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ABSTRACT 

In this paper we prove some properties of ideals that are 

preserved under localization. Also, we establish several one to 

one correspondences between certain types of ideals in the 

ring and its localization at multiplicative systems. We 

introduce two concepts such as   prime radical and 

  minimal prime ideals and the relations of   prime radical 

with the prime radical and Jacobson radical of a ring under 

localization are determined. Also, we prove a one to one 

correspondence between   minimal primal ideals of a given 

ideal   of a ring   and the minimal prime ideals of the ideal 

   of   , where   is a prime ideal of  .   

Keywords 

Multiplicative system, Localization of a ring,   prime 

radical,   minimal prime ideal,   semisimple ring and 

  Jacobson radical(       ). 

1. INTRODUCTION 
Let   be a commutative ring with identity. A nonempty subset 

  of   is called a multiplicative system in  , if     and 

      implies that      [4]. An ideal   of   is called a 

principal ideal of  , if      , for some     and   is 

called a principal ideal ring if every ideal of   is a principal 

ideal [1]. The spectrum of  , is denoted by         and 

defined as              is a prime ideal of    and the 

prime radical of   is denoted by        and defined as 

                    and   is said to be without prime 

radical if          [1]. The maximal spectrum of   is 

denoted by          defined as               is a 

maximal ideal of    and the Jacobson radical of  , denoted by 

       (or      [5]), is defined as                     

and   is called a semisimple ring if          [1]. The Nil 

Radical of an ideal  , is defined as             , for 

some positive integer    [1]. A prime ideal   of   is called a 

Minimal Prime Ideal of   if     and   contains no prime 

ideal   with       and   is called a minimal prime ideal 

of   if   contains no prime ideal   with    . Let   be an 

ideal of   and       be defined as                , 

for some      [2,3]. 

2. SOME PROPERTIES OF IDEALS 

THAT ARE PRESERVED UNDER 

LOCALIZATION,   RADICAL 

IDEALS AND   MINIMAL PRIME 

IDEALS 

2.1 Some properties of ideals that are 

preserved under localization 
In this section, we prove some algebraic properties of ideals 

which are preserved under localization and we start with the 

following result which determines the radically property of 

ideals in the both rings   and   . 

Proposition 2.1.1. Let   be a commutative ring with identity 

and   be an ideal of  . If   is a multiplicative system in  , 

then          . 

Proof. Let 
 

 
    , where        . Then,  

 

 
     , for 

some     , that is 
  

     , there exists     such that 

     , and then                , so that       and 

thus we get 
 

 
 

 

 

 

 
 

  

  
      . Hence,          . 

Next, let 
 

 
      , where        , then      , for 

some    , so that        , for some     . Then, we get 

 
 

 
   

  

  

  

  
 

     

    
   , so that 

 

 
    , thus we 

get         . Hence, we have          .     

     As a corollary to the above proposition we give the 

following. 

Corollary 2.1.2. Let   be a commutative ring with identity 

and   be an ideal of  . If   is a prime ideal of  , then 

         .  

Proof. As   is a prime ideal, we have     is a multiplicative 

system in  , so by taking       in Proposition 2.1.1, the 

result follows at once. 

Proposition 2.1.3. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If     are ideals of   

such that       and          , then    . In 

particular, if      and          , then    . 

Proof. Let    . Let     (this is possible since,    ), 

then we have 
 

 
   , so     , for some    . If    , 

then        , which contradicts the fact that         
 , so that we must have    . Hence    . For the second 

part, if     is any element, then 
 

 
  , so that     , for 

some    . If    , then        , which is a 

contradiction, so we must have    . Hence,    . 

     As a corollary to the above proposition, we give the 

following. 

Corollary 2.1.4. Let   be a commutative ring with identity 

and   be a prime ideal of  . If     are ideals of   such that 

      and        , then    . In particular, if      

and        , then    . 

Proof. As     is a multiplicative system in   and 

              if and only if        , so by taking 

      in Proposition 2.1.3, the proof will follows at once. 

     In the following result, we prove that every proper ideal of 

   is a localization of some proper ideal of  .         
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Proposition 2.1.5. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If    is an ideal of   , 

then there exists an ideal   of   with      . Furthermore, if 

   is a proper ideal of   , then   is a proper ideal of  . 

Proof. As    , let    . Now, let        
  

 
    . 

One can easily show that   is an ideal of  . Next, we will 

show that      . Let, 
 

 
   , where        . Then 

  

 
 

  

 

 

 
   , so that    , so we have 

 

 
   . Hence, 

     . Let 
 

 
   , where        , then we have    

 , for some    . Hence, we get 
   

 
   . Then, 

 

 
 

 

  

   

 
 

  , so that      . Hence,       . Next, if    , then 

   , so that 
 

 
      , this implies that      , which is 

a contradiction. Hence,   is a proper ideal of  . 

     Now, we prove that, under certain condition a localization 

of a primary ideal is also a primary ideal.   

Proposition 2.1.6. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If   is a primary ideal 

of   such that      , then    is a primary ideal of   .  

Proof. As      , by [4], we have      , so that    is a 

proper ideal of   . Let 
 

 

 

 
   , where       and      , 

then 
  

  
   , so that      , for some    . If 

 

 
   , 

then     and as   is primary, we get        , for some 

    . Then,  
 

 
   

  

   
  

  

  

   
     

       , so that    is a 

primary ideal of   . 

      Next, we prove that every primary ideal of    is a 

localization of a primary ideal of   disjoint from  .  

Proposition 2.1.7. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If    is a primary ideal 

of   , then there exists a primary ideal   of   with        

and      . 

Proof. By Proposition 2.1.5, we have      , where   

     
  

 
     is an ideal of   and     is some fixed 

element. As,      , by [4], we get       and as    is 

proper, we get   is a proper ideal of  . Let for      , we 

have      but    , then 
  

 

  

 
 

   

 
   . If 

  

 
    

  , then    , which is a contradiction, thus 
  

 
    and as 

   is primary, we get  
  

 
     , for some     , then we 

get 
   

 
 

    

    

   

 
 

    

    
  

 
        , so that     . 

Hence,   is a primary ideal of  . 

     By combining Proposition 2.1.6 and Proposition 2.1.7, we 

get the following theorem. 

Theorem 2.1.8. Let   be a commutative ring with identity 

and   be a multiplicative system in  . Then, there is a one to 

one correspondence between the primary ideals of    and the 

primary ideals of   which does not meet  . 

Proof. Let        is a primary ideal of   with        
and          is a primary ideal of    . Define       as 

follows: If    , then   is a primary ideal of   and     
 , then by Proposition 2.1.6, we get    is a primary ideal of 

  , so that     , so we define        . One can easily 

show that   defines a one to one correspondence between   

and  .      

     As a corollary to Theorem 2.1.8, we give the following 

corollary.            

Corollary 2.1.9. Let   be a commutative ring with identity 

and   be a prime ideal of  , then there is a one to one 

correspondence between the primary ideals of    and the 

primary ideals of   which contained in  . 

Proof. As     is a multiplicative system in   and since for 

any primary ideal   of  , we have           if and 

only if    , so by taking        in Theorem 2.1.8, the 

proof will follows at once. 

     In the next two results, we establish a one to one 

correspondence between the maximal ideals of    and 

maximal ideals of   which are disjoint from  .  

Proposition 2.1.10. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If   is a maximal ideal 

of   with the property that,      , then    is a maximal 

ideal of   . 

Proof. As      , by [4], we get      . Now, let    be 

any ideal of    such that          with      , then by 

Proposition 2.1.5, we have      , for the proper ideal 

       
  

 
    , where    . As,         , by [4], we 

get      , then we have         . Next, let    , 

then     , so that 
  

 
      , so that    . Hence, we get  

      and as   is maximal, we get    , which gives 

     . Hence,    is a maximal ideal of    

Proposition 2.1.11. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If    is a maximal ideal 

of   , then      , for some maximal ideal   of   with 

     . 

Proof. By Proposition 2.1.5, we have      , for the proper 

ideal        
  

 
     and  some fixed    . As    

     , by [4], we get      . To show   is maximal, let 

  be any ideal of   such that             with 

     , then            . If    , then there exists 

    but    . Then,     , so that, 
  

 
   , but 

  

 
    and 

as    is maximal, we get      , then by [4], we get     
 , which is a contradiction, so that    . Hence,   is 

maximal with respect to the disjoin-ness property from  . 

     In the next few results, we prove that there is a one to one 

correspondence between the nil (nilpotent) ideals of the rings 

  and   .  

Lemma 2.1.12. Let   be a commutative ring with identity and 

  be a multiplicative system in  . If   is a nilpotent (resp. a 

nil) ideal of  , then    is a nilpotent (resp. a nil) ideal of   .  

Proof. As   is nilpotent, we have     , for some     , 

then     
         , so that    is nilpotent. For the 

second part, let 
 

 
   , where        , then we have  

    , for  some    , that gives        , for some 

     and  then  
 

 
   

  

  

  

   
     

     
  . Hence,    is a nil 

ideal of   . 

Corollary 2.1.13. Let   be a commutative ring with identity 

and   be a prime ideal of  . If   is a nilpotent (resp. a nil) 

ideal of  , then    is a nilpotent (resp. a nil) ideal of   . 

Proof. By taking       in Lemma 2.1.12, the result will 

follow directly.   
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Lemma 2.1.14. Let   be a commutative ring with identity and 

  be a multiplicative system in   and          . If    is a 

nilpotent (resp. a nil) ideal of   , then      , for some 

nilpotent (resp. nil) ideal   of  . 

Proof. By Proposition 2.1.5, we have      , for the ideal 

       
  

 
    , where     is a fixed element and as    

is nilpotent, we have        , for some     , so that 

          
          and since,          , so by 

Proposition 2.1.3, we get     . Hence,   is nilpotent. For 

the proof of second part, let    , then 
  

 
       and as    

is nil, we get  
  

 
    , for some     , then 

   

 
 

    

  
 

 
  

 
    , so that       , for some     and then,    

 . If     , then         , which contradicts the fact that 

         . Hence,     , that means   is a nil ideal of 

 . 

     Now, we get the following corollary. 

Corollary 2.1.15. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If   is an ideal of   

such that    is a nilpotent (resp. a nil) ideal of    and 

         , then   is a nilpotent (resp. a nil) ideal of  . In 

particular, if   is a prime ideal of   such that    is a nilpotent 

(resp. a nil) ideal of    and        , then   is a nilpotent 

(resp. a nil) ideal of  . 

Proof. The proof of the first part follows directly as the same 

as in Lemma 2.1.14 and the proof of second part follows by 

taking       in Lemma 2.1.14 and from the fact that 

              if and only if        . 

Corollary 2.1.16. Let   be a commutative ring with identity 

and   be a prime ideal of   such that        . If    is a 

nilpotent (resp. a nil) ideal of   , then      , for some 

nilpotent (resp. nil) ideal   of  . 

Proof. Since,     is a multiplicative system in   and since, 

               if and only if        , so by taking 

      in Lemma 2.1.14, the proof will follows directly. 

Lemma 2.1.17. Let   be a commutative ring with identity and 

  be a multiplicative system in  . If         and   is an 

ideal of  , then 
 

 
        . 

Proof. Let 
 

 
   , where        , then     , for some 

   , then        and that 
 

 

 

 
 

 

 

 

 

 

 
 

   

   
      , so 

that 
 

 
        . Next, let 

 

 
      , where        . 

Then,      , for some    , so      , for some     

and that     . Now, we have 
 

 
 

 

 

 

 
 

  

  
 

  

  
  

 

 

 

 

 

 
 

 

 

  

  
 

 

 
  , so that       

 

 
  . Hence, 

 

 
        . 

Corollary 2.1.18. Let   be a commutative ring with identity 

and   be a prime ideal of  . If         and   is an ideal 

of  , then 
 

 
        . 

Proof. By taking       in Lemma 2.1.17, the result 

follows directly. 

     The remaining results of this section deal with the concept 

of principality of ideals in the both rings   and   . In fact, we 

prove some results concerning this concept and among these 

results, we prove that a localization of a principal ideal ring is 

also a principal ideal ring.        

Proposition 2.1.19. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If   is a principal ideal 

ring, then    is a principal ideal ring. 

Proof. Let   , be any ideal of   , then by Proposition 2.1.5, 

we have      , for the ideal        
  

 
     and a fixed 

   . As   is a principal ideal ring, we get      , for 

some    . Clearly,    , so that 
  

 
   , so that  

  

 
  

  . Let 
 

 
      , where        , then     , for some 

   , so that      , for some    . Now, we have 
 

 
 

 

 

 

 

 

 
 

   

   
 

 

 

  

  
 

 

  

  

 
  

  

 
 , so that     

  

 
 , 

thus     
  

 
 . Hence,    is a principal ideal ring. 

Corollary 2.1.20. Let   be a commutative ring with identity 

and   be a prime ideal of  . If   is a principal ideal ring, then 

   is a principal ideal ring. 

Proof. Take       in Proposition 2.1.19, the result 

follows directly. 

Proposition 2.1.21. Let   be a commutative ring with identity 

and   be a multiplicative system in   such that     
       , for every    . If    is a principal ideal ring, 

then   is a principal ideal ring. 

Proof. Let   be any ideal of  , then    is an ideal of   , so 

that     
 

 
 , for some 

 

 
   , where        , then 

    , for some    , so that       . Next, let    , 

then 
 

 
   , so that 

 

 
 

 

 

 

 
 

  

  
 

 

 

  

  
 

   

   
, for some 

       , so                 , for some    , 

then,       . If       , then              , 

which is a contradiction, so that       , then        

and thus       . Hence,   is a principal ideal ring. 

Corollary 2.1.22. Let   be a commutative ring with identity 

and   be a prime ideal of   such that          , for 

every    . If    is a principal ideal ring, then   is a 

principal ideal ring. 

Proof. By taking       in Proposition 2.1.21, the result 

follows from the fact that, for every    , we have     
        if and only if          . 

Lemma 2.1.23. Let   be a commutative ring with identity and 

  be a multiplicative system in   with     and    , then 

(1)        
 

 
 . 

(2) If   is an ideal of   such that           and 
 

 
   , 

then    . 

Proof. (1) Let 
 

 
     , where        , then     

  , for some    . Thus,      , for some    . Now, 
 

 
 

 

 

 

 

 

 
 

   

   
  

   

   
 

  

  

 

 
  

 

 
 . Hence,       

 

 
 . 

Let, 
 

 
  

 

 
 , where        , then 

 

 
 

 

 

 

 
 

  

  
 

     (since,       ), so that  
 

 
      . Hence, 

we get       
 

 
 . 

(2) 
 

 
    implies that     , for some    . If    , then 

       , which contradicts the fact that          , so 

that we must have    .  

Corollary 2.1.24. Let   be a commutative ring with identity 

and   be a prime ideal of   with     and    , then 
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(1)        
 

 
 . 

(2) If   is an ideal of   such that         and 
 

 
   , then 

   . 

Proof. By taking       in Lemma 2.1.23 and using that 

fact that,               if and only if        , the 

result follows directly. 

Proposition 2.1.25. Let   be a commutative ring with identity 

and   be a multiplicatively closed set in   with     and 

    such that            . Then,     is a prime 

ideal of   if and only if        
 

 
   is a prime ideal of 

  . 

Proof. Let     be a prime ideal of  . As     
       , we have                   , so by 

[4], we have      is a prime ideal of   . Now, let       
be a prime ideal of   . If      , then        , so 

that     , for some    , then          , so we 

have 
 

 
     , so that         , which is a 

contradiction, so that     is a proper ideal of  . Let, for 

     , we have       , then 
 

 

 

 
 

  

  
     , and as 

     is prime, we get 
 

 
      or 

 

 
     . Then, by 

Lemma 2.1.23, the former case gives       and the latter 

case gives      . Hence,     is a prime ideal of  . 

Corollary 2.1.26. Let   be a commutative ring with identity 

and   be a prime ideal of   with     and     such that 

         . Then,     is a prime ideal of   if and 

only if         
 

 
   is a prime ideal of   . 

Proof. By taking       in Proposition 2.1.25, the proof 

follows directly from the fact that             if and 

only if          .  

2.2   radical ideals and   minimal prime 

ideals 
In this section, we introduce two concepts namely,   radical 

ideals and   minimal prime ideals in commutative rings and 

we study the relations that combining these concepts with 

prime radicals, Jacobson radicals and minimal prime ideals, 

but first, we introduce the following definition.  

Definition 2.2.1. Let   be a commutative ring with identity 

and   be a multiplicative system in  . We define, 

              is a prime ideal of   such that        
and                      . We say that   is without 

  prime radical if          . 

     The first relation that we prove is that, the localization of 

the   Radical of a ring is the same as the prime radical of the 

localization of the ring.     

Proposition 2.2.2. Let   be a commutative ring with identity 

and   be a multiplicative system in  , then         
          .  

Proof. Let 
 

 
        , where        . Let   

        , so that   is a prime ideal of   such that      , 

then by [4], we get that    is a prime ideal of   , that means 

           . Hence, 
 

 
   , then     , for some    . 

Since,   is prime and      , we get that    , so that 

          and that 
 

 
           . Hence, we get 

                  . Next, let 
 

 
           , so that 

          , for some    . Let            , so that    

is a prime ideal of   . Then, by [4], there is a prime ideal   of 

  such that       and      , so that           . 

Hence,      and then, 
 

 
 

 

 

 

 
 

  

  
      , so that 

 

 
        , this gives                   . Hence, we 

get                   . 

     Now, we give the following corollary. 

Corollary 2.2.3. Let   be a commutative ring with identity 

and   be a prime ideal of  , then                   . 

Proof. By taking       in Proposition 2.2.2, the proof 

will follows directly. 

     In the following result, we prove that if   is without 

  prime radical, then    is without prime radical, but the 

converse is true under the  disjointness of   from      . 

Proposition 2.2.4. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If   is without 

  prime radical, then    is without prime radical. If, in 

addition to the above, we have           and    is 

without prime radical, then   is without   prime radical as 

well as it is without prime radical.  

Proof. We have,          , so by Proposition 2.2.2, we 

get          , so that    is without prime radical. To 

prove the second part, let          , then by Proposition 

2.2.2, we have              and since,          , so 

by Proposition 2.1.3, we get          . Hence,   is 

without   prime radical. Now, as                 , so 

that we have                and this implies that 

        , so that   is without prime radical.   

     Next, we give the following corollary. 

Corollary 2.2.5. Let   be a commutative ring with identity 

and   be a prime ideal of  . If   is without   prime radical, 

then    is without prime radical. If, in addition to the above, 

we have         and    is without prime radical, then   is 

without   prime radical as well as it is without prime 

radical. 

Proof. As,     is a multiplicative system in   and 

              if and only if        , so by taking 

      in Proposition 2.2.4, the proof will follows directly. 

     Now, we introduce the following definition. 

Definition 2.2.6. Let   be a commutative ring with identity 

and   be a multiplicative system in  . The maximal spectrum 

of  , is denoted by         , and defined as          
     is a maximal ideal of   . Also, we define 

               is a maximal ideal of   such that 

       and                       . We say that   is 

  semisimple (or   is without   Jacobson radical), if 

         .      

     It is obvious that, an   semisimple ring   is always a 

semisimple ring, since if          , then as 

                  , we get                and 

this gives         . 

     Next, we prove that, for a multiplicative system   in  , the 

localization of the   Jacobson radical of a ring is the same as 

the Jacobson radical of the localization of the ring.     

Proposition 2.2.7. If   is a commutative ring with identity 

and   is a multiplicative system in  , then         
          .  
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Proof. Let 
 

 
        , where        . Let   

         , so that   is a maximal ideal of   with      . 

By Proposition 2.1.10,    is a maximal ideal of   , that is, 

            , thus 
 

 
   . As   is prime and      , 

one can easily get that    , so that          , then we 

get 
 

 
           . Hence,                   . Next, 

let 
 

 
           , for        . Then,           , 

for some    . Let             , so that    is a maximal 

ideal of   , then by Proposition 2.1.11, we have      , for 

some maximal ideal   of   with respect to the property 

     , so that            . Hence,     . Then, 
 

 
 

 

 

 

 
 

  

  
      , so that we get 

 

 
         and 

thus                  . Hence,                   .          

     As a corollary to this result, we give the following. 

Corollary 2.2.8. If   is a commutative ring with identity and 

  is a prime ideal of  , then                   . 

Proof. By taking       in Proposition 2.2.7, the result 

follows directly. 

     Now, we introduce the following definitions. 

Definition 2.2.9. Let   be a commutative ring with identity 

and   be a multiplicative system in  . We say that a prime 

ideal   of   is an   minimal prime ideal of an ideal   of  , 

if   is minimal in the set of all prime ideals which contain   

and do not meet  . 

     To make the above definition more clear, we say that   is 

an   minimal prime ideal of  , if   is a prime ideal of  , 

   ,       and if   is any prime ideal of   such that 

    and      , then    . 

     The following result shows that, the localization an 

  minimal prime ideal of an ideal is a minimal prime ideal 

of the given ideal, but the converse is true for minimal prime 

ideals which themselves are prime as we prove in Proposition 

2.2.14.   

Proposition 2.2.10. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If   is an ideal of   and 

  is an   minimal prime ideal of  , then    is a minimal 

prime ideal of   . 

Proof. We have   is a prime ideal of   with     and   is 

minimal in the set of all prime ideals of   that contain   and 

     . Then,       and    is a prime ideal of   . Let    

be any prime ideal of    such that      . To show that 

     . By [4], we have      , for the prime ideal   

     
  

 
    , of   with      , where    . Then, 

     . Clearly, we have     and we will show that 

   . As    , let    . If     is any element, then 

    , thus 
  

 
      , so that    . Hence,     and as 

  is a minimal prime ideal of  , we get    , which gives 

        . Hence,    is a minimal prime ideal of   . 

     Now, we give the following corollary. 

Corollary 2.2.11. Let   be a commutative ring with identity 

and   be a prime ideal of  . If   is an ideal of   and   is a 

minimal prime ideal of   with    , then    is a minimal 

prime ideal of   . 

Proof. By taking       and since           if and 

only if    , then the proof will follows directly. 

Proposition 2.2.12. Let   be a commutative ring with identity 

and   be a multiplicatively 

closed set in  . If    is an ideal of   , then for any    , we 

have        
  

 
     is an ideal of   with      . 

Furthermore, if    is a prime ideal of   , then   is a prime ideal 

of   with      .  

Proof. By Proposition 2.1.5, we have      , for the proper 

ideal        
  

 
      of  . Next, to prove   is a prime 

ideal of  . As         , by [4], we get      , now, if 

possible suppose that    , then    , so that 
  

 
   , that is 

 

 
   , so that      , which is a contradiction. Hence,    . 

Let     , where      , then 
  

 

  

 
 

   

 
    and as    is 

prime, we get 
  

 
    or 

  

 
   . The former case gives     

and the latter case gives    . Hence,   is a prime ideal of  . 

If      , then there exists     and    , so 
 

 
       

and thus we get      , which is a contradiction. Hence, 

     .   

     We give the following corollary. 

Corollary 2.2.13. Let   be a commutative ring with identity 

and   be a prime ideal of  . If    is an ideal of   , then we 

have        
 

 
     is an ideal of   with      . 

Furthermore, if    is a prime ideal of   , then   is a prime ideal 

of   with    . 

Proof. As       is a multiplicative system in  , so by 

taking            in Proposition 2.2.12, the proof 

follows directly. 

Proposition 2.2.14. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If     are ideals of   

with   a prime ideal and    a minimal prime ideal of   , then 

  is an   minimal prime ideal of  . 

Proof. As    is a minimal prime ideal of   , so that    is 

prime and       and    is minimal in the set of all prime 

ideals of    which contain   . Since,      , so by [4, 

Proposition 3.5], we have       and as   is prime, we get 

   . Let   be any prime ideal of   such that     and 

     , then we get    is a prime ideal of    and       

and as    is a minimal prime ideal of   , we get      . Let 

   , then for an     , we have 
 

 
   , then     , for 

some     and as      , we get     and as   is p rime, 

we get    , so that    . Hence,   is an   minimal 

prime ideal of  . 

Corollary 2.2.15. Let   be a commutative ring with identity 

and   be a prime ideal of  . If     are ideals of   with   a 

prime ideal and    a minimal prime ideal of   , then   is an 

  minimal prime ideal of  . 

Proof. By taking       in Proposition 2.2.14, the proof 

follows directly. 

     We give the following corollary, which shows that each 

minimal prime ideal of an ideal in    is a localization of some 

  minimal prime ideal of the contraction of the given ideal 

in  .  

Corollary 2.2.16. Let   be a commutative ring with identity 

and   be a multiplicative system in  . If    is an ideal of    

and    is a minimal prime ideal of   , then there exist ideals 
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    of   with   an   minimal prime ideal of  , for which 

     . 

Proof. By [4], there exists a prime ideal   of   with     
  and such that       and by Proposition 2.2.12, we have 

     , where        
  

 
    , for    . That means,   

is prime and    is a minimal prime ideal of   , so by 

Proposition 2.2.14, we get   is an   minimal prime ideal of 

 . 

Corollary 2.2.17. Let   be a commutative ring with identity 

and   be a prime ideal of  . If    is an ideal of    and    is a 

minimal prime ideal of   , then there exist ideals     of   

with   an   minimal prime ideal of  . 

Proof. By taking       in Corollary 2.2.16, the proof 

follows directly.  

     We mention that, Proposition 2.2.11 and Corollary 2.2.16 

lead to the following theorem. 

Theorem 2.2.18. Let   be a commutative ring with identity 

and   be a multiplicative system in   and   be an ideal of  . 

Then, there is a one to one correspondence between the 

  minimal prime ideals of   and minimal prime ideals of 

  .  

Proof. Let        is an   minimal prime ideal of    and 

         is a minimal prime ideal of    . Define       

as follows: Let    , so   is an   minimal prime ideal of 

 , then by Proposition 2.2.10,    is a minimal prime ideal of 

   and thus,     , so we define        . Clearly,   is a  

mapping. Now, let        be such that           , then 

we get      
  and as      are prime ideals and       

    , one can easily get that     . Hence,   is one to one. 

Next, let     , then    is a minimal prime ideal of   . Then, 

by Proposition 2.2.12, we get      , for the prime ideal 

       
  

 
    , for some fixed     and      , so 

by Corollary 2.2.14, we get that   is an   minimal prime 

ideal of  , so that     and that           , so that   

is onto. Hence,   defines a one to one correspondence. 

Now, we give the following corollary.       

Corollary 2.2.19. Let   be a commutative ring with identity 

and   be a prime ideal   and   is an ideal of  . Then, there is 

a one to one correspondence between the   minimal prime 

ideals of   and minimal prime ideals of   . 

Proof. By taking       in Theorem 2.2.18, the proof will 

follow at once. 

3. CONCLUSION 
1. There is a one to one correspondence between the 

primary ideals of    and the primary ideals of   

which contained in  . Where    be a prime ideal of  
a ring  . 

2. Under certain condition, there is a one-one 

correspondence between the nilpotent (resp. nil) 

ideals of   and   .  

3. Under certain condition, the principality of Rings is 

a localization property.  

4. The Radical of the localization of a ring is the same 

as the localization of the   radical of the ring.  

5. There is a one-one correspondence between the 

  minimal primes of   . Where   is an ideal of   

and   is a prime ideal of  . 
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