or labels.

Here DT stands for Determiner, NN stands for a noun and so

on. This information is important as it gives important

grammatical properties (tags) which can be used by other

modules in the architecture. POS Tagger can be implemented

using Hidden Markov Models [8] [9] using Viterbi’s

algorithm [10].

Next the labelled or tagged output is given to a Phrase

Structure PCFG Parser. A parser is used to check whether a

language follows a pre-defined syntax. In case of natural

language, it’s very difficult to define a standard grammar as

there will be large number of syntactic rules. Thus, some

limited number of rules will be used and probability will be

used as a measure to determine the best parse for a sentence.

Thus, the grammar must be a Probabilistic Context-free

Grammar (PCFG). A probabilistic context-free grammar G

can be defined by the quintuple, G = (M, T, R, S, P) where M

is the set of non-terminal symbols (like NP, VP, NN, etc.), T

is the set of terminal symbols, R is the set of production rules,

S is the start symbol and P is the set of probabilities on

production rules [11].

The probabilistic version of Cocke-Younger-Kasami (PCYK)

algorithm [12] is well suited for the parser. The output of the

parser will be a parse tree. From the example that we used for

POS Tagger, the parse tree obtained will be:

(ROOT

 (S

 (NP (DT The) (NN bank))

 (VP (VBZ provides)

 (NP

 (ADJP (CD 8) (NN %))

 (NN interest))

 (PP (IN on)

 (NP (VBN fixed) (NN deposit))))

 (. .)))

The parse tree obtained from parser is then given to a

dependency parser which will convert the phrase structure

rules into dependencies. The Dependency Parser from

Stanford’s API [13] is preferred for that. The output will be

the dependencies between various words in the sentence.

Considering the example from before,

det(bank-2, The-1)

nsubj(provides-3, bank-2)

root(ROOT-0, provides-3)

compound(%-5, 8-4)

amod(interest-6, %-5)

dobj(provides-3, interest-6)

case(deposit-9, on-7)

amod(deposit-9, fixed-8)

nmod(provides-3, deposit-9)

Here, det(bank-2, The-1) indicates “bank” is dependent on

“The” by the relation “det” i.e. determiner and so on.

These dependencies help in relation extraction by following

some hand-written rules for extracting useful relational

information from the dependencies. Some typical examples of

such relations are quantity (which gives quantity of

something; usually obtained from dependency nummod),

characteristics (like color; obtained from dependency amod),

main subject in the sentence (obtained from dependency

nsubj), etc. Considering the previous example sentence, from

dependencies we can find relations as mentioned below:

SUBJECT = bank

OBJECT = interest

CHARACTERISTIC = fixed, deposit

ACTION =provides

QUANTITY = 8%, interest

After obtaining the relations, analysis is made to categorize

the obtained query in the form of relations into an appropriate

type. The types are Account related and General queries. This

step is necessary as Account related information should be

confidential and for ensuring this, authentication (two-factor)

is done so that only the legitimate users access such

information.

After this step, the relations are forwarded to a Relation

Matcher which tries to match the query relation with the

relations in a database to find any matching answers. The

database consists of relations mapped to their respective

natural language sentences. This matching is done using

relation scoring as shown in Algorithm 1. The output obtained

from the matcher will be the sentence corresponding to the

relation with highest score. Based on the relation output, the

natural language sentence corresponding to that relation will

be obtained and given as output to the user, as the response

from the system.

Algorithm 1: Relation matching

1. Let be a set of relations for in

the database.

2. Let be a set of input query relations for

3. Initialize

4.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

4

5.

6. end

4.3 Architecture using Rule-based

approach
The architecture of the system is shown in Fig. 2. System

Modules [17] are:

1. Customizable Bot engine.

2. Users questions analytics

3. AIML Interpreter

Fig. 2: Architecture of Rule-based approach

4.3.1. AIML Language: Syntax and

Semantics
The purpose of AML language is to make the task of dialog

modeling easy. Moreover, it is a XML-based markup

language and it is tag-based. Tags are identifiers that are

responsible to make code snippets and insert commands in the

Chatbot. AIML defines a data object class called AIML

objects, which is responsible for modeling patterns of

conversation. Technically, AIML objects are language tags

and each tag corresponds to a language command. The

general form of an AIML object/command/ tag has the

following structure:

<command> ListOfParameters </command>

An AIML command consists of a start tag (), a closing tag ()

and a text (ListOfParameters) that contain the command's

parameter list. Each line is read, interpreted and executed by

software known as AIML interpreter. It is basically a basic

unit of dialogue, formed by user input patterns and chatbot

responses. These basic units are known as categories, and the

set of all categories makes the chatbot Knowledge Base.

Among the AIML objects, the following tags are worth citing:

category, pattern and template. The category tag defines a unit

of knowledge/dialogue of the Knowledge Base. The pattern

tag defines a possible user input, and the template tag sets the

chatbot response for a certain user input.

The AIML format is as follows:

<aiml>

 < topic name=” the topic” >

 <category>

 <pattern>PATTERN…(Your question)</pattern>

 <template>Template…(Answer to the

question)</template>

 </category>

 ..

 </topic>

</aiml>

Now an AIML command can be presented using different tags

just to increase the scalability of asking queries and also to

improve the simplicity of retrieving the answers to the

queries.

Also there are certain advanced tags such as, <system> and

<javascript> tags interface with other languages; <that> tag

stores last response; <topic> tag groups categories together;

<srai> tag allows recursion and symbolic reduction meaning it

helps to reduce complex grammatical patterns with simple

pattern(s); <star/> tag functions the same as a * wildcard

[18]. <sr/> is an abbreviation for <srai><star/></srai>. There

is also another unique tag know as <sraix> tag. The sraix

element allows a bot to call categories that exist within

another bot, and return response as if it was its own. This

enables the creation of many bots, each with a specific

purpose that may connect with each other to form a sort of bot

network.

For example, we have <that> tag as:

 <category

 <pattern>What about increase in rate of interest </pattern>

 <template>Do you like increase in rate of

interest</template>

</category>

<category>

 <pattern>YES</pattern>

 <that>What about increase in rate of interest</that>

 <template>Nice, I like an hike as well. Good for

customers right ?!.</template>

</category>

Similarly, for <think> tag we have:

<category>

 <pattern>My address is * . I want a new cheque book

delivered at home </pattern>

 <template>

 Hello! Alright ! <think><set address = "addr_name">

<star/></set></think>

 </template>

 </category>

<category>

 <pattern>Bye. </pattern>

 <template>

 Bye. Cheque book will be delivered at <get name =

"addr_name"/>

 </template>

 </category>

<random> tag which gives random responses from a list of

templates can be used as:

 <category>

 <pattern>HELLO *</pattern>

 <template>

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

5

 <random>

 Hello!

 Hi! Nice to meet you!

 Hi! I hope you are doing great!

 Hi! Ssup ! Hope everythings fine !

 Hello! Wish u a great day ahead today

 </random>

 </template>

</category>

Learning in AIML is a bit tedious. Two learning tags that can

be used are as follows:

 Learn Tag: One can add new set of Queries-Solutions

for the bot to answer next time. The new set of Queries-

Solutions can be made available while applying

updates.(For e.g.: new Banking terminologies).

 Prefer Tag: One can improve Solutions for a Query.

This will be done after obtaining feedbacks from users to

improvise the solutions.

4.3.2 Pattern Matching Algorithm

First Step: Normalization is applied for each input, removing

all punctuations, split in two or more sentences and converted

to uppercase.

Second Step: AIML interpreter then tries to match word by

word the longest pattern match. This is expected to be the

better approach. In the proposed work this algorithm can be

implemented using two approaches/methods.

Program AB: In program AB two main components are

required: (a) AIML file as interpreter between Database and

UI, (b) Excel ‘.csv’ file as Database. In this approach, the user

interface is Command Line run using ‘.bat’ file and it is

completely data driven. Basically in such approaches what the

Bot is supposed to do is, once the user asks a Query then, the

same Query is referred from a list of Query-Solution pairs in

AIML Files which are present in the format of Pattern-

Template Pairs and these AIML Files have a corresponding

csv files (of each AIML file) as Databases to retrieve

Solutions to Queries and then it’s presented to the User.

Program O: Program O is an implementation of an AIML

Chatbot written in PHP. In this, patterns are stored in a

database table and instead of matching the pattern to an input,

a regular expression is constructed for each input and the

database is then searched for pattern strings that match this

regular expression. Here just a back-end Server is required.

If the above two approaches are compared then Program O is

faster and simpler to implement than Program AB, because in

Program AB creation of both AIML files and CSV files is

required whereas Program O requires to add data in the

backend which is more simpler and faster than adding each

Query-Solution pair in CSV files.

System may offer advantages like easy Deployment, high

customization, context awareness, and free of cost.

5. CONCLUSION AND FUTURE WORK
Thus, architectures for the banking assistant have been

proposed which uses various NLP techniques and Pattern

matching techniques for processing the user’s queries.

The architecture can still be improved by following a 3-tier

architecture [14] where the user interface and some pre-

processing is done on the presentation server (first tier), the

main processing is done on the application server (second tier)

and all databases are on the database server (third tier). In case

the entire system is written on just one platform which uses

OOP methodology like Java, then the architecture can be

distributed with the client and server communicating with

each other by means of objects via Remote Method

Invocation (RMI) [15]. Alternatively, web service could be

implemented [3] which will support multiple clients

simultaneously.

There are various issues which have to be considered like

dealing with users asking repeated questions intelligently, co-

reference resolution, and providing appropriate feedbacks to

users in special cases like when user is not asking anything for

a long time or when user is continuously asking questions

(This can be done by using probabilistic analysis to determine

which question will user ask next and by using a timer to

determine for how much time the user hasn’t asked any

question).

A comparative study between two approaches discussed

(NLP-based and rule-based) should be done and must be

implemented and tested.

6. REFERENCES
[1] "News and opinion: RBS," [Online]. Available:

http://www.rbs.com/news/2016/march/rbs-installs-

advanced-human-ai-to-help-staff-answer-customer-

que.html. [Accessed 1 March 2017].

[2] "Homepage," Kasisto, [Online]. Available:

http://kasisto.com/. [Accessed 1 March 2017].

[3] S. J. du Preez, M. Lall and S. Sinha, "An intelligent web-

based voice chat bot," in EUROCON, 2009.

[4] "Artificial Linguistic Internet Computer Entity:

Wikipedia," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Artificial_Linguistic_Intern

et_Computer_Entity. [Accessed 4 March 2017].

[5] "AIML: Wikipedia," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/AIML. [Accessed 4 March

2017].

[6] "IBM Watson: Wikipedia," Wikipedia, [Online].

Available:

https://en.wikipedia.org/wiki/Watson_(computer)#Softw

are. [Accessed 5 March 2017].

[7] "Damerau-Levenshtein Distance: Wikipedia," [Online].

Available:

https://en.wikipedia.org/wiki/Damerau%E2%80%93Lev

enshtein_distance. [Accessed 6 March 2017].

[8] L. R. Rabiner and B. H. Juang, "A Introduction to

Hidden Markov Models," IEEE ASSP Magazine, pp. 4-

16, January 1986.

[9] G. Neubig, "NLP Programming Tutorial 5 - Parts of

Speech Tagging with Hidden Markov Models," [Online].

Available: http://www.phontron.com/slides/nlp-

programming-en-04-hmm.pdf. [Accessed 7 March 2017].

[10] "Viterbi algorithm: Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Viterbi_algorithm.

[Accessed 7 March 2017].

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

6

[11] "Stochastic Context-free grammar: Wikipedia,"

Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Stochastic_context-

free_grammar#Formal_definition. [Accessed 7 March

2017].

[12] G. Neubig, “NLP Programming Tutorial 8 - Phrase

Structure Parsing,” [Online]. Available:

http://www.phontron.com/slides/nlp-programming-en-

10-parsing.pdf. [Accessed 7 March 2017].

[13] B. MacCartney, C. D. Manning and M.-C. de Marneffe,

"Generating Typed Dependency Parses from Phrase

Structure Parses," in LREC, 2006.

[14] "Multitier Architecture: Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Multitier_architecture.

[Accessed 7 March 2017].

[15] "Java remote Method Invocation: Wikipedia," [Online].

Available:

https://en.wikipedia.org/wiki/Java_remote_method_invo

cation. [Accessed 7 March 2017].

[16] Om Komawar, Prasad Thakar, Rohit Shetty, Akshay

Bartakke and Manisha Desai,"An Internet Relay Chat

Bot using AIML," International Journal of Science and

Research (IJSR), Volume 4 Issue 10, October 2015.

[17] Imran Ahmed and Shikha Singh, "AIML Based Voice

Enabled Artificial Intelligent Chatterbot," International

Journal of u- and e- Service, Science and Technology,

pp. 375-384, 2015.

[18] Aniket Dole, Hrushikesh Sansare, Ritesh Harekar,

Sprooha Athalye, "Intelligent Chat Bot for Banking

System", International Journal of Emerging Trends &

Technology in Computer Science (IJETTCS), Volume 4,

Issue 5(2), September – October 2015.

[19] " Enhancing AIML Bots using Semantic Web

Technologies,"[Online]. Available:

http://conferences.idealliance.org/extreme/html/2007/Fre

ese01/EML2007Freese01.html. [Accessed 7 April 2017].

[20] " The Anatomy of A.L.I.C.E."[Online]. Available:

http://www.alicebot.org/anatomy.html. [Accessed 7 April

2017].

[21] "ARTIFICIAL INTELLIGENCE MARKUP

LANGUAGE: A BRIEF TUTORIAL,"[Online].

Available:

https://www.noexperiencenecessarybook.com/5eKql/aim

ltutorial-aircse-final.html

IJCATM : www.ijcaonline.org

