
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.7, May 2017

18

Automated Pun Generator

Pooja R. Shah
K. J. Somaiya

College of Engineering
Ghatkopar,Mumbai-77

Maharastra India.

Tarini D. Shah
K. J. Somaiya

College of Engineering
Ghatkopar,Mumbai-77

Maharastra India

Swati Mali
Department of Computer

Engineering
K. J. Somaiya

College of Engineering
Ghatkopar,Mumbai-77

Maharastra India

ABSTRACT
Children suffering from Autism Spectrum Disorder (ASD)

suffer from slow learning and grasping issues. Vocabulary

building for such kids is a major problem. A word is learned

better and the meaning of it is understood well if it is in

sentence format. As English is a funny language, and a

particular word has multiple meanings, it is difficult for

children with ASD to grasp it.

Using artificial intelligence we aim to build the automated pun

generator, pun i.e., a riddle-answer format to ease learning for

children suffering from Autism Spectrum Disorder. The pun-

generator will have an interactive interface, lacking in most

pun generators today, thus providing a rich learning

experience.

General Terms
The frequently used terms that the reader will come across this

paper are stated below

(i) Pun generator: A system that uses punning words

to generate riddles/jokes with an intention of

making it humorous.

(ii) Homophone: Two or more words having the same

pronunciation but different meanings, origins, or

spelling (e.g. new and knew).

(iii) Homonym: Two or more words having the same

spelling or pronunciation but different meanings and

origins (e.g. pole and pole).

(iv) Rhyming words: Words that end with the same

sounds. E.g. are cat, hat, bat, mat, fat and rat.

(v) Punning words: A form of word play that suggests

two or more meanings, by exploiting multiple

meanings of words, or of similar-sounding words,

for an intended humorous or rhetorical effect

Keywords
Pun generator, puns, riddles, jokes, computational creativity.

1. INTRODUCTION
The power and potential of Artificial intelligence and machine

learning is being understood and consequently the increasing

interest of Forbes 500 companies like Google and Facebook in

the field of Artificial intelligence and the acquisition of

DeepMind start-up firm by Google for $600 billion has

boosted the research in the field of Artificial Intelligence to

make human life more efficient. Among the various

applications of Artificial intelligence in Computer vision,

Virtual reality and Image processing, Diagnosis of diseases,

Game theory and Strategic planning, Games, Computer game

bot, Natural language processing and robotics, is automated

creative generation. This encompasses automated generation

of poetry or proses, automated answering machines, Chat bots

etc. humans by machines for creative productivity.

Inspired by these ideas, we aim to build an automated pun

generator that will spontaneously generate puns (riddles in

question answer format) using richness of English language

and concepts like synonyms, homophones to help children

build their vocabulary in a fun-loving way.

The sections discussed in this paper are as follows

Section 2: Related work, in this section ,the research

papers and implementations done in the field of NLP

related to computational humour are discussed.

Section 3: Proposed System, in which the system

architecture and data flow is discussed

Section 4: Algorithms , in which the algorithm

implemented along with an example is explained

Section 5: Implementation and Statistics, in which the

different system performances are discussed.

Section 6: Limitations

Section 7: Conclusion

Section 8: Acknowledgements

Section 9: References

2. RELATED WORK
The field of natural language processing is relatively new and

the WordNet project was started in 1985.Research in this field

of computational humour was started in the early 2000s and

has very limited resources present since.

A few systems like Jape[1] and Standup[2] were implemented

in the field of computational humour.

2.1 Jape
It was developed by Binsted, using a set of symbolic rules and

a large natural language lexicon to produce puns such as E.g.)

what do you call a murderer with fiber? A cereal killer. But,

there was no real user interface; the user would invoke the

program from a simple command interface and hence was

difficult to use by prospective users since commands had to be

known. Another disadvantage is that the synonyms used were

not very accurate and the quality of jokes generated was very

poor. The pun generation mechanism of JAPE[1] was based

on the type of jokes in Crack-a-joke book i.e., question answer

format. Also, few popular basic puns generated same output

as that in the book.

Moreover, it was difficult for kids to use it on their own since

no GUI was there. The humor factor of the jokes was due to

the punning nature of words rather than the subject matter.

Jape used predefined fixed templates for jokes such as: “What

is _____ and _____?” and several others.

The search for word substitution took hours and thereby it was

not that user friendly. Out of 3 strategies that are used to

generate puns , i.e. , word substitution, syllable substitution

and metathesis, JAPE mechanism was based on word

substitution since it is easier to find word substitutes and

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.7, May 2017

19

replace entire words rather than substituting parts of a word.

Word substitution was done by analysis as follows:

1. Valid English word

2. Meaning of the word

3. Phonological similar substitute for the word

4. Meaning of substituted word

5. Sentence formation

After pun generation was done, there was a checking phase in

which is was checked whether the word used to generate the

question and the answer are accidentally identical.

2.2 Standup
The core ideas for the joke-construction mechanisms are

closely based on those in the JAPE program. STANDUP[2]

pun generator was intended for younger population for

playing with words by building punning riddles through an

interactive child friendly GUI .The targeted audience was

especially children with impaired speech and Complex

Communication Needs(CCN).Major difference between JAPE

and STANDUP is that words in STANDUP were mapped to

the pronunciation and root of words so words such as ‘road’

and ‘rude’ could be used in a single joke. STANDUP used a

large, general purpose lexicon called WORDNET[3].It

provided a real good interface for easy interaction with kids

and also pun generation was quite quick as compared to

JAPE.STANDUP could only enhance the quality of jokes but

it could not eliminate the unintelligent search for words.

2.3 WordNet
The database in WordNet links English nouns, verbs,

adjectives, and adverbs to sets of synonyms that are in turn

linked through semantic relations that determine word

definitions.

In WordNet[3], a form is represented by a string of ASCII

characters, and a sense is represented by the set of (one or

more) synonyms that have that sense. WordNet contains more

than 118,000 different word forms and more than 90,000

different word senses, or more than 166,000 (f,s) pairs.

Approximately 17% of the words in WordNet are

polysemous; approximately 40% have one or more synonyms.

WordNet respects the syntactic categories noun, verb,

adjective, and adverb—the so-called open-class words (see

Table). For example, word forms like “back,’’ “right,’’ or

“well’’ are interpreted as nouns in some linguistic contexts, as

verbs in other contexts, and as adjectives or adverbs in other

contexts; each is entered separately into WordNet. It is

assumed that the closed-class categories of English—some

300 prepositions, pronouns, and determiners—play an

important role in any parsing system; they are given no

semantic explication in WordNet.

WordNet includes the following semantic relations:

• Synonymy is WordNet’s basic relation, because

WordNet uses sets of synonyms (synsets) to

represent word senses. Synonymy (syn same, onyma

name) is a symmetric relation between word forms.

• Antonymy (opposing-name) is also a symmetric

semantic relation between word forms, especially

important in organizing the meanings of adjectives

and adverbs.

• Hyponymy (sub-name) and its inverse, hypernymy

(super-name), are transitive relations between

synsets. Because there is usually only one

hypernym, this semantic relation organizes the

meanings of nouns into a hierarchical structure.

• Meronymy (part-name) and its inverse, holonymy

(whole-name), are complex semantic relations.

WordNet distinguishes component parts, substantive

parts, and member parts.

• Troponymy (manner-name) is for verbs what

hyponymy is for nouns, although the resulting

hierarchies are much shallower.

• Entailment relations between verbs are also coded in

WordNet.

Table 1. Semantic Relations in WordNet

2.4 ConceptNet
ConceptNet[4], is a knowledge representation project,

providing a large semantic graph that describes general human

knowledge and how it is expressed in natural language.

ConceptNet provides a combination of features not available

in other knowledge representation projects:

• Its concepts are connected to natural language

words and phrases that can also be found in free

text.

• It includes not just definitions and lexical

relationships, but also the common-sense

associations that ordinary people make among these

concepts. Its sources range in formality from

dictionaries to online games.

• The concepts are not limited to a single language;

they can be from any written language.

• It integrates knowledge from sources with varying

levels of granularity and varying registers of

formality, and makes. [4].

Fig 1: ConceptNet cluster of related concepts

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.7, May 2017

20

3. PROPOSED SYSTEM
Jape does not have a GUI and STANDUP is not easily

accessible. Our System is a web based approach which

guarantees ease of use and coded in such a way that it does

not require a lot of processing on host PC.

User interface layer is the one which directly interacts with the

user, it is web based and its only functionality is prompting

the user for a keyword and displaying the generated joke. The

next layer in the bottom-up approach is the keyword

validation layer. It returns an error if the user has malicious

intent and inputs an abuse word, else it forwards the keyword

to the further layers for processing. The processing of the

keyword is explained in the fifth section.

The system of Automated Pun Generator is such that the User

Interface is web based and coded using DJANGO for

dynamic keyword input and the keyword is then passed to the

python module for tokenization using NLTK. Further

processing of the keyword is done based on the category and

template that is selected and Homonyms or Synonyms are

found using various tools cited below. The set of keywords

generated after the processing are then inserted in the template

and the template is sent as a string in the question answer

format to Django for displaying.

Fig 2: Multi Tier Architecture of the System

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.7, May 2017

21

4. ALGORITHM
The algorithm can be explained with the following example:

What do you call a uninterested plank? A bored board.

The template extracted for this example will be: What do you

call a [adj A][nounA]?A [adj B][noun B].Let the input be adj

B, adj B and noun B are homophones, adj B and adj A are

synonyms, noun A and noun B are synonyms

Step 1: Input: A keyword entered by the user. For the

above example, input keyword is bored. Therefore, adj B

is bored.

Step 2: Check whether keyword is not abusive word,

generate error if found abusive.

Step 3: Find whether it is noun or adjective using POS-

tag in NLTK.

Step4: Select particular template if it matches it’s pre-

condition.

Step 5:Accordingly find homophones, synonym ,

rhyming word or relationship required. Consider the

example again, noun B=homophone(adj B)=board, adj

,A=synonym(adj B)=uninterested, noun,

A=synonym(noun B)=plank.

Step 6: Required set of words are obtained and template

is filled up.

variable set(uninterested, plank, bored, board)

Step 7: Riddle or pun generate is displayed to the user.

5. IMPLEMENTATION DETAILS AND

STATISTICS
The APG system was implemented and tested on two

processors AMD Fx and Intel i7 , Windows 64-bit.The

performance of AMD and i7 majorly varies due to the built in

GPU but since APG does not require gaming like GPU , it

will not affect the system performance majorly. The factors

that should be considered are clock speed and availability of

cache.

The statistics were observed by individually running the

system on both processors and for each joke generated, it was

restarted again. The efficiency of the system can be observed

by the joke referred to and the joke created by the system.

Table 2. Efficiency of the system and processing time

Sr

no.

Training

Template

APG generated

riddle

Time in

AMD

(secs)

Time

in i7

(secs)

1 What do you

call a strange

market ?A

bizarre bazaar

What do you

call a weird

market ?A

bizarre bazaar

1.87 0.97

2 What do you

call an unable to

bear children

minor royalty?

A barren baron.

What do you

call a infertile

nobleman ? A

barren baron.

3.57 2.66

3 What do you

call a superior

one who bets?

What do you

call a superior

gambler? A

2.78 1.104

A better bettor. better bettor.

4 What do you

call a

courageous

rock? A bolder

boulder.

What do you

call a

courageous

rock? A bolder

boulder.

13.45 11.0

5 What do you

call a bath tour?

A tub crawl.

What do you

call a bathtub

travel? A tub

crawl.

16.23 10.59

Fig 3: Graphical representation of efficiency of system

We can observe from the table and statistics graph that i7 is

more efficient to run the system on. When an average of 10

templates was computed, it was found that the average

processing time in seconds for AMD was 3.86 and that for i7

was 1.47seconds.

6. LIMITATIONS
The efficiency of the APG is dependent on the keyword

having a homophone or rhyming word. Only then it can be

generated into a joke. The second limitation is that the

homophone and the corresponding synonyms should be

present in the database from which it extracts. Some jokes

even though generated lack the humour that we have tried to

achieve because the generated riddle varies a lot from the

training template. The extensive Apis , databases and the nltk

toolkits require quite a lot of computational resources , which

has been proved in section 6.

7. CONCLUSION
Computational humour has a long road ahead in terms of

research and it is directly dependent upon the research

advancing in the field of natural language processing. Quite a

lot of tools and APIs are present for different modules of NLP

now which enabled us to create a dynamic joke/riddle

generating system.

Our system can be further developed to increase the quality

and quantity of jokes by using different templates for eg.

Knock Knock Jokes. A Restful API can be developed along

with the UI for an android app. A feedback mechanism can be

established so that user feedback can be used to improve on

the quality of the joke.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.7, May 2017

22

8. ACKNOWLEDGEMENTS
We would like to extend our sincere thanks to Ms Swati Mali,

our professor and mentor who helped us understand the

essentials of algorithms and artificial intelligence and

introduced us to natural language processing.

9. REFERENCES
[1] Ritchie, Graeme. "The JAPE riddle generator: technical

specification." Institute for Communicating and

Collaborative Systems (2003).

[2] Manurung, R., Ritchie, G., Pain, H., Waller, A., O'Mara,

D. and Black, R., 2008. The construction of a pun

generator for language skills development. Applied

Artificial Intelligence, 22(9), pp.841-869.

[3] Miller, George A., Richard Beckwith, Christiane

Fellbaum, Derek Gross, and Katherine J. Miller.

"Introduction to WordNet: An on-line lexical database."

International journal of lexicography 3, no. 4 (1990):

235-244.

[4] Speer, Robert, and Catherine Havasi. "Representing

General Relational Knowledge in ConceptNet 5." In

LREC, pp. 3679-3686. 2012. Applied Artificial

Intelligence, 22(9), pp.841-869.

[5] Hong, Bryan Anthony, and Ethel Ong. "Automatically

extracting word relationships as templates for pun

generation." In Proceedings of the Workshop on

Computational Approaches to Linguistic Creativity, pp.

24-31. Association for Computational Linguistics, 2009.

[6] Synonyms in English – Word list – A – F

http://www.englisch-hilfen.de/en/words/synonyms.htm

[7] Homonyms and Near-Homonyms - University of Central

Missouri https://www.ucmo.edu/PreBuilt/documents/H

omonymsandNear.pdf

[8] Big Huge Thesaurus

https://words.bighugelabs.com/api.phpnces

[9] Shah, Priyanshi R., Chintan D. Thakkar, and Swati Mali.

"Computational Creativity: Automated Pun Generation."

International Journal of Computer Applications 140.10

(2016).

IJCATM : www.ijcaonline.org

