
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.2, May 2017

11

Experiences from a Web-based Course in Software

Testing and Quality Assurance

Jussi Kasurinen
South-Eastern Finland University of Applied Sciences (XAMK)

Pääskysentie 1
48220 Kotka

ABSTRACT

Fundamentally, computer science and its courses are

considered difficult to learn, since so many concepts has to be

grasped before anything worthwhile can be achieved. To

make the things even more difficult, there also is a drive to cut

costs on the teaching work, to minimize the amount of

teaching staff and in general, steer the course modules

towards web-based learning and assisted self-study. In this

study, the objective is to assess the different tools and

approaches available for constructing an online-enabled

course on software testing and quality assurance (QA), based

on two different course implementations to provide

experiences and information. Based on our observations, the

most important factors in teaching a course in software testing

with an assisted self-study approach is to offer practical

exercises using real software projects, discuss real-world

scenarios in the lectures to maintain the student motivation,

offer equal services to both online and offline students and

discuss both the management and practical work aspects of

the testing work.

General Terms

Software and its Engineering, Software creation and

Management, Software verification and validation,

Computing education, Software Engineering education.

Keywords

Software testing; quality assurance; case study; experiences.

1. INTRODUCTION
Pedagogically programming work and software development

should be compared to problem solving. Software engineers

design a product to solve a problem, solve the problem of how

to make our design work with the given technical

infrastructure, and solve the problem of proving that the

product works correctly. However, due to the nature of

computer science and software development work in

particular, the approach in teaching has to extensively teach

structures, processes, concepts and programming languages to

the students before any practical result can be reached [15].

Overall, the attention in designing of the introductory

computer science courses should be in defining the desired

learning objectives and methods of exposing students to

meaningful, but simple, case studies.

Even with this large drive to develop better learning

outcomes, it is unfortunate that students seem to be generally

disinterested on the computer science topics, even if they

know that programming is really important skill to possess.

On the programming courses, this problem has already been

acknowledged to be tied closely to the motivational aspects in

the loss of focus in the course topics [5, 21], but how should

the issue of motivation and lack of interest in the course

discussing software quality assurance and testing work be

addressed? This topic is important, since teaching topics such

as low level unit testing or building test cases are not very far

from programming work [6]; so close in fact, that the

computer science education curricula 2013 [8] for software

engineering emphasizes verification and validation – testing

activities - more than the construction of the software. In

practice, the testing activities such as code reviews or module

integration testing are more or less programming work, since

they involve direct manipulation, or at least direct proof-

reading, of the source code.

This paper describes a course design project to teach software

testing as a part of computer science education curricula with

the minimal amount of local teaching events or teaching

resource needs. The concept is to create the new course for

demand, where the ratio between teaching personnel and

students does not allow for personal training or tutoring

sessions. On the other hand, this study also focuses on the

aspect of how to effectively apply online services and tools to

substitute for tutoring sessions and teacher-administrated

course events. Hence, the research questions for this study are

the following: “What are the beneficial on-line services for

successful testing course?” and “To what extent can a

technically challenging CSE course be offered online?.”

Rest of the paper is constructed as follows: The Chapter 2

discusses the related research and concepts of this study, and

the Chapter 3 introduces the applied research method.

Chapters 4 and 5 introduce the results and summarize their

implications, Chapter 6 discusses the shortcomings and

limitations of the study and finally, Chapter 7 closes the paper

with conclusions.

2. RELATED RESEARCH
The fundamental concepts in computer science are a field,

which extensively develops different types of tools and

services to enhance the learning experiences. Several studies

from the last thirty years indicate that learning computer

science is actually very difficult [1,20], and usually benefits

from any support or tool it can apply. These tools come in

several sizes, offering wide range of different teaching

approaches. Telling example of the diversity of these different

learning environments and teaching tools is that the basic

work group report on learning environments for computer

science curricula [16] combined with the basic taxonomy for

long distance learning ecosystems [12] cover over hundred

different examples of different types of systems, which all are

plausible, diverse and completely functional learning tools.

Besides right tools, the other aspect of designing computer

science courses is the student motivation. For example,

studies by Shell et al [20] or Guzdial and Soloway [5] discuss

these problems in a programming context. The modern

students expect to have more meaningful assignments than

traditional source code based command prompt assignments,

and are only learning if positively reinforced through

motivation to achieve results. Similarly, a study by Krutz et

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.2, May 2017

12

al. [13] puts this into the testing perspective; even if testing is

usually the most costly phase of software development and

simultaneously the largest influence to the product

profitability, the students tend to think testing work as boring

and unnecessary. In Krutz et al. study, this problem was

addressed by applying real open-source cases as the course

assignments. Based on their results, 85 percent of their

students considered this approach to be positive, with student

feedback also indicating improved motivation and learning

results. Finally, a study by Smith et al. [17] discusses similar

requirements for goals of developing testing course: testing

activities in a university course have to be fun and competitive

activity, allow students to learn from each other, demonstrate

the importance of doing testing work, and provide a

mechanism to evaluate the demonstrated testing skills.

Another concern for designing a testing course is discussed by

Kazemian and Howles [11]. Their study points out, that

testing-related courses tend to have additional problems with

the course infrastructure. Since most of the industry-applied

testing tools are commercial, they usually are not available for

academic institutions to use without expensive licensing deals.

In addition, since large amount of testing work in the industry

is related to creating and following plans to systematically

ensure product quality, testing course should also address

these issues, in addition of the traditional mechanical testing

work of running use cases in the test environment. In another

example by Harrison [6], the testing course actually consisted

of two parts: first learning the low-level testing techniques

from the viewpoint of software developer, and later managing

testing work and test documentation from the viewpoint of

software tester. This approach, and practical assignments

instead of purely theoretical ones are needed, as the lack of

interest towards developing the teaching approaches of

software testing, and the differences between academic and

industrial interest in the testing work, are considered so

widespread, that they start to hinder each other [6]. In wider

context, a study by Eldh and Punnekkat [3] discuss the

general needs of development for computing science curricula

in academia. In their study a list of topics which should be

addressed more detail is presented; topics such as

professionally applied tools, industry de-facto standards of

working, agile teams in large projects and most importantly,

“Testing at all levels of software”.

In any case, there are several observations on how software

testing course module should be constructed. For example,

earlier studies into the design and revisions of computer

science course modules (for example withheld for review)

have indicated that the course infrastructure and seamless

integration of all different components of the course is really

important to maintain the student motivation. By applying all

these observations, our testing course was defined based on

the recommendations by the literature reviews as follows: the

course will apply access to network and social media [5],

apply practical project assignments [9], promote student

project works [3], teach both management and testing work in

practice [6], use open source or freely available tools [11],

promote some form of team work [17] and address the

motivational aspects [13].

3. RESEARCH METHOD
The approach on developing the testing course relied on the

systematic process improvement, and it had two objectives: 1)

to develop a functional infrastructure for teaching and

learning the fundamentals of software testing and 2) to create

indicators to aide continuous assessments and cyclic reviews

to develop the course module. In one previous work by our

research group [10], it was established that this approach is

appropriate for developing computer science course modules.

In this scenario, the approach included a prior student data set

collected from a similar course development project with

software engineering methods, the statistical comparison of

course feedback surveys conducted before and after the

course, the statistics collected from the course material

repository, and a case study analysis of the collected open

feedback and course project work. A visualization of the data

sources and primary research methods are summarized in

Figure 1.

Data Sources Prior to the Course

Data Sources During to the Course

(Spring 2015)

Data Sources After to the Course

(Summer 2015)

Primary Analysis Methods

Literature Review

Software

Engineering

Methods Course

(Fall 2014)

feedback

Testing Course

Startup Survey

Course Video

Repository

Statistics

Testing Course

Submissions

(projects and

exams)

Testing Course

Final Survey

Statistical Analysis

Case Study, Open

Coding

Reported Results

 Fig 1: Main data sources and primary analysis methods

The objective of these approaches was to assess the student

performance during the course, and collect information on

student background and experience on the topic (Testing

Course Start-up Survey), student activity during the course

(Testing Course Video Repository Statistics, enrolment

information), learning results (Testing Course Submissions)

and motivational aspects (Testing Course Final Survey). The

statistical analysis of the student data was mostly conducted

by assessing the key indicators, such as enrolment records

(local and online statistics), course statistics (drop rate,

grades) and survey data (background information, prior

experience on software development) to find metrics which

could indicate problems or potential enhancement points for

the course. These observations were further studied and

validated with the qualitative data to ensure proper

observational triangulation which is essential to this type of

mixed-method approach. In addition, to assess the usability of

the qualitative data, a chi squared-test was conducted to

establish that the student bodies of both of the courses were

results-wise representative of the same population. Therefore

the testing course student population and software engineering

student population were comparable against each other, since

the differences between the course results were statistically

insignificant with p= .05. Data collection instruments for

surveys are available at the address

http://tinyurl.com/ksm5wu6.

The collected course feedback and especially the qualitative

data from the surveys was classified and codified following

the principles of the open coding method from the Grounded

Theory [4, 18]. The open coding and case analysis was done

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.2, May 2017

13

to collect observations and identify repeated themes from the

data; the amount of observations did not warrant a full

Grounded Theory analysis, but pinpointed major themes and

was used to understand the different observations from the

quantitative data. For this paper, only observations which

were present both in the qualitative and quantitative sources

are reported to establish more confidence in the results. The

actual codification and analysis work was done using office

tools such as Excel.

4. RESULTS
The resulting course had the following objectives: ”After

finishing the module, the student is familiar with the most

common work methods and tools of software testing. The

student is capable of conducting independent testing work

under normal project administration and is able to design and

prepare for testing work-related aspects. The student knows

how testing work is done, and how quality assurance and

software development are related.”

In the lectures, the course focused on the topics such as testing

tools, test phases, test levels, different test methods, testing-

related standards and certifications, developing testing work,

measurement of quality and defining quality. In the exercises,

different testing tools and testing work activities such as unit

testing, integration testing and system testing were practiced

with separately created scenarios, which applied real-world

open source software projects and industrially applied testing

tools. More detailed information about the course components

is in the Table 2. In addition, in Table 3 there are more

statistics concerning the course outcomes.

Table 2: The course infrastructures

Component 2014 Fall SEM 2015 Spring Testing

Course lectures, also

recorded video

archive

6 weeks * 2 hours

traditional, 6 weeks * 2

hours demonstration

12 weeks * 2 hours

Course exercises 5 * 2 hours traditional, 6

* 2 hours demonstration

lectures. Voluntary

attendance.

11 * 2 hours, voluntary

attendance. Weekly

summary video recorded

for the course video

archive.

Tutorial video archive 39 videos 18 videos

Social media tools Course videos, lecture

archive on YouTube,

University courseware

system.

Course videos, lecture

archive on YouTube,

University courseware

system, Facebook group

Course projects 2 mandatory group

projects, 1 voluntary

extra credit project.

2 mandatory group

projects, first on actual

testing work, second on

planning testing work.

Availability of

teacher consultation

1 hour per week, 12 h

total

1 hour per week, 12 h total

Course manual None, lecture slides and

additional reading

material. A separate

course book available but

not mandatory.

Yes, 80 pages; also lecture

slides A separate course

book available but not

mandatory.

Exam Mandatory. Possibility to

gain points with course

assignments.

Mandatory. Possibility to

gain points with course

assignments.

4.1 Course feedback and statistics
Besides statistics on the course outcomes, feedback was

collected with three surveys: 1) Course end survey for SEM in

December 2014, 2) Course starting survey for Testing in

January 2015 and 3) Course end survey for Testing in April

2015. Based on the collected course feedback, we can make

several observations how the course structures worked.

Table 3: Course outcome on Introduction to Software

Testing, with Software Engineering Methods for

comparison

Metric Fall 2014

SEM

Spring 2015

Testing

Number of students enrolled (Number of

students starting1)

58 (45) 34 (22)

Percentage with programming experience on

commercial software project or organization.

N/A 23 %

Percentage with previous testing-related

experience

N/A 18 %

Passing grades given 37 17

Pass rate (Pass rate from students starting the

course1)

64 % (82

%)

50 % (77 %)

Nothing done2 13 12

Withdrawals during the course 1 2

Average grade (0-5 scale) 3,1 2,8

Passed with grade “1”, the worst grade 2 2

Passed with grade “5”, the best grade 18 5

All mandatory project tasks returned 37 20

All mandatory and extra credit project tasks

returned

30 16

%-of all enrolled students, who filled the

feedback survey

38 % 44 %

1Students enrolled minus the students with nothing done.
2Student did not do anything beyond registering for the course.

For example, in the course feedback for “Software

Engineering Methods”, the most disliked feature of the course

were the traditional lectures, which were graded 3,86 (on

scale 1-5, 5 best grade) while the traditional exercise events

gained a grade 3,95. All the other parts of the course scored at

least 0.2 higher, while the course average grade for structures

was 4.27. For the lectures, the low grade can be partially

explained by the unappealing schedule, as demonstrated by

this feedback:

“I think the time of lecture at 8AM on Fridays was not good

and I preferred to watch lectures in you tube instead of

participating to class.”

Considering that the lecture videos and topical video archive

was the highest graded feature of the course (4.68, scale 1-5),

and the demo lectures (combining work and lecturing) was

also well-received (4.2). Overall, some additional

observations can be made based on the given open feedback

from the course. For example, the project works were

criticized for being unclear and too extensive:

“However the projects themselves alone can potentially be

fairly extensive. Something that most courses would only have

one of.”

“Second project wasn't very clear, because it was supposed to

do in parts weekly but at the end I wasn't sure what I should

return and what my project work should consist of. I suggest

that there should be clearer list of what to do.”

In addition, the lectures and exercises in the first period were

considered to be repetitive and redundant. In exercises

particular, also the applied software tools were also criticized:

“Usage of better tools to create the diagrams.”…” A small

tutorial in class could be very helpful.”

“The subjects are quite repetitive. I expected more advanced

topics”

However, taking into account all of the negative feedback, it

should also be mentioned that most of the open feedback for

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.2, May 2017

14

the course was positive and the course seemed to be well-

liked. A clear majority (71%) of the feedback was positive or

had something positive to say about the course or the teaching

style.

On the design of the course in software testing, the students

were requested to list their expectations on the

implementation of the course “Fundamentals of Software

Testing”. On the starting survey, students were requested to

explain, what they wanted to learn from the course, besides

the obvious “the fundamentals of testing work”. In Figure 2,

the most common topics from the student requests are

summarized. Out of 22 submitted responses, a majority (59

%) expected to learn about the real life applications and

experiences on the software testing. From the feedback, this

expectation seemed prevalent mostly because the software

testing has been discussed in the earlier courses, but not in any

detail:

“Testing is the area of software engineering on which I have

the least amount of experience, so any practical information

would be most welcome.”

In addition, management of the test processes from the

perspective of a test manager, and conducting software testing

from the viewpoint of software tester were considered almost

identically important topics (11 requests for management, 10

for tester’s work). The application of different documents,

certain testing tools (such as automation suites or unit testing

frameworks) and certain methods (test automation, stress

testing) were also mentioned several times.

Fig 3: Course structure expectations for the

“Fundamentals of Software testing” (N = 22)

Fig 2: Student learning expectations for the

“Fundamentals of Software testing” (N = 22)

In a separate item, the expectations for the course structure

and teaching tools were also requested, and they are

summarized in the Figure 3. In this category, the collected

feedback was not as focused as in the learning expectations,

but also in this category the practical experience was the most

requested feature. 8 (36% of all) comments requested that the

course exercises and project works should be done with real

source code, taken from actual software development projects.

Following the similar trend, 6 students requested “real,

industry-applied tools”. On the learning tools, 8 students

requested some form of online recordings of the lecture and

exercise events, while 7 requested other online features such

as slide sets, tutorial videos or open access learning material.

Rest of the feedback, both in learning expectations and course

structure, were random remarks or other observations.

The types of feedback reflected the student opinions and

grades given for the different parts of the course; the most

liked components were lecture recordings (4.5 on 1-5 scale, 5

best grade), lecture presentations (4.3) and the course content

(4.2). Interestingly, both projects received a grade of 3.9

which was a bit below the average grade for the course

implementation, which was 4.1.

The end survey also collected information on the aspects the

students considered to need revision for the future

implementations. The most common criticism was over the

exercise events. Since these events were not mandatory,

several students did not participate on them, but in the end

survey indicated that they would have liked them more if they

would have been mandatory, or at least given extra credits for

the final grade. This was in line with the observation that the

exercises themselves were also the least liked feature of the

course (3.18 on 1-5 scale, 4,01 course average) by a large

margin.

“Weekly exercises should be ‘more’ mandatory. This would

make more students participate, and they would be more

useful for learning.”

“Exercises should somehow be made mandatory or at least

more integral for learning stuff. For example, could the

exercises somehow lead to the completion of the project

works?”

Fig 4: Most applied learning tools and services according

to students (N = 17, 1 = Did not use at all, 5 = Used

constantly)

Finally, the last part of the end survey collected information

on the most applied learning tools and course services by the

students (Figure 4). Unsurprisingly the course webpages were

the most applied service (4.4, on scale 1-5 where 1 =did not

use at all, and 5 = used constantly). The other applied tools

were lecture slides (4.2), lecture recordings (3.4) and course

manual (3.2). The least applied were social media services

(2.0), course books and additional reading material (2.1) and a

bit surprisingly, the tutorial videos (2.2). Local teaching

events were also less applied than their online equivalents,

lectures got grade 3.1 and exercises 2.5. In open comments,

some student feedback indicated that the students felt

surprised that they did not feel penalized for having to use the

online resources:

“The quality of the given material and the fact that nothing is

withheld as a punishment from the online participants, gave

the feeling that we actually *are* studying at the university.”

When combined with the data from starting survey on what

learning tools the students usually apply, there are some

5
6
7
8
8

0 5 10 15 20

Other structure-related

Real tools

Online services

Online videos

Actual source code/project

5
5
5

10
11

13

0 5 10 15 20

Tools
Methods

Documents
Work techniques

Management and Design
Real life experiences

2.0
2.1
2.2

2.5
2.7

3.1
3.2

3.4
4.2

4.4

1.0 3.0 5.0

Course some-services (Facebook)

Course book, additional reading

Tutorial videos

Exercises (events)

Exercise recordings

Lectures (events)

Course manual

Lecture recordings

Lecture slides

Course web pages

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.2, May 2017

15

observations: For example the startup survey mentioned

lecture recordings at 3.7 (0.3 difference) and exercise events

at 3.0 (0.5 difference). In addition, social media services were

originally rated at 1.5, but were at 2.0 at the end survey. The

application of social media tools was somewhat divisive; most

of the students did not use the service at all, but few students

considered it to be one of the most important tools for the

course. The statistics from the course video archive for lecture

and exercise recording and for the tutorial videos reveal that

the service was applied to some degree, but was not a major

success. Overall, testing course-related videos (33 videos) got

total of unique 603 views during the course. However, it

should be remembered that these numbers reflect the amount

of students on the course: 22 active students, who view

majority of the 33 course videos once, is in the ballpark of the

amount of views received.

4.2 Implications
Since there are several data sources and many statistics related

to this study on designing a course on software testing, it

would be relevant to present a summary of implications made

from the collected data. Based on the collected feedback and

case analysis over the two courses, the data indicates

following implications for the results:

• The lectures can be replaced completely with the pre-

recorded lectures, especially if the scheduled timeslot is

unappealing (early in the morning or late in the evening).

• Supporting self-study is more efficient than offering

face-to-face learning events, but based on the feedback

some students need at least the theoretical possibility for

personal tutoring even if this option is never used.

• For online-enabled course, it is an important motivational

factor that the students who rely solely on the online

materials feel equal to the students participating to the

local teaching events.

• Exercise events should offer a tangible benefit, such as

extra credits for the exam or easier way to accomplish

course projects.

• Course-administered social media integration is not

absolutely required, but students need one focused online

location for all information and material, which is

actively maintained and updated.

• In the testing context, the fundamentals-level course

should offer both management skills and practical testing

skills in the curricula.

• In the testing context, the possibility or at least the

illusion of possibility, to apply the course learning

experiences directly in the practice is an important

motivational factor for the students.

5. DISCUSSION
These results obviously cannot be explained with any single

action, so-called a silver bullet [2], but approach the issue

from the Software Engineering Curriculum [8] point of view

which claims that the success of an educational program

depends on three elements: faculty, student body, and the

infrastructure. This approach indicates, that each course

module has three irreplaceable, and always present elements;

the faculty who teach and administer the course, student body

which enrolls to the course and works towards passing the

course, and the infrastructure which enables the faculty to

teach and the students to learn. Since affecting the faculty or

the student body is difficult, and because people involved

could not be changed or selected, the best aspect in this

equation was to enhance and improve the course

infrastructure. Removing the small problems in the course

infrastructure and tuning the course based on the prior

feedback from similar modernization efforts made a big

difference for the students. These explanations are supported

by the general change research, which claims that major

changes lead to performance dip [14] and the motivation

research which claims that employee motivation is

complemented by ‘hygiene factors’ that cause dissatisfaction

among employees and distract them from the actual work [7].

In practice this means that the biggest causes of dissatisfaction

in the work are the small irritants, which cause unnecessary

problems and divert the learning focus from learning the

substance to learning to cope with the given tools. In this

study this problem can be demonstrated with the negative

feedback caused by the tools used in the SEM course. The

tool used to draw the UML diagrams was causing problems,

so improving the hygiene factors of this course would mean

that the tool has to be changed to something more functional.

In the infrastructure, the recommended changes proposed by

our literature review were applied. In this study, the results of

[9] and [6] were replicated in almost every aspect. It seems,

that for the motivational aspects the illusion of learning

practically applicable skills is very important. In addition, the

first course in software testing seems to need to address both

the management and testing work aspects, since even if the

students are aware of the testing work as a subject of software

engineering, it seems that these topics may not be covered in

detail in the software engineering courses. Overall, based on

the observations this course should not focus on certain level,

method or tool of software testing, but focus on covering the

basics of the entire software test process and quality assurance

work both from the viewpoint of management and testing

tasks. From the organizational viewpoint the results indicate,

that the students do prefer online sessions over traditional

teaching, and also bit surprisingly also prefer mandatory – or

at least grade-affecting - exercises. One important observation

on the importance of the motivational aspects however, was

the first project work, in which students conducted real

explorative testing on a real open source game. This project

was very well-received, and had 100 percent retention rate of

students.

Obviously the results of this case study are open for

discussion, should the experiences be transferred to another

environment. To maintain the validity of this study against the

common threats (for example [19]) our student groups were

compared against each other with a chi squared test to ensure

that they represent the general student population. The results

and the collected data was discussed with peers to avoid

personal bias, several passive and active data sources was

applied and finally, the collected data applied both qualitative

and quantitative approaches to triangulate the collected data.

Finally, only observations which were present both in the

qualitative and quantitative data were reported. In any case,

the results of a qualitative study cannot be generalized since

every ecosystem has unique features, but the results are useful

indicators or guidelines, when observing new ecosystems.

6. CONCLUSIONS
In this paper the development of a web-based course on

software testing was discussed. The objective of this study

was to understand which the most beneficial course structures

are, and which course design approaches enable the students

to learn with minimal face-to-face interaction with a teacher.

In addition, this study also focused on constructing a course

module on software testing, based on the existing experiences

on teaching programming courses and general course on

software engineering methods.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.2, May 2017

16

Based on the collected data and observations, the web-based

approach was functional and there were no immediate or

critical problems with the course infrastructure. The most

important aspects from the viewpoint of the students were the

possibility to get everything from the online sources without

feeling that the online-only participants are withheld

information, and maintaining the illusion of possibility to use

the course experiences in real-world projects. For example,

the first project involving explorative testing with an open

source software was completed by 100 percent of the students

who started the course. In general, the students preferred

online sessions over the traditional in-class sessions. The

online components such as the lecture archive, video tutorials

and social media services were not heavily applied, but served

their purpose. Overall, the course results indicate acceptable

teaching outcome at 2.7 average (on 0-5 scale) with 77

percent pass rates from the students actually starting the

course. In addition, the data collected so far indicates that the

infrastructure was well-received and the course contents

matched the student expectations.

As for the future research, the next action should therefore be

to seek if the course infrastructure introduced here is

transferable and feasible in other computer science domains.

For example, can the same infrastructure be applied in more

technically oriented context, such as programming-focused

course module? Other interesting option would also be to

replicate the course with a larger student body, to gain

confidence on the results reported in this publication.

7. REFERENCES
[1] Avison, D. & Fitzgerald, G. 2003. Information systems

development: Methodologies, techniques and tools, 3rd
edition., Berkshire, England: McGraw-Hill Education.

[2] Brooks, F.P. Jr., 1987. No Silver Bullet Essence and

Accidents of Software Engineering, Computer Vol 20(4),

doi: 10.1109/MC.1987.1663532

[3] Eldh, S. & Punnekkat, S. 2012. Synergizing industrial

needs and academic research for better software

education. In Proceedings of the First International

Workshop on Software Engineering Education Based on

Real-World Experiences (EduRex '12). IEEE Press,
Piscataway, NJ, USA, 33-36.

[4] Glaser, B. & Strauss, A.L., 1967. The Discovery of

Grounded Theory: Strategies for Qualitative Research.
Chicago: Aldine.

[5] Guzdial, M. & Soloway, E., 2002. Teaching the

Nintendo Generation to Program. Communications of the

ACM, Vol 45(4), pages 17-21.

[6] Harrison N.B. 2010. Teaching software testing from two

viewpoints. J. Comput. Small Coll. 26, 2 (December
2010), 55-62.

[7] Herzberg, F. 1968, One more time: how do you motivate

employees?, Harvard Business Review, Vol. 46(1),
pages. 53–62.

[8] Joint Task Force on Computing Curricula, Association

for Computing Machinery (ACM) and IEEE Computer

Society. 2013. Computer Science Curricula 2013:

Curriculum Guidelines for Undergraduate Degree

Programs in Computer Science. ACM, New York, NY,
USA.

[9] Jones, E.L. & Chatmon, C.L. 2001. A perspective on

teaching software testing. J. Comput. Sci. Coll. 16, 3
(March 2001), 92-100.

[10] Kasurinen, J., & Nikula, U. (2016). Just Passing Courses

or Learning: Building Bayesian Classifier to Assess

Outcomes. International Journal on Information

Technologies & Security, 8(4).

[11] Kazemian, F. & Howles, T. 2005. A software testing

course for computer science majors. SIGCSE Bull. 37, 4

(December 2005), 50-53.

DOI=10.1145/1113847.1113876

http://doi.acm.org/10.1145/1113847.1113876

[12] Kelleher, C. & Pausch, R. 2005. Lowering the barriers to

programming: A taxonomy of programming

environments and languages for novice programmers.

ACM Computing Surveys, Volume 37(2), pages 83 –
137.

[13] Krutz, D.E., Malachowsky, S.A. & Reichlmayr, T. 2014.

Using a real world project in a software testing course. In

Proceedings of the 45th ACM technical symposium on

Computer science education (SIGCSE '14). ACM, New

York, NY, USA, 49-54. DOI=10.1145/2538862.2538955

http://doi.acm.org/10.1145/2538862.2538955

[14] Nikula, U., Jurvanen, C., Gotel, O. and Gause, D.C.,

2010. Empirical validation of the Classic Change Curve

on a software technology change project, Information

and Software Technology, Vol. 52(6), doi:
10.1016/j.infsof.2010.02.004

[15] Pears A., Seidman S., Malmi L., Mannila L., Adams E.,

Bennedsen J., Devlin M. & Paterson J. 2007. A survey of

literature on the teaching of introductory programming,
ACM SIGCSE Bulletin, Volume 39(4), pages 204-223.

[16] Guido Rößling, Mike Joy, Andrés Moreno, Atanas

Radenski, Lauri Malmi, Andreas Kerren, Thomas Naps,

Rockford J. Ross, Michael Clancy, Ari Korhonen, Rainer

Oechsle, and J. Ángel Velázquez Iturbide. 2008.

Enhancing learning management systems to better

support computer science education. SIGCSE Bull. 40, 4

(November 2008), 142-166.

DOI=http://dx.doi.org/10.1145/1473195.1473239

[17] Smith, J., Tessler, J., Kramer, E. & Lin, C. 2012. Using

peer review to teach software testing. In Proceedings of

the ninth annual international conference on International

computing education research (ICER '12). ACM, New

York, NY, USA, 93-98. DOI=10.1145/2361276.2361295
http://doi.acm.org/10.1145/2361276.2361295

[18] Strauss, A. & Corbin J., 1990. Basics of Qualitative

Research: Grounded Theory Procedures and Techniques.
SAGE Publications, Newbury Park, CA, USA.

[19] Whittemore, R., Chase, S.K. & Mandle, C.L., 2001.

Validity in Qualitative Research, Qual Health Res, July

2001, 11: 522-537, doi:10.1177/104973201129119299

[20] Winslow, L.E., 1996. Programming pedagogy – A

psychological overview. SIGCSE Bulletin, 28, pages 17-
22.

[21] Duane F. Shell, Leen-Kiat Soh, Abraham E. Flanigan,

and Markeya S. Peteranetz. 2016. Students' Initial Course

Motivation and Their Achievement and Retention in

College CS1 Courses. In Proceedings of the 47th ACM

Technical Symposium on Computing Science Education

(SIGCSE '16). ACM, New York, NY, USA, 639-644.
DOI: http://dx.doi.org/10.1145/2839509.2844606

IJCATM : www.ijcaonline.org

