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ABSTRACT 

Almost half of the world is now connected to the Internet and 

it has become an integral part of our day to day life. The usage 

of Internet varies from personal communication to high level 

business transactions. So security of these Internet services is 

necessary to maintain Confidentiality, Integrity and 

Availability. To achieve this there were various cryptographic 

algorithms proposed. But security of these algorithms needs to 

be verified. The integer factorization problem, the finite field 

discrete logarithm problem and the elliptic curve discrete 

logarithm problem are essential mathematical problems that 

the practical public key cryptographic systems are based on. 

ElGamal is one of the cryptographic algorithm, based on 

discrete logarithms. Pohlig-Hellman algorithm is used for 

computing discrete logarithms. This paper proposes the 

parallel implementation of Pohlig-Hellman algorithm to 

observe improvement in execution time as compared to 

sequential execution. Paper also analyses the effect of key on 

execution time. 
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1. INTRODUCTION 
In 1976, Whitfield Diffie and Martin Hellman proposed one 

of the first public key protocols used for securely exchanging 

cryptographic keys over a public channel. Taher ElGamal 

later proposed a public key cryptosystem based on Diffie-

Hellman key exchange protocol. This is a public key 

cryptosystem and a signature scheme. ElGamal cryptosystem 

relies on discrete logarithms problem which is difficult to 

solve over finite fields [6]. In many computer systems, users’ 

passwords are stored in a special file, which has the 

disadvantage that anyone who gets access to that file is able to 

freely impersonate any legitimate user. Therefore, that file has 

to be specially protected by the operating system. It has been 

known for a long time that one can eliminate the need for any 

secrecy by eliminating the storage of passwords themselves. 

Instead, one utilizes a function f that is hard to invert (i.e., 

such that given a y in the range of f, it is hard to find an x in 

the domain of f such that f (x) = y) and creates a file 

containing pairs (i, f (pi)), where I denotes a user’s login name 

and pi the password of that user. This file can then be made 

public. The security of this scheme clearly relies on the 

function f being hard to invert. 

Discrete Logarithm Problem is based on the concept that it is 

easy to compute β ≡ αx (mod p) but difficult to find x ≡ logαβ 

over GF(p) where p is a prime and α is fixed primitive 

element of GF(p). The security of many cryptosystems relies 

on the intractability of the discrete logarithm problem. The 

following is referred to as the DLP or even sometimes as the 

Generalized DLP. 

Attacks on the DLP can be divided into three main categories 

1. Algorithms that work in arbitrary groups, such as 

the exhaustive search and the Baby-Step Giant-Step 

algorithm, 

2. Algorithms that work in arbitrary groups with 

special conditions present in the group, like 

Pollard’s rho Method, and 

3. Algorithms that work only in specific groups,

 such as the Index Calculus. 

2. RELATED WORK 

2.1 Index Calculus Algorithm 
It is the strongest family of algorithms for finding the discrete 

logarithms in a cyclic group. The theme is if we can find the 

discrete logarithms of some small and independent elements, 

then we should be able to determine logarithms of almost any 

element in the group, as most elements we can express in 

terms of the small independent elements whose logs are 

known [2]. 

Let p be a prime and let g be primitive root mod p, which 

means that g is a generator for the cyclic group  
 . In other 

words, every             can be written in the form 

       for some integer k that is uniquely determined mod 

P-1. Let           denote the discrete logarithm of h with 

respect to g and p, so [2] 

                                               

Suppose we have  1 and  2. Then 

                                             

which implies that 

                              

Therefore L changes multiplication into addition, just like the 

classical logarithm. 

The expected running time of the index calculus is 

approximately a constant times exp             , which 

means that it is a sub exponential algorithm [3]. 

2.2 Baby step Giant step Algorithm 
In group theory, the baby-step giant step is a meet-in-the-

middle algorithm computing the discrete logarithm. The 

discrete log problem is of fundamental importance to the area 

of public key cryptography. Most commonly used 

cryptographic systems are based on the difficulty of discrete 

logarithm problems; the more difficult it is, the more security 
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it provides a data transfer. One way to increase the difficulty 

of the discrete log problem is to base the cryptosystem on a 

larger group. This method was developed by D. Shanks 

requires √ N steps and √ N storage. The algorithm is based on 

a space time trade off. This algorithm is a simple modification 

of trial multiplication method (a naive method of finding 

discrete logarithms). This attack uses a combination of 

computational power and memory storage to solve the DLP. 

Consider G as a cyclic group with generator α. Suppose that α 

has order n and set        .  

Observe that if β     , then using the Euclidean algorithm 

we can write x as follows:       , where 0 ≤ i, j < m. 

Thus we have that                      , which 

implies that              . For computing the discrete 

logarithm, begin by computing and storing the values       ) 
for          . Then compute         and raise that to 

the exponent i for             and check these values 

against the stored values of αj to find a match. When a match 

is found, we have solved the DLP and we have           
as required. 

The drawbacks of this algorithm lie in the computation and 

formulation of the table of pairs          At each stage we are 

required to compute a power of α and look in the table to see 

if it returns a match. If this is successful then the DLP has 

been solved. Unfortunately, one has to store around         

group elements, perform around         multiplications to 

find the correct power of α, and in turn perform         table 

look-ups [1]. As a consequence this algorithm has an expected 

running time of         which makes it impractical for 

cryptographic purposes.  Procedure:-  

1. Fix an integer m     and compute mP 

2. Make and store a list of    for   i m 

3. Compute the points   jmP for      …..m-1 until one 

matches an element from the stored list 

4. If iP Q-jmp, we have     with               

2.3 Pollards Rho Algorithm 
The running time of this algorithm is similar to the Baby-Step 

Giant-Step method and also requires less memory, which is an 

advantage. Let G be a cyclic group of order n, where n is 

prime. G is then partitioned into three subsets of roughly 

equal size, call these sets S1, S2 and S3. We then define a 

sequence of group elements, xi, as follows: x0 = 1 and 

             

   

  
 

    

         

                
                
                

 

This in turn defines two sequences of integers ai and bi. The 

sequences ai and bi are defined as follows: set a0 = 0 = b0 and 

for i > 0; 

         

                                         
                                
                           

 
                
                
                

 

         

                           
                                
                                         

 
                
                
                

 

We then begin with a pair (x1, x2) and iteratively compute 

pairs (xi, x2i) until  a pair of group elements such that xi = x2i 

for some i. [4] When such a pair is found we then have the 

following relation: 

                                    

                                 

                              =                    

                  
                    

2.4 Pohlig Hellman Algorithm 
The algorithm was first discovered by Roland Silver, but first 

published by Stephen Pohlig and Martin Hellman 

(Independent of Silver). Thus it is sometimes called as Silver 

– Pohlig Hellman Algorithm. This algorithm is used for 

computing discrete logarithms in a multiplicative group 

whose order is a smooth integer.  

The Pohlig Hellman method: 

P, Q are elements in a group G and we want to find an integer 

k with Q=kP. We also know the order N of P and we know 

the prime factorization [5] 

N=Πi  
   

The idea of Pohlig Hellman is to find k (mod   
   ) for each i, 

then use the Chinese Remainder theorem to combine these 

and obtain            

Let q be a prime, and let    be the exact power of q dividing 

N. Write k in its base q expansion as 

   k0   k1q   k2q
2   ….. 

with           . We will evaluate           by 

successively determining           , .... ,       

The procedure is as follows [2]: 

1. Compute T = {j ( 
 

 
.P) 0 ≤ j ≤ q-1 

2. Compute 
 

 
.Q . This will be an element of k0  

 

 
. P  of T. 

3. If e = 1, stop. Otherwise, continue. 

4. Let Q1     – k0P  

5. Compute 
 

  
.Q . This will be an element of  1

 

 
. P of T 

6. If e=2 stop otherwise continue. Suppose we have computed 

k0, k1, .... , kr-1, and Q1, .... , Qr-1. 

7. Let Qr   Qr-1 –     qr-1 . 

8. Determine kr such that  
 

    
.   =    ( 

 

 
 P) 

9. If r = e -1 , stop. Otherwise, return to step (7). 

Then       k1q  ke 1q
e 1 (mod qe ).  Therefore we find 

 1. similarly, the method produces  2 ,  3 ,….. We have to 

                   

3. PROPOSED METHOD 
Discrete logarithm problem is solved here using Pohlig-

Hellman Algorithm. Discrete logarithm problem is to 

calculate X in : 

β ≡ αX (mod P). 

Inputs to the algorithm are α, β and P, where P is a large 

prime number and X is unknown. Multithreading concept is 

used for parallel execution of the Pohlig-Hellman algorithm. 

Step 1: Inputs for alpha (α), beta (β) and prime number P are 

accepted. 
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Step 2: Prime Factors of P-1 are calculated.          

Step 3: A thread is created for each prime factor of P-1. 

Step 4: Factors are used to compute equations for X 

Step 5: Using these equations Pohlig-Hellman algorithm 

generates modulus equations. 

Step 6: Output of Pohlig-Hellman is given to Chinese 

remainder theorem  

Step 7: Chinese remainder theorem gives the value of X, 

which is the final result. 

 

Fig 1: Proposed system and its components 

 

4. METHODOLOGY 
The proposed parallel method is implemented using Java 

programing language. Developed program is executed on x64-

based system with 4GB DDR3 RAM and processor - Intel(R) 

Core(TM) i5-3210M CPU @ 2.50GHz, 2501 MHz, 2 Core(s), 

4 Logical Processor(s). 

5. RESULTS 
For random cases of prime numbers with digits ranging from 

10 to 33, the serial and parallel execution time is computed. 

And the results are depicted in Table 2. The graph of the same 

is shown in Fig 2. The relationship between execution time of 

Parallel and Serial and Number of digits in P is also depicted 

in graph. 

Table 1: Output

Prime Number No of Digits Alpha Beta No. of  Prime 

factors 

Serial Exec. 

Time(sec.) 

Parallel Exec. 

Time(sec.) 

2860486313 10 805134798 11796346756 4 0.35542385 0.311159617 

501096024853 12 34423486 32170773092 5 49.494820247 47.3468896404 

2814112013697373

1333 

20 95868702899 2579922701753118

2788 

5 47.794943773 44.0839887546 

6189700196426901

37449562111 

27 8549034111234 1811974120718768

71279130704 

11 0.74736394 0.72421763 

1622592768292133

6339157801028812

7 

33 509183241453194

1243 

3376684179794957

7708534830485778 

7 60.626447344 31.456063906 
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Fig 2:  Execution Time graph 

6. CONCLUSION 
Computing discrete logarithms is basis for many 

cryptographic protocols. The discrete logarithm problem is 

considered to be computationally intractable. That is, no 

efficient classical algorithm is known for computing discrete 

logarithms in general. More sophisticated algorithms exist, 

but none of them run in polynomial time. Pohlig-Hellman is 

one of the algorithm used for computing discrete logarithms. 

In this paper proposed the parallel implementation of Pohlig-

Hellman. After factorization, thread wise computation is 

carried for each of the factor of one less than prime number 

(p-1).  It is observed that as the number of digits in prime 

number increases, the execution time of parallel 

implementation decreases as compared to serial 

implementation. Expected speedup is n times the serial 

execution of Pohlig-Hellman, where n is the number of factors 

of (p-1). 
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