
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.3, May 2017

5

Parallel Implementation of Pohlig-Hellman to

Compute Discrete Logarithms

Aditya Sakre
Pimpri Chinchwad

College of Engineering,
Pune, India

Amit Gurbani
Pimpri Chinchwad

College of
Engineering,
Pune, India

Pooja Dedwal
Pimpri Chinchwad

College of
Engineering,
Pune, India

J. V. Katti
Pimpri Chinchwad

College of
Engineering,
Pune, India

ABSTRACT

Almost half of the world is now connected to the Internet and

it has become an integral part of our day to day life. The usage

of Internet varies from personal communication to high level

business transactions. So security of these Internet services is

necessary to maintain Confidentiality, Integrity and

Availability. To achieve this there were various cryptographic

algorithms proposed. But security of these algorithms needs to

be verified. The integer factorization problem, the finite field

discrete logarithm problem and the elliptic curve discrete

logarithm problem are essential mathematical problems that

the practical public key cryptographic systems are based on.

ElGamal is one of the cryptographic algorithm, based on

discrete logarithms. Pohlig-Hellman algorithm is used for

computing discrete logarithms. This paper proposes the

parallel implementation of Pohlig-Hellman algorithm to

observe improvement in execution time as compared to

sequential execution. Paper also analyses the effect of key on

execution time.

Keywords

Discrete Logarithm Problem, Pohlig-Hellman,

Multithreading.

1. INTRODUCTION
In 1976, Whitfield Diffie and Martin Hellman proposed one

of the first public key protocols used for securely exchanging

cryptographic keys over a public channel. Taher ElGamal

later proposed a public key cryptosystem based on Diffie-

Hellman key exchange protocol. This is a public key

cryptosystem and a signature scheme. ElGamal cryptosystem

relies on discrete logarithms problem which is difficult to

solve over finite fields [6]. In many computer systems, users’

passwords are stored in a special file, which has the

disadvantage that anyone who gets access to that file is able to

freely impersonate any legitimate user. Therefore, that file has

to be specially protected by the operating system. It has been

known for a long time that one can eliminate the need for any

secrecy by eliminating the storage of passwords themselves.

Instead, one utilizes a function f that is hard to invert (i.e.,

such that given a y in the range of f, it is hard to find an x in

the domain of f such that f (x) = y) and creates a file

containing pairs (i, f (pi)), where I denotes a user’s login name

and pi the password of that user. This file can then be made

public. The security of this scheme clearly relies on the

function f being hard to invert.

Discrete Logarithm Problem is based on the concept that it is

easy to compute β ≡ αx (mod p) but difficult to find x ≡ logαβ

over GF(p) where p is a prime and α is fixed primitive

element of GF(p). The security of many cryptosystems relies

on the intractability of the discrete logarithm problem. The

following is referred to as the DLP or even sometimes as the

Generalized DLP.

Attacks on the DLP can be divided into three main categories

1. Algorithms that work in arbitrary groups, such as

the exhaustive search and the Baby-Step Giant-Step

algorithm,

2. Algorithms that work in arbitrary groups with

special conditions present in the group, like

Pollard’s rho Method, and

3. Algorithms that work only in specific groups,

 such as the Index Calculus.

2. RELATED WORK

2.1 Index Calculus Algorithm
It is the strongest family of algorithms for finding the discrete

logarithms in a cyclic group. The theme is if we can find the

discrete logarithms of some small and independent elements,

then we should be able to determine logarithms of almost any

element in the group, as most elements we can express in

terms of the small independent elements whose logs are

known [2].

Let p be a prime and let g be primitive root mod p, which

means that g is a generator for the cyclic group
 . In other

words, every can be written in the form

 for some integer k that is uniquely determined mod

P-1. Let denote the discrete logarithm of h with

respect to g and p, so [2]

Suppose we have 1 and 2. Then

which implies that

Therefore L changes multiplication into addition, just like the

classical logarithm.

The expected running time of the index calculus is

approximately a constant times exp , which

means that it is a sub exponential algorithm [3].

2.2 Baby step Giant step Algorithm
In group theory, the baby-step giant step is a meet-in-the-

middle algorithm computing the discrete logarithm. The

discrete log problem is of fundamental importance to the area

of public key cryptography. Most commonly used

cryptographic systems are based on the difficulty of discrete

logarithm problems; the more difficult it is, the more security

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.3, May 2017

6

it provides a data transfer. One way to increase the difficulty

of the discrete log problem is to base the cryptosystem on a

larger group. This method was developed by D. Shanks

requires √ N steps and √ N storage. The algorithm is based on

a space time trade off. This algorithm is a simple modification

of trial multiplication method (a naive method of finding

discrete logarithms). This attack uses a combination of

computational power and memory storage to solve the DLP.

Consider G as a cyclic group with generator α. Suppose that α

has order n and set .

Observe that if β , then using the Euclidean algorithm

we can write x as follows: , where 0 ≤ i, j < m.

Thus we have that , which

implies that . For computing the discrete

logarithm, begin by computing and storing the values)
for . Then compute and raise that to

the exponent i for and check these values

against the stored values of αj to find a match. When a match

is found, we have solved the DLP and we have
as required.

The drawbacks of this algorithm lie in the computation and

formulation of the table of pairs At each stage we are

required to compute a power of α and look in the table to see

if it returns a match. If this is successful then the DLP has

been solved. Unfortunately, one has to store around

group elements, perform around multiplications to

find the correct power of α, and in turn perform table

look-ups [1]. As a consequence this algorithm has an expected

running time of which makes it impractical for

cryptographic purposes. Procedure:-

1. Fix an integer m and compute mP

2. Make and store a list of for i m

3. Compute the points jmP for …..m-1 until one

matches an element from the stored list

4. If iP Q-jmp, we have with

2.3 Pollards Rho Algorithm
The running time of this algorithm is similar to the Baby-Step

Giant-Step method and also requires less memory, which is an

advantage. Let G be a cyclic group of order n, where n is

prime. G is then partitioned into three subsets of roughly

equal size, call these sets S1, S2 and S3. We then define a

sequence of group elements, xi, as follows: x0 = 1 and

This in turn defines two sequences of integers ai and bi. The

sequences ai and bi are defined as follows: set a0 = 0 = b0 and

for i > 0;

We then begin with a pair (x1, x2) and iteratively compute

pairs (xi, x2i) until a pair of group elements such that xi = x2i

for some i. [4] When such a pair is found we then have the

following relation:

 =

2.4 Pohlig Hellman Algorithm
The algorithm was first discovered by Roland Silver, but first

published by Stephen Pohlig and Martin Hellman

(Independent of Silver). Thus it is sometimes called as Silver

– Pohlig Hellman Algorithm. This algorithm is used for

computing discrete logarithms in a multiplicative group

whose order is a smooth integer.

The Pohlig Hellman method:

P, Q are elements in a group G and we want to find an integer

k with Q=kP. We also know the order N of P and we know

the prime factorization [5]

N=Πi

The idea of Pohlig Hellman is to find k (mod
) for each i,

then use the Chinese Remainder theorem to combine these

and obtain

Let q be a prime, and let be the exact power of q dividing

N. Write k in its base q expansion as

 k0 k1q k2q
2 …..

with . We will evaluate by

successively determining , ,

The procedure is as follows [2]:

1. Compute T = {j (

.P) 0 ≤ j ≤ q-1

2. Compute

.Q . This will be an element of k0

. P of T.

3. If e = 1, stop. Otherwise, continue.

4. Let Q1 – k0P

5. Compute

.Q . This will be an element of 1

. P of T

6. If e=2 stop otherwise continue. Suppose we have computed

k0, k1, , kr-1, and Q1, , Qr-1.

7. Let Qr Qr-1 – qr-1 .

8. Determine kr such that

. = (

 P)

9. If r = e -1 , stop. Otherwise, return to step (7).

Then k1q ke 1q
e 1 (mod qe). Therefore we find

 1. similarly, the method produces 2 , 3 ,….. We have to

3. PROPOSED METHOD
Discrete logarithm problem is solved here using Pohlig-

Hellman Algorithm. Discrete logarithm problem is to

calculate X in :

β ≡ αX (mod P).

Inputs to the algorithm are α, β and P, where P is a large

prime number and X is unknown. Multithreading concept is

used for parallel execution of the Pohlig-Hellman algorithm.

Step 1: Inputs for alpha (α), beta (β) and prime number P are

accepted.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.3, May 2017

7

Step 2: Prime Factors of P-1 are calculated.

Step 3: A thread is created for each prime factor of P-1.

Step 4: Factors are used to compute equations for X

Step 5: Using these equations Pohlig-Hellman algorithm

generates modulus equations.

Step 6: Output of Pohlig-Hellman is given to Chinese

remainder theorem

Step 7: Chinese remainder theorem gives the value of X,

which is the final result.

Fig 1: Proposed system and its components

4. METHODOLOGY
The proposed parallel method is implemented using Java

programing language. Developed program is executed on x64-

based system with 4GB DDR3 RAM and processor - Intel(R)

Core(TM) i5-3210M CPU @ 2.50GHz, 2501 MHz, 2 Core(s),

4 Logical Processor(s).

5. RESULTS
For random cases of prime numbers with digits ranging from

10 to 33, the serial and parallel execution time is computed.

And the results are depicted in Table 2. The graph of the same

is shown in Fig 2. The relationship between execution time of

Parallel and Serial and Number of digits in P is also depicted

in graph.

Table 1: Output

Prime Number No of Digits Alpha Beta No. of Prime

factors

Serial Exec.

Time(sec.)

Parallel Exec.

Time(sec.)

2860486313 10 805134798 11796346756 4 0.35542385 0.311159617

501096024853 12 34423486 32170773092 5 49.494820247 47.3468896404

2814112013697373

1333

20 95868702899 2579922701753118

2788

5 47.794943773 44.0839887546

6189700196426901

37449562111

27 8549034111234 1811974120718768

71279130704

11 0.74736394 0.72421763

1622592768292133

6339157801028812

7

33 509183241453194

1243

3376684179794957

7708534830485778

7 60.626447344 31.456063906

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.3, May 2017

8

Fig 2: Execution Time graph

6. CONCLUSION
Computing discrete logarithms is basis for many

cryptographic protocols. The discrete logarithm problem is

considered to be computationally intractable. That is, no

efficient classical algorithm is known for computing discrete

logarithms in general. More sophisticated algorithms exist,

but none of them run in polynomial time. Pohlig-Hellman is

one of the algorithm used for computing discrete logarithms.

In this paper proposed the parallel implementation of Pohlig-

Hellman. After factorization, thread wise computation is

carried for each of the factor of one less than prime number

(p-1). It is observed that as the number of digits in prime

number increases, the execution time of parallel

implementation decreases as compared to serial

implementation. Expected speedup is n times the serial

execution of Pohlig-Hellman, where n is the number of factors

of (p-1).

7. REFERENCES
[1] Mrs. Santoshi Pote and Mrs. Jayashree Katti 2015

“Attacks on Elliptic Curve Cryptography Discrete

Logarithm Problem (EC-DLP)”.

[2] Lawrence C. Washington university of Maryland

“Elliptic Curves Number Theory and Cryptography”.

[3] Jason S. Howell, “The index calculus algorithm for

discrete logarithm”, March 31, 1998.

[4] Joppe W.BOS, Alina Dudeanu, Dimitar Jetchev,

“Collision bounds for the additive pollard rho algorithm

for solving discrete logarithms”.

[5] EDLYN TESKE, “The Pohlig-Hellman Method

Generalized for Group Structure Computation”.

[6] ElGamal T. A public key cryptosystem and a signature

scheme based on discret logarithms [J].IEEE

Transactions on information Theory,1985,31(4):469-472.

IJCATM : www.ijcaonline.org

