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ABSTRACT

In this paper we prove some properties of ideals that are
preserved under localization. Also, we establish several one to
one correspondences between certain types of ideals in the
ring and its localization at multiplicative systems. We
introduce two concepts such as S —prime radical and
S —minimal prime ideals and the relations of S —prime radical
with the prime radical and Jacobson radical of a ring under
localization are determined. Also, we prove a one to one
correspondence between S —minimal primal ideals of a given
ideal A of a ring R and the minimal prime ideals of the ideal
Ap of Rp, where P is a prime ideal of R.
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1. INTRODUCTION

Let R be a commutative ring with identity. A nonempty subset
S of R is called a multiplicative system in R, if 0 € S and
a,b € S implies that ab € S [4]. An ideal A of R is called a
principal ideal of R, if A=<a >, for some a € A and R is
called a principal ideal ring if every ideal of R is a principal
ideal [1]. The spectrum of R, is denoted by Spec(R) and
defined as Spec(R) = {P: P is a prime ideal of R} and the
prime radical of R is denoted by Rad(R) and defined as
Rad(R) = NpespecryP and R is said to be without prime
radical if Rad(R) = 0 [1]. The maximal spectrum of R is
denoted by mSpec(R) defined as mSpec(R) = {P:P is a
maximal ideal of R} and the Jacobson radical of R, denoted by
rad(R) (or J(R) [5]), is defined as rad(R) = Npemspec(r) P
and R is called a semisimple ring if rad(R) = 0 [1]. The Nil
Radical of an ideal 4, is defined as VA = {x € R:x" € 4, for
some positive integer n} [1]. A prime ideal P of R is called a
Minimal Prime Ideal of A if A € P and R contains no prime
ideal Q with A € Q c P and P is called a minimal prime ideal
of R if R contains no prime ideal Q with Q c P. Let A be an
ideal of R and Si(A) be defined as Sz (A) = {r € R:ra € 4,
for some a ¢ A} [2,3].

2. SOME PROPERTIES OF IDEALS
THAT ARE PRESERVED UNDER
LOCALIZATION, S —RADICAL
IDEALS AND S —MINIMAL PRIME
IDEALS

2.1 Some properties of ideals that are

preserved under localization
In this section, we prove some algebraic properties of ideals
which are preserved under localization and we start with the
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following result which determines the radically property of
ideals in the both rings R and Rs.

Proposition 2.1.1. Let R be a commutative ring with identity
and A be an ideal of R. If S is a multiplicative system in R,

then /A5 = (VA)s.
Proof. Let © € \/A5, where r € R,s € 5. Then, )" € 4, for

some n € Z,, that is :—n € Ag, there exists t € S such that
tr™ € A, and then (tr)" = t"1tr™ € A, so that tr € VA and

thus we get *= %E = i—: € (VA)s. Hence, JA; € (VA)s.
Next, let EE (VA)s, where r € R,s € S, then tr € VA4, for
some t € S, so that (tr)™ € A, for some n € Z,. Then, we get

O _ D 4, so that g e JA;, thus we

O =mm=
get(vVA)s € /As. Hence, we have \/As = (VA)s.

tnsn tnsn
As a corollary to the above proposition we give the
following.

Corollary 2.1.2. Let R be a commutative ring with identity
and A be an ideal of R. If P is a prime ideal of R, then

VAr = (VA),.

Proof. As P is a prime ideal, we have R \ P is a multiplicative
system in R, so by taking S = R \ P in Proposition 2.1.1, the
result follows at once.

Proposition 2.1.3. Let R be a commutative ring with identity
and S be a multiplicative system in R. If A, B are ideals of R
such that Ag € Bg and Szx(B)NS =@, then ASB. In
particular, if Ag = 0 and Sz(0)NS = @, then A = 0.

Proof. Let a € A. Let s € S (this is possible since, S # @),
then we have %e B, 0 ua € B, for some u € S. If a ¢ B,
then u € Si(B), which contradicts the fact that Sz(B)NS =
@, so that we must have a € B. Hence A < B. For the second
part, if a € A is any element, then % =0, so that sa = 0, for
some s€S. If a#0, then s€ Sz(0), which is a
contradiction, so we must have a = 0. Hence, A = 0.

As a corollary to the above proposition, we give the
following.

Corollary 2.1.4. Let R be a commutative ring with identity
and P be a prime ideal of R. If A, B are ideals of R such that
Ap € Bp and Sgx(B) € P, then A C B. In particular, if Ap =0
and Sz (0) € P, then A = 0.

Proof. As R\ P is a multiplicative system in R and
Sr(B)N(R\ P) = ¢ if and only if Sz(B) € P, so by taking
S = R\ P in Proposition 2.1.3, the proof will follows at once.

In the following result, we prove that every proper ideal of
Rg is a localization of some proper ideal of R.



Proposition 2.1.5. Let R be a commutative ring with identity
and S be a multiplicative system in R. If Q is an ideal of Ry,
then there exists an ideal Q of R with Q = Q. Furthermore, if
Q is a proper ideal of Rg, then Q is a proper ideal of R.

Proof. As S+ @, let t €S. Now, let Q ={a € R:%a € Q}.
One can easily show that Q is an ideal of R. Next, we will
show that Q = Q. Let, E €Q, where r €R,s €S. Then

%r=%s£e Q, so that r € Q, so we have Ee Qs. Hence,
Q S Qs. Let 2 € Qs, where € R,s € S, then we have qr €
Q, for some g € S. Hence, we get thr € Q. Then, E = éthT
Q, so that Qs < Q. Hence, Q = Qs. Next, if Q =R, then
1€ Q, so that : € 0 = Qs, this implies that § = Ry, which is
a contradiction. Hence, Q is a proper ideal of R.

Now, we prove that, under certain condition a localization
of a primary ideal is also a primary ideal.

Proposition 2.1.6. Let R be a commutative ring with identity
and S be a multiplicative system in R. If Q is a primary ideal
of R such that QNS = @, then Qg is a primary ideal of Rs.

Proof. As QNS = @, by [4], we have Qs # Rg, so that Qg is a
proper ideal of Rg. Let %% € Qg, Where a,b € R and s,t € S,

then Z_l; € Qs, so that pab € Q, for some p € S. If %e Qs,
then a € Q and as Q is primary, we get (pb)™ € Q, for some

n € Z,. Then, (?)” = IZ—: = Z—:IZ—: = (:ft): € Qs, so that Qs is a

primary ideal of Rs.

Next, we prove that every primary ideal of Rg is a
localization of a primary ideal of R disjoint from S.

Proposition 2.1.7. Let R be a commutativg ring with identity
and S be a multiplicative system in R. If Q is a primary ideal
of Rg, then there exists a primary ideal Q of R with QNS =9

and Q = Q.

Proof. By Proposition 2.1.5, we have Q = Qg, where Q =
{a € R:%ae Q} is an ideal of R and t € S is some fixed
element. As, Qs # Rg, by [4], we get QNS = @ and as Q is
proper, we get Q is a proper ideal of R. Let for a,b € R, we
have ab € Q but a ¢ Q, then %%:%GQS. |ft7“er=
0, then a € Q, which is a contradiction, thus %a ¢ Qg and as
Qg is primary, we get (%)" € Qg, for some n € Z,, then we

tp™ _ t"lgp™  ¢"b" tb =
get e = P = pe = (T)n €EQs=20Q, so that p™ € Q.

Hence, Q is a primary ideal of R.

By combining Proposition 2.1.6 and Proposition 2.1.7, we
get the following theorem.

Theorem 2.1.8. Let R be a commutative ring with identity
and S be a multiplicative system in R. Then, there is a one to
one correspondence between the primary ideals of Rg and the
primary ideals of R which does not meet S.

Proof. Let F = {Q: Q is a primary ideal of R with QNS = @}
and H = {Q: Q is a primary ideal of Rg}. Define f:F — H as
follows: If Q € F, then Q is a primary ideal of R and QNS =
@, then by Proposition 2.1.6, we get Qs is a primary ideal of
Rg, so that Qs € H, so we define f(Q) = Q5. One can easily
show that f defines a one to one correspondence between F
and H.
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As a corollary to Theorem 2.1.8, we give the following
corollary.

Corollary 2.1.9. Let R be a commutative ring with identity
and P be a prime ideal of R, then there is a one to one
correspondence between the primary ideals of R, and the
primary ideals of R which contained in P.

Proof. As R \ P is a multiplicative system in R and since for
any primary ideal Q of R, we have QN(R\ P) =@ if and
only if Q € P, so by taking S = R\ P in Theorem 2.1.8, the
proof will follows at once.

In the next two results, we establish a one to one
correspondence between the maximal ideals of Rg and
maximal ideals of R which are disjoint from S.

Proposition 2.1.10. Let R be a commutative ring with identity
and S be a multiplicative system in R. If Q is a maximal ideal
of R with the property that, QNS = @, then Qs is a maximal
ideal of R;.

Proof. As QNS = @, by [4], we get Qs # Rg. Now, let J be
any ideal of Rg such that Qs < J < Rg with ] # Rg, then by
Proposition 2.1.5, we have ] =]Js, for the proper ideal
J={x€ R:%XET}, where t € S. As, ] =Js # Rg, by [4], we
get JNS = @, then we have Qs S Js < Rs. Next, let x € Q,
then tx € Q, so that % €Js =7, so that x € J. Hence, we get
Q<SJcRandas Q is maximal, we get Q =], which gives
Qs =Js. Hence, Qg is a maximal ideal of Rg

Proposition 2.1.11. Let R be a commutative ring with identity
and S be a multiplicative system in R. If Q is a maximal ideal

of Rg, then Q = Qg, for some maximal ideal Q of R with
QNS = 9.

Proof. By Proposition 2.1.5, we have Q = Q, for the proper
ideal Q = {x € R:%X € Q) and some fixed t€S. As Q =
Qs # Rs, by [4], we get QNS = @. To show Q is maximal, let
J be any ideal of R such that Q S Jc R (J # R) with
JNS =@, then Q = Qs S Js S Rs. If Q # ], then there exists
x €] butx & Q. Then, tx € J, so that, th €Js, but%x ¢ Q and
as Q is maximal, we get Jg¢ = Rs, then by [4], we get JNS =
@, which is a contradiction, so that Q =J. Hence, Q is
maximal with respect to the disjoin-ness property from S.

In the next few results, we prove that there is a one to one
correspondence between the nil (nilpotent) ideals of the rings
R and Rg.

Lemma 2.1.12. Let R be a commutative ring with identity and
S be a multiplicative system in R. If A is a nilpotent (resp. a
nil) ideal of R, then Ag is a nilpotent (resp. a nil) ideal of Rs.

Proof. As A is nilpotent, we have A™ = 0, for some n € Z,,
then (45)™ = (A™)g =0, so that Ag is nilpotent. For the
second part, let %e Ag, where a € R,p € S, then we have
sa € A, for some s € S, that gives (sa)™ = 0, for some

gn_ia_”_(sa)”_ . R
n € Z, and then (p) e e 0. Hence, A is a nil
ideal of Rs.

Corollary 2.1.13. Let R be a commutative ring with identity
and P be a prime ideal of R. If A is a nilpotent (resp. a nil)
ideal of R, then Ap is a nilpotent (resp. a nil) ideal of Rp.

Proof. By taking S = R \ P in Lemma 2.1.12, the result will
follow directly.



Lemma 2.1.14. Let R be a commutative ring with identity and
S be a multiplicative system in R and Sz(0)NS = @. If A is a
nilpotent (resp. a nil) ideal of Rg, then A = A, for some
nilpotent (resp. nil) ideal A of R.

Proof. By Proposition 2.1.5, we have A = Ag, for the ideal
A={x€ R:%" € A}, where t € S is a fixed element and as A

is nilpotent, we have (AH™ =0, for some n € Z,, so that
(A" = (A5)™ = (A)™ = 0 and since, Sx(0)NS = @, so by
Proposition 2.1.3, we get A™ = 0. Hence, A is nilpotent. For
the proof of second part, let a € 4, then tTa €A=Agandas 4
is nil, we get (tTa)" = 0, for some n € Z,, then % = f';‘,j" =
(%a)" =0, so that uta™ = 0, for some u € S and then, ut €
S. If a™ # 0, then ut € Sx(0), which contradicts the fact that
Sg(0)NS = @. Hence, a™ = 0, that means A is a nil ideal of
R.

Now, we get the following corollary.

Corollary 2.1.15. Let R be a commutative ring with identity
and S be a multiplicative system in R. If A is an ideal of R
such that Ag is a nilpotent (resp. a nil) ideal of Rg and
Sz(0)NS = @, then A is a nilpotent (resp. a nil) ideal of R. In
particular, if P is a prime ideal of R such that A is a nilpotent
(resp. a nil) ideal of Rp and Sz(0) € P, then A is a nilpotent
(resp. a nil) ideal of R.

Proof. The proof of the first part follows directly as the same
as in Lemma 2.1.14 and the proof of second part follows by
taking S =R\ P in Lemma 2.1.14 and from the fact that
SR(ON(R\ P) = ¢ if and only if Sz(0) < P.

Corollary 2.1.16. Let R be a commutative ring with identity
and P be a prime ideal of R such that S;(0) € P. If 4 is a
nilpotent (resp. a nil) ideal of Rp, then A = Ap, for some
nilpotent (resp. nil) ideal A of R.

Proof. Since, R \ P is a multiplicative system in R and since,
Sz(0)N(R\ P) =@ if and only if Sz(0) < P, so by taking
S =R\ P in Lemma 2.1.14, the proof will follows directly.

Lemma 2.1.17. Let R be a commutative ring with identity and
S be a multiplicative system in R. If r € R,s € S and A is an

ideal of R, then A5 = (rA)s.

Proof. Let % € Ag, where a € R,t € S, then pa € A, for some

ra_pra_pra
p €S, then pra € rA and that ST pstT pst € (rd)g, so
that ZAs € (rA)s. Next, let € (rA)s, where x ER,t € 5.
Then, px € rA, for some p € S, so px = ra, for some a € A

and that sa € A. Now, we havefzgf—&—ﬂ— rsa

pt pt pt  spt
rsa T T r
o € ;As, so that (rd)s < ;AS. Hence, ;AS = (rd)s.
Corollary 2.1.18. Let R be a commutative ring with identity
and P be a prime ideal of R. If r € R,s € P and A is an ideal

of R, then ZAp = (rA)p.

Proof. By taking S =R\ P in Lemma 2.1.17, the result
follows directly.

The remaining results of this section deal with the concept
of principality of ideals in the both rings R and Rg. In fact, we
prove some results concerning this concept and among these
results, we prove that a localization of a principal ideal ring is
also a principal ideal ring.

International Journal of Computer Applications (0975 — 8887)
Volume 166 — No.7, May 2017

Proposition 2.1.19. Let R be a commutative ring with identity
and S be a multiplicative system in R. If R is a principal ideal
ring, then R is a principal ideal ring.

Proof. Let 4, be any ideal of Rg, then by Proposition 2.1.5,
we have A = Ag, for the ideal A = {a € R:%a € A} and a fixed
t €S. As R is a principal ideal ring, we get A =< x >, for
some x € R. Clearly, x € A, so that th € A, so that < %x >Cc

A.Let= € A= Ag, where r € R,s € S, then pr € 4, for some

p €S, so that pr = ax, for some a € R. Now, we have
t t; t t. t. = t.
ZZ_BZ—E—_%Zi_Xe<_X>’ e} that Ag<_x>’

s tps t t

T tps  tps pst
thus A =< th >. Hence, R is a principal ideal ring.
Corollary 2.1.20. Let R be a commutative ring with identity
and P be a prime ideal of R. If R is a principal ideal ring, then
Rp is a principal ideal ring.

Proof. Take S =R\ P in Proposition 2.1.19, the result
follows directly.

Proposition 2.1.21. Let R be a commutative ring with identity
and S be a multiplicative system in R such that Si(<
x >)NS = @, for every x € R. If R is a principal ideal ring,
then R is a principal ideal ring.

Proof. Let A be any ideal of R, then Ag is an ideal of Rg, so
that Ag =< f >, for some fe As, Where x €RR,s € S, then

px € A, for some p € S, so that < px >C< A. Next, let a € 4,

then ~€As, so that c=7>===2=="%for some

ts ts pts  pts'
r €ER,t €S, S0 uptsa = usrpx €< px >, for some u € S,
then, upts € S. If a €< px >, then upts € Sxp(< px >),
which is a contradiction, so that a €< px >, then 4 €< px >
and thus A =< px >. Hence, R is a principal ideal ring.

Corollary 2.1.22. Let R be a commutative ring with identity
and P be a prime ideal of R such that Sp(< x >) € P, for
every x € R. If Rp is a principal ideal ring, then R is a
principal ideal ring.

Proof. By taking S = R \ P in Proposition 2.1.21, the result
follows from the fact that, for every x € R, we have Si(<
x >)NS = @ ifand only if Sp(< x >) € P.

Lemma 2.1.23. Let R be a commutative ring with identity and
S be a multiplicative system in R with a € R and s € S, then

() <a>=<I>.

(2) If A is an ideal of R such that Sx(4)NS = @ and £ € 4q,
S
then a € A.

Proof. (1) Let = €< a >, where x € R, ¢ € S, then px €<

a >, for some p € S. Thus, px = ra, for some r € R. Now,
TSR _ P _ T8 _ T2l Hence, < a>sC< 2>,
t spt spt spt pts s s

X 12 _ ra

Let, §e<§>, where x €R,t€S, then =2

s ps
< a >g (since, ra €< a>), s0 that <% >E< a >5. Hence,
we get < a >5=< %>,

) % € Ag implies that pa € A, for some p € S. If a & A4, then

p € Sg(A), which contradicts the fact that Sp(A)NS = @, so
that we must have a € A.

Corollary 2.1.24. Let R be a commutative ring with identity
and P be a prime ideal of R witha € R and p € P, then



(1) <a>p=< % >.

(2) If A is an ideal of R such that Sz(A) € P and % € Ap, then
a€A.

Proof. By taking S = R \ P in Lemma 2.1.23 and using that
fact that, SR(A)N(R \ P) = @ if and only if Sz(4) € P, the
result follows directly.

Proposition 2.1.25. Let R be a commutative ring with identity
and S be a multiplicatively closed set in R with a € R and
s € S such that Sp(< a >)NS =@. Then, < a > is a prime
ideal of R if and only if < a >¢ (=< % >) is a prime ideal of
Rg.

Proof. Let <a> be a prime ideal of R. As <a >c
Sp(<a>), we have <a > NS < Sp(<a>)NS =@, so by
[4], we have < a > is a prime ideal of Rg. Now, let < a >¢
be a prime ideal of Rs. If <a>=R,then 1 €ER =< a >, SO
that ra = 1, for some r € R, then s = sra €< a >, SO we
have -€<a>; so that <a>g=Rs, which is a

contradiction, so that < a > is a proper ideal of R. Let, for
x,y € R, we have xy €< a >, then ff =2 e<g>; andas

SS
< a >s is prime, we get = €< a >5 or > €< a >s. Then, by
Lemma 2.1.23, the former case gives x €< a > and the latter
case gives y €< a >. Hence, < a > is a prime ideal of R.

Corollary 2.1.26. Let R be a commutative ring with identity
and P be a prime ideal of R with a € R and p ¢ P such that
Sg(<a>)c P. Then, < a > is a prime ideal of R if and
only if <a>p (=< % >) is a prime ideal of Rp.

Proof. By taking S = R \ P in Proposition 2.1.25, the proof
follows directly from the fact that Sp(< a >)NS = @ if and
only if Sg(<a>) € P.

2.2 S —radical ideals and S —minimal prime
ideals

In this section, we introduce two concepts namely, S —radical
ideals and S —minimal prime ideals in commutative rings and
we study the relations that combining these concepts with
prime radicals, Jacobson radicals and minimal prime ideals,
but first, we introduce the following definition.

Definition 2.2.1. Let R be a commutative ring with identity
and S be a multiplicative system in R. We define,
SSpec(R) = {P: P is a prime ideal of R such that PNS = @}
and  SRad(R) = Npesspec(ry P- We say that R is without
S —prime radical if SRad(R) = 0.

The first relation that we prove is that, the localization of

the S —Radical of a ring is the same as the prime radical of the
localization of the ring.

Proposition 2.2.2. Let R be a commutative ring with identity
and S be a multiplicative system in R, then Rad(Rg) =
(SRad(R))s.

Proof. Let% € Rad(Rs), where r€R,P€ES. Let Q€

SSpec(R), so that Q is a prime ideal of R such that QNS = @,
then by [4], we get that Qs is a prime ideal of Rg, that means

Qs € Spec(Rs). Hence, % € Qs, then gr € Q, for some ¢ € S.

Since, Q is prime and QNS = @, we get that r € Q, so that
r € SRad(R) and that %e (SRad(R))s. Hence, we get

Rad(Rs) S (SRad(R))s. Next, let %e (SRad(R))s, so that
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sr € SRad(R), for some s € S. Let Q € Spec(Rs), so that Q

is a prime ideal of Rs. Then, by [4], there is a prime ideal Q of

R such that QNS =@ and Q = Qs, so that Q € SSpec(R).

Hence, sr € Q and then, %: z% = % €Qs=0, so that

ge Rad(Ry), this gives (SRad(R))s € Rad(Rs). Hence, we
Now, we give the following corollary.

Corollary 2.2.3. Let R be a commutative ring with identity
and P be a prime ideal of R, then Rad(Rp) = (SRad(R))p.

Proof. By taking S = R\ P in Proposition 2.2.2, the proof
will follows directly.

In the following result, we prove that if R is without
S —prime radical, then Rg is without prime radical, but the
converse is true under the disjointness of S from Sz (0).

Proposition 2.2.4. Let R be a commutative ring with identity
and S be a multiplicative system in R. If R is without
S —prime radical, then Rg is without prime radical. If, in
addition to the above, we have Sz(0)NS =@ and Rg is
without prime radical, then R is without S —prime radical as
well as it is without prime radical.

Proof. We have, SRad(R) = 0, so by Proposition 2.2.2, we
get Rad(Rs) =0, so that Rg is without prime radical. To
prove the second part, let Rad(Rs) = 0, then by Proposition
2.2.2, we have (SRad(R))s = 0 and since, Sg(0)NS = @, so
by Proposition 2.1.3, we get SRad(R) = 0. Hence, R is
without S —prime radical. Now, as SSpec(R) < Spec(R), so
that we have Rad(R) S SRad(R) and this implies that
Rad(R) = 0, so that R is without prime radical.

Next, we give the following corollary.

Corollary 2.25. Let R be a commutative ring with identity
and P be a prime ideal of R. If R is without S —prime radical,
then Rp is without prime radical. If, in addition to the above,
we have S (0) € P and R, is without prime radical, then R is
without S —prime radical as well as it is without prime
radical.

Proof. As, R\ P is a multiplicative system in R and
Sg(0)N(R\ P) =0 if and only if Sz(0) < P, so by taking
S = R\ P in Proposition 2.2.4, the proof will follows directly.

Now, we introduce the following definition.

Definition 2.2.6. Let R be a commutative ring with identity
and S be a multiplicative system in R. The maximal spectrum
of R, is denoted by mSpec(R), and defined as mSpec(R) =
{Q:Q is a maximal ideal of R}. Also, we define
SmSpec(R) = {Q:Q is a maximal ideal of R such that
QNS = @}and Srad(R) = Ngesmspec(r) @- We say that R is
S —semisimple (or R is without S —Jacobson radical), if
Srad(R) = 0.

It is obvious that, an S —semisimple ring R is always a
semisimple ring, since if Srad(R) =0, then as
SmSpec(R) € mSpec(R), we get rad(R) < Srad(R) and
this gives rad(R) = 0.

Next, we prove that, for a multiplicative system S in R, the
localization of the S —Jacobson radical of a ring is the same as
the Jacobson radical of the localization of the ring.

Proposition 2.2.7. If R is a commutative ring with identity
and S is a multiplicative system in R, then rad(Rg) =
(Srad(R))s.



Proof. Let Ee rad(Rs), Where r€R,s€S. Let Q€
SmSpec(R), so that Q is a maximal ideal of R with QNS = @.
By Proposition 2.1.10, Qg is a maximal ideal of Ry, that is,
Qs € mSpec(Rs), thus E € Q5. As Q is prime and QNS = @,
one can easily get that r € Q, so that r € Srad(R), then we
get ge (Srad(R))s. Hence, rad(Rs) € (Srad(R))s. Next,

let EE (Srad(R))s, for r € R,s € S. Then, tr € Srad(R),

for some t € S. Let Q € mSpec(Rs), so that Q is a maximal

ideal of R, then by Proposition 2.1.11, we have @ = Qs, for

some maximal ideal Q of R with respect to the property

QNS =@, so that Q € SmSpec(R). Hence, tr € Q. Then,

£= %E = i—; €Qs=0, so that we get ge rad(Rs) and

thus(Srad(R))s < rad(Rs). Hence, rad(Rs) = (Srad(R))s.
As a corollary to this result, we give the following.

Corollary 2.2.8. If R is a commutative ring with identity and
P is a prime ideal of R, then rad(Rp) = (Srad(R))p.

Proof. By taking S = R\ P in Proposition 2.2.7, the result
follows directly.

Now, we introduce the following definitions.

Definition 2.2.9. Let R be a commutative ring with identity
and S be a multiplicative system in R. We say that a prime
ideal @ of R is an S —minimal prime ideal of an ideal A of R,
if @ is minimal in the set of all prime ideals which contain A
and do not meet S.

To make the above definition more clear, we say that Q is
an S —minimal prime ideal of A, if Q is a prime ideal of R,
A< Q, QNS =0 and if B is any prime ideal of R such that
A <€ Band BNS = @, then Q < B.

The following result shows that, the localization an
S —minimal prime ideal of an ideal is a minimal prime ideal
of the given ideal, but the converse is true for minimal prime
ideals which themselves are prime as we prove in Proposition
2.2.14.

Proposition 2.2.10. Let R be a commutative ring with identity
and S be a multiplicative system in R. If A is an ideal of R and
Q is an S —minimal prime ideal of A, then Qg is a minimal
prime ideal of As.

Proof. We have Q is a prime ideal of R with A € Q and Q is
minimal in the set of all prime ideals of R that contain A and
QNS = @. Then, As € Qg and Qg is a prime ideal of Rg. Let B
be any prime ideal of Rg such that A¢ € B. To show that
Qs € B. By [4], we have B = By, for the prime ideal B =
(re R:% € B}, of R with BNS = @, where s € S. Then,
Ag S Bg. Clearly, we have A € @ and we will show that
ACB. AsS+0, let seS. If x€A is any element, then
sx €A, thus% € Bs = B, so that x € B. Hence, A € B and as
Q is a minimal prime ideal of A, we get Q < B, which gives
Qs € Bg = B. Hence, Q, is a minimal prime ideal of As.

Now, we give the following corollary.

Corollary 2.2.11. Let R be a commutative ring with identity
and P be a prime ideal of R. If A is an ideal of R and Q is a
minimal prime ideal of A with Q < P, then Qp is a minimal
prime ideal of Ap.

Proof. By taking S = R \ P and since QN(R \ P) = ¢ if and
only if Q < P, then the proof will follows directly.
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Proposition 2.2.12. Let R be a commutative ring with identity
and S be a multiplicatively

closed set in R. If I is an ideal of Rg, then for any t € S, we
have I={x¢€ R:th €I} is an ideal of R with T =1I.
Furthermore, if I is a prime ideal of R, then I is a prime ideal
of R with INS = @.

Proof. By Proposition 2.1.5, we have I = I, for the proper
ideal I ={a € R:tTa €T} of R. Next, to prove I is a prime
ideal of R. As Ig =T # Rg, by [4], we get INS = @, now, if
possible suppose that I = R, then 1 € I, so that % €I, that is

%e I, so that I = R, which is a contradiction. Hence, I # R.
Let ab € I, where a, b € R, then %%:% €l and as I is

prime, we get tTa el or % € I. The former case gives a € I
and the latter case gives b € I. Hence, I is a prime ideal of R.
If INS # @, then there exists s €S and s € I, s0 ge =T

and thus we get I = Rg, which is a contradiction. Hence,
INS = 9.

We give the following corollary.

Corollary 2.2.13. Let R be a commutative ring with identity
and P be a prime ideal of R. If I is an ideal of Rp, then we
have I={x€R:T€} is an ideal of R with [=Ip.
Furthermore, if I is a prime ideal of Rp, then I is a prime ideal
of RwithI < P.

Proof. As S = R\ P is a multiplicative system in R, so by
taking t =1 € S =R\ P in Proposition 2.2.12, the proof
follows directly.

Proposition 2.2.14. Let R be a commutative ring with identity
and S be a multiplicative system in R. If A, Q are ideals of R
with Q a prime ideal and Qg a minimal prime ideal of A, then
Q is an S —minimal prime ideal of A.

Proof. As Qg is a minimal prime ideal of Ag, so that Qg is
prime and Ag € Qs and Qg is minimal in the set of all prime
ideals of Rg which contain Ag. Since, Qs # Rs, SO by [4,
Proposition 3.5], we have QNS = @ and as Q is prime, we get
A € Q. Let B be any prime ideal of R such that A € B and
BNS = @, then we get B is a prime ideal of Rg and Ag € Bs
and as Qg is a minimal prime ideal of Ag, we get Qs < Bg. Let
x € Q, then for an s €S, we have ;—C € By, then tx € B, for

somet € Sandas BNS = @, we get t € B and as B is p rime,
we get x € B, so that Q € B. Hence, Q is an S —minimal
prime ideal of A.

Corollary 2.2.15. Let R be a commutative ring with identity
and P be a prime ideal of R. If 4, Q are ideals of R with Q a
prime ideal and Qp a minimal prime ideal of Ap, then Q is an
S —minimal prime ideal of A.

Proof. By taking S = R\ P in Proposition 2.2.14, the proof
follows directly.

We give the following corollary, which shows that each
minimal prime ideal of an ideal in Ry is a localization of some
S —minimal prime ideal of the contraction of the given ideal
inR.

Corollary 2.2.16. Let R be a commutative ring with identity
and S be a multiplicative system in R. If A is an ideal of Rg
and Q is a minimal prime ideal of A, then there exist ideals



A, Q of R with Q an S —minimal prime ideal of A, for which
Q =Qs.

Proof. By [4], there exists a prime ideal Q of R with QNS =
@ and such that Q = Qs and by Proposition 2.2.12, we have
A= A5, where A= {x € R:%x € A}, for t € S. That means, Q
is prime and Qg is a minimal prime ideal of Ag, so by
Proposition 2.2.14, we get Q is an S —minimal prime ideal of
A.

Corollary 2.2.17. Let R be a commutative ring with identity
and P be a prime ideal of R. If A is an ideal of Ry and Q is a
minimal prime ideal of 4, then there exist ideals 4,Q of R
with Q an S —minimal prime ideal of A.

Proof. By taking S =R\ P in Corollary 2.2.16, the proof
follows directly.

We mention that, Proposition 2.2.11 and Corollary 2.2.16
lead to the following theorem.

Theorem 2.2.18. Let R be a commutative ring with identity
and S be a multiplicative system in R and A be an ideal of R.
Then, there is a one to one correspondence between the
S —minimal prime ideals of A and minimal prime ideals of
AS.

Proof. Let K = {Q: Q is an S —minimal prime ideal of A} and
L ={Q:Q is a minimal prime ideal of Ag}. Define 9:K — L
as follows: Let Q € K, so Q is an S —minimal prime ideal of
A, then by Proposition 2.2.10, Qs is a minimal prime ideal of
Ag and thus, Qs € L, so we define 9(Q) = Qs. Clearly, 9 is a
mapping. Now, let Q, Q' € K be such that 9(Q) = 9(Q"), then
we get Qs = Qg and as Q, Q' are prime ideals and QNS = @ =
Q'NS, one can easily get that Q = Q'. Hence, ¥ is one to one.
Next, let Q € L, then @ is a minimal prime ideal of Ag. Then,
by Proposition 2.2.12, we get Q = Qs, for the prime ideal
Q={xe€ R:th € @}, for some fixed t € S and QNS = @, so

by Corollary 2.2.14, we get that Q is an S —minimal prime
ideal of 4, so that Q € K and that 9(Q) = Qs = @, so that ¥
is onto. Hence, 9 defines a one to one correspondence.

Now, we give the following corollary.
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Corollary 2.2.19. Let R be a commutative ring with identity
and P be a prime ideal R and A is an ideal of R. Then, there is
a one to one correspondence between the S —minimal prime
ideals of A and minimal prime ideals of Ap.

Proof. By taking S = R \ P in Theorem 2.2.18, the proof will
follow at once.

3. CONCLUSION

1. There is a one to one correspondence between the
primary ideals of Rp and the primary ideals of R
which contained in P. Where P be a prime ideal of
aring R.

2. Under certain condition, there is a one-one
correspondence between the nilpotent (resp. nil)
ideals of R and Rg.

3. Under certain condition, the principality of Rings is
a localization property.

4. The Radical of the localization of a ring is the same
as the localization of the S —radical of the ring.

5. There is a one-one correspondence between the
S —minimal primes of Ap. Where A is an ideal of R
and P is a prime ideal of R.
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