
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

21

Software Watermarking based on Return-Oriented

Programming for Computer Security

Ashwag Alrehily and Vijey Thayananthan

Computer Science Department,

Faculty of Computing and Information Technology,

King Abdul Aziz University,

Jeddah 21589, Saudi Arabia

ABSTRACT

Currently, the major problem for software developers is

software piracy. To protect software from piracy, many

techniques are developed, and one of them is software

watermark. Software watermark provides authentication and

copyright protection by embedding a watermark into the

software, and the owner can claim ownership of the software

by watermark extraction. The software watermarking

improves the computer security with a robust solution to

expose the unauthorized modification or illegal copying of

different kind of attacks. Now, there many techniques for

embedding and extracting watermark into software and most

recent one used malicious code like return-oriented

programming (ROP) for good uses. Moreover, any software

protection with an efficient watermarking algorithm based on

ROP is a relatively new branch of computer security. Thus, in

this paper, new software watermark has been designed using

ROP technique that enhances the existing one. The watermark

has been embeded using ROP and it has been extracted once

ROP trigger is triggered. ROP trigger uses a SHA256 hash

function to compare between watermark secret input and user

entered key. As a result, the proposed work has strong

resilience, Stealth and minimum runtime overhead.

General Terms

In this paper, ROP is considered as my general term.

Throughout this research, software watermark is considered to

improve the computer security.

Keywords
Computer security, Software watermark, Return-oriented

programming and Secure Hash Algorithm.

1. INTRODUCTION
In computer security, ROP is one of the most popular

techniques which not only prevent the code-reuse attacks but

also return-to-lib(c) attacks. In this research, the ROP attacker

locates specific code sequences inside the binary, then places

their addresses onto the program stack, writing the appropriate

return instruction itself to transfer control flow from one

gadget to the next. To implement this concept, only a subset

of this functionality which allows us to perform the further

experiments, should be developed. Generally, ROP is used to

bypass measures that prevent code injection such as data

execution prevention. However, a classic code injection attack

is one of the attackers’ targets in the computer security issues.

According to the recent Security Intelligence Report released

by Microsoft, ROP played an important role in preventing the

code injection attacks on Microsoft products between 2012

and 2014. Since all current major operating systems

implement some form of data execution prevention

mechanism, ROP is now practically required for any arbitrary

code execution attack.

Computer software has become in every people’s daily life,

and software piracy is becoming a serious issue for

enterprises. There are many techniques to protect the

software, and one of them is software watermark. It is a

process of embedding a secret message in the source code of

the program; the secret message can be extracted to identify

the information about copyright owner of the software such as

author, publisher, and owner. Embedded watermark in

software should not affect the flow of the program or make

any redundant space that will affect the program high-quality

[1]. To add watermark into software there are two important

processes must perform:1) embed a watermark into

software.2) extract the watermark from software. More

precisely, assume that W is the watermark, P is the Program

and K are the secret input; the watermark W embeds into a

program P plus the secret input K to produce watermarked

program Pw. The following function describes the watermark

embed.

Embed (P, W, k)→ Pw.

And to display the copyright of the software owner the

watermark W can be extracted from the watermark program

Pw by watermark extractor and secret input K. The following

function describe the software watermark extraction [2].

Extract (Pw , k) →W.

There are two types of software watermark techniques: 1)

Static software watermark technique which is embedded the

watermark in the target application executable such as the

text section and initialized data 2) Dynamic software

watermark technique which is embedded the watermark in the

program execution state or dynamic data that gives the

program a new path to execute which contain the watermark

[2]. It is proudly believed that the dynamic watermark is more

reliable and secure solution because the hidden message

retrieved by running and examining the specific behavior of

specific path of the watermarked program [3].

One of the more resilient and stealthy over existing techniques

in dynamic watermarks is software watermarking using ROP

[4] which designs watermarking code to look like normal data

and triggered to execute. After triggered, the hidden

watermark message recovers by the pre-constructed ROP

execution. Using ROP with its instructions in a program can

create unexpected executions (Path) which are invisible

functionally.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

22

1.1 Motivation
Although ROP is used in the existing software watermark,

following points motivate us to develop an appropriate

technique for improving computer security systems. In this

research, first motivation is an existing technique which has a

disadvantage in the trigger function because they designed a

very simple trigger function which makes attacker easy to

locate and analyze watermark. The second motivation is about

the uses of the malicious code where ROP had limited

solutions. It means that this technique is the only existing

technique that uses malicious code (ROP) into good uses.

Thus, in this paper, the motivation is to enhance the computer

security through the efficient technique.

1.2 Contribution
In the proposed technique, new software watermark using

ROP designed and implemented with more efficient trigger

function as the main contribution. To complete this research,

some more points as additional contributions have been

considered. They are elaborated here. Adding ROP in the

program has the advantage of not creating a new data

structure that makes code suspicious comparing between

watermarked program and the original program. The

watermark embeds into the program using ROP functions that

use existing instructions which convert program normal

execution path into ROP execution path. The unexpected path

will not affect the normal execution of the program. The

watermark extraction using a hash function in trigger

function.

1.3 Paper organization
The paper is designed as follow; Section 2 includes the related

work of previous research and some related idea of the

proposed research. Section 3 includes proposed work. Section

4 illustrate proposed work design and implementation then

section 5 includes result and discussion, and the last section is

a conclusion of the proposed work.

2. LITERATURE REVIEW
When program behaves differently or crashed, that means the

program has some bugs or errors. Software errors put the

program in unsafe environment and lead to a security leak.

There are different software errors one of them is memory

error which causes software to crash in certain situation such

as buffer overflow or stack overflow. Security bug or

vulnerability is a defect in a system’s security which make the

system open to changes and easy way for an attacker to

manipulate the system to do unintended functions. These

changes can affect the system in different part such as

availability of the system, gain complete control of the

system, change some privileges to access unintended level,

and many other parts[5].

Regarding static software watermark, many types of research

have been proposed. In [6] where authors have proposed it

based on equation reordering. The watermark algorithm idea

is to reorder the operands of the equation and hide the

watermark data and be sure not change the result of the

equation. The order of equation operands is changed

according to the watermark information. The algorithm hides

the watermark in the source code without adding any

additional codes that protect the execution of form program

slowdown and size change, and it is blind. However, it has

limited capacity for hiding the information, but according to

[7], authors have improved the efficiency of the hidden

information by presented software watermark based on

Coefficients of Equation. The algorithm reorders the operand

coefficients of the equation if it is in a safe swappable form

and it is also a blind algorithm, but the order of the operand

coefficients in the equation will change according to a

particular order that is from small to big. However, the

existing watermark based on equation re-sort algorithm has in

fact easy attacked by using the random re-sequencing

technology. In [8] researchers solved this problem by

proposed a new software watermark that decomposed

watermark using Chinese remainder theorem and hid in the

source code without any additional codes. However, the

evaluation shows the robustness of the watermark; it did not

affect the code length or the speed of the program, and it has

better performance than [6] [7].
Regarding the software watermark in dynamic form, Collberg

et al. [2] first introduced the dynamic software watermark in

the form of graph based watermark. This approach stores the

watermark in the form of graph structure created at execution

time and then using the graph to extract the watermark.

Another type of dynamic technique is the branch based

watermarks as in [9] where authors proposed a new algorithm

based on Shamir threshold scheme and branch based dynamic

watermarking (STBDW). The watermark process goes into

many phases unit embedded the watermark into the program.

The watermark number divided into many pieces and the

insertion of the watermark will start by execution the program

with the secret sequence to find all the local variables value

and to generate code to insert the watermark in the appropriate

position. Moreover, the authors prove the robustness of the

proposed algorithm after implementing the algorithm. At last,

there are other categories of software watermark such as

register-based software watermark, thread-based software

watermark and obfuscation-based software watermark [10].

Another researcher uses a hash function to embed a

watermark in dynamic approach such as [11]. They proposed

a new software watermark algorithm based on hash function;

the proposed watermark satisfy three conditions to be more

secret and robust. The three conditions are the information of

the watermark cannot be in the static form in the program, it

must be a logical relation between the watermark and program

and the information of the watermark is unique. They selected

to be logical relation because if there is watermark damage,

the program will behave differently. The watermarking

algorithm started by segmentation the watermark. The

watermark segmentation divides the watermark into smaller

parts then construct the hush function after that embedding the

watermark by generate code for the hash function and embed

it into the program in proper position. The authors evaluate

the robust of the proposed watermark under three different

categories of attacks: subtractive, distortion and additive

attacks and they found the algorithm resisted the attacks.

The main idea of the proposed work taken from the recent

proposed dynamic software watermark in [4] they use ROP

and turn it into a good use and created new software

watermark. The proposed software watermark collect the

watermark codes from the existing code, in the data region the

ROP convert codes into ROP gadgets and build them; these

codes lead to unexpected execution path. The program

modified to arrange all other resource needed to follow this

unexpected execution path (watermark path) on-the-fly. To

extract the watermark, the trigger must happen by using the

secret input to activate ROP execution after that the program

control transfer to hidden ROP path. They evaluate the

proposed software watermark with the previous works, and

the evaluation shows the better stealth and good resilience.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

23

3. PROPOSED WORK
In this section, the methodology of the proposed work

explains in detail. watermark program develops using ROP

technique, and the proposed ROP trigger is added.

3.1 Return Oriented Programming (ROP)

Overview
Exploitation process or exploit is the process of taking control

of program flow by changing the instruction pointer of the

program. An attacker can exploit some software errors to take

control of a program or to modified the software behavior.

change the instruction pointer cannot be performed directly, it

must be some bugs in the program. A bug in the program acts

as an entry point to allow an attacker to exploit the program

and provide some input to the program [12]. There are a

different number of attack techniques have been created in the

recent years to enable an attacker to successfully exploit the

vulnerability to change the control flow such as return

oriented programming ROP.

In [13] invented new technique called return oriented

programming (ROP) for malicious purpose, and it becomes a

most important technology today. ROP was used on many

platforms such as x86 architecture, SPARC [14]. ROP based

on a return to Libc attack which uses functions from the libc

library. it created to works against the protection mechanisms

such as W⊕X and DEP because these mechanisms work as

protection for the operating system from code injection

attacks, and ROP was the best fit since it has no need to inject

new code.

ROP code consists of two pieces which are gadgets and

Payload.

Gadget: ROP uses gadgets to build their code, and the gadgets

are an orignazed unit, a small piece of instruction that located

somewhere in the executables such as system libraries. Each

gadget has certain value, and they should end with indirect

call or jump or return example of gadgets: < pop %eax ,ret>

The gadgets sequences or called instructions perform a

specific operation. ROP Gadget operation is the following:

 load and store:

There are three cases two loads and one store : load from the

memory location the content to register ,load a constant to

register and wrtie to the register the content of memory

loaction.

 Arithmetic and Logic:

Such as add, or, not, exclusive or and shift.

Payload: Well-crafted bit string the take all selected gadgets

address for selected execution.

ROP code works by linking sequence of gadgets together in

the stack. Each gadget end with ret instruction that allows the

attacker to chain the instruction sequence together in the

stack. The stack pointer esp pointed to the first instruction of

the ROP and executed it then the ret instruction invoke the

second gadget to executed it and so on. Thus, the esp

controlled the execution flow and worked as the program

counter.

The ROP code format in a form that cannot be run directly but

by its own instructions to create unexpected execution path in

the program, the unexpected execution path created by ROP

is invisible which makes code hard for an attacker to

understand. Therefore, it is a fact that the ROP is the most

famous technique used in malicious uses. And the latest

research proved that the ROP could be used not only for

malicious uses but also in benign uses like software

watermark [4].

3.2 Watermark Program Based On ROP
The proposed work take into consideration the following

issues:

 The ROP code must be not suspicious comparing

the proposed watermark program with the program

before adding the watermark.

 After watermark message extraction, the program

should return back to the normal program execution

path.

Watermark program based on ROP build by preforms four

main steps which are located gadgets then create ROP

payload and chain the payload in the program and finally

build ROP trigger to change the execution path to the ROP

path. Figure 1 shows the proposed work building steps.

Figure 1: Proposed work building steps.

The first three steps of building ROP program responsible for

embedding watermark into the program and the final step

responsible for extracting the hidden watermark. In the

proposed work, the watermark embed is a simple watermark

and the idea of the watermark taken from [4], the proposed

watermark message is “007” and stored in string S, not as

integer number “007” but stored as ASCII code of the integer

number “007” which is “484855”. To embed watermark, three

important gadgets have been selected to control the watermark

embedding and building the proposed ROP payload around it;

the following points describe the watermark embed process

(see Figure 2):

Figure 2: proposed ROP based watermark.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

24

 First the initiation stub in charge for two functions: first,

save the current stack pointer address to return to after

extract watermark. second, transfer and change the

current stack pointer to point to watermark code;
 The watermarking code consisting of three gadgets to

complete a memory writing chain <pop ecx; ret>, <pop

eax; ret> and <mov [ecx], eax; ret>;

 Give ecx register the address of string S and eax register

the ASCII code constant 484855 corresponding to

watermark message “007”;

 Last the termination stub in charge for return the

execution to the regular program by recovering the

original stack pointer.

The watermark extraction procedure triggered by ROP

function which is the final step of building ROP program, the

watermark extraction loads the embedded watermark

”4848455” by ROP and the address of string S into register

ecx and eax, respectively, then updates the string S to the

watermark message “007”.

The four main steps of building the proposed work are the

following:

1- Finding watermarking gadgets:

Gadgets are series of instructions ending with return (RET)

existing in the system libraries and each instruction reasonable

for a specific operation. There are two steps required to

finding the gadgets: first, select system libraries to search for

all or specific gadgets and second, select a suitable gadget

from selected system libraries that can achieve specific

operation based on program need. Thus, in the method, two

libraries have been picked the kernel32 and ntdll because of

both libraries available and important in windows OS also

they have the suitable gadgets. The kernel32 library is

responsible for handling memory usage in windows operating

system and without it windows cannot work properly. The

ntdll library is the most important file in windows operating

system. It is responsible for handling system tasks, and it has

and some kernel mode function that allows (API) Windows

Application Programming Interface. In the method, it only

needs gadgets that perform memory writing, register loading

and transferring the instruction pointer; Table 1 shows how

many gadgets both libraries have, the count based on the

gadgets that can complete a functional chain.

Table 1: number of gadgets in system libraries.

libraries Memory

writing

Register

loading

Transfer

kernel32.dll 2 13 3

ntdll.dll 6 10 8

To locate gadgets, the existing programs Immunity Debugger

program has been used with Mona.py tool to help to search

for gadgets [15] [16]

2- ROP Payload:

Creating watermark in ROP need a lot of gadgets to be

executed, thus after selecting all the gadgets required to

embed watermark, ROP payload must build to chain all the

gadgets. The payload needs to be of reasonable length, and the

code constructed payload must be short because long payload

code will be attracted to attackers. Also, ROP payload must be

well crafted, and the selected gadgets must be executed in

sequence to ensure do not affect the program execution. In the

design, the ROP payload has fewer gadgets, and three dummy

functions have been built to use as a distraction to attackers.

Thus, the most advantage of the proposed ROP based

watermark is to execute, embed a watermark and call the three

dummy functions throughout the execution path which makes

the proposed ROP based watermark hard to find any

suspicious code in the program analysis. ROP payload could

be stored in an integer array, an object of the specific class or

character strings, since the proposed ROP payload has fewer

gadgets. Character string has been selected to store the

watermark payload in the static region, figure 3 shows how

the watermark executed. As we can see, the watermark

payload contains gadgets to embed watermark also the

address of the three dummy; watermark payload embeds the

watermark before calling the dummy functions.

Figure 3: Watermark payload for ROP based watermark.

3-Payload Chain:

The proposed payload contains all the selected gadgets

address, all the selected gadgets are in order and the payload

chain and execute all the gadget based on their order. Also,

because the ROP gadgets are special instructions end with

return “ret”; the first gadgets of payload executed then

automatically return the control to the second gadget and so

on.

4- Triggering ROP via function pointer overwriting:

The final step of building ROP-based watermarking is

changed the normal execution path of the program to ROP

execution path to execute the hidden watermark. the ROP

execution path executes the selected gadgets because of that

the code must appear as a non-suspicious code. Thus, for

triggering the ROP execution, a function pointer has been

used. Function pointer provides a simple way of transferring

the program control to the ROP gadgets by overwriting of its

value.

Normally in any watermark, there is a trigger function that

calls dummy function and performs some calculation that

does not affect the program execution, the trigger calls

transfer the normal execution of the program to the part that

responsible for watermark extraction. And to trigger the

trigger function done by inputting secret input. In the design

the trigger function is executed by inputting the secret input.

The ROP trigger calls dummy function to check if the secret

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

25

input is the needed input to extract the watermark. After that,

check if the secret input is the valid input then the control

transfer to the payload and precisely to the first gadget. The

first gadget is responsible for saving the current environment.

The most important part of building the trigger function is to

encode condition to test the secret input in most powerful and

secure way. It is a fact the using simple block of comparisons

such as if and else statement to compare between the entered

input and constant secret input in the program is the simplest

solution. However this solution could attract attacker attention

when analyzing the program [4]. Thus, building a complex

trigger function is harder to discover or analyzes by program

analysis. Here a novel idea is proposed to build trigger

function, see Figure 4. The obfuscation mechanism has been

used to compare between the entered input and the secret

input called cryptographic hash function in [17] used to

obfuscation conditional code, The cryptographic hash

function designed to be impossible to reverse and it has been

proven that it is infeasible to reverse such function and to

know the whole complete set of operations. Specifically, the

SHA256 (Secure Hash Algorithm) has been used which is one

of cryptographic hash functions, it is one way function, and it

takes the message with any length and encrypted to unique

fixed size hash of 256 bit (23 bytes) and cannot be decrypted

back [18], as an example:

The message is: ‘abc.'

The encrypted SHA256 is:

‘ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb41

0ff61f20015ad’

 As a result, the ROP trigger can determine the secret input

using SHA256 hash function to extract the watermark.

Figure 4: ROP trigger condition.

4. DESIGN AND IMPLEMENTATION
In this section, this research focuses on describing the design

and implementation of the proposed work. The building block

for the proposed work shown in Figure 5, to generate

watermark software first the program must be re-write

program code and perform all the steps mentioned above to

add ROP watermark in the program.

The scheme applied on one benchmark called Sjeng from the

SPECint-2006 test suite which has been used in a lot of

previous researches [19][4]. Sjeng program is a chess game

written in C programming language. Given a set of conditions

the program attempts to find the best move in a game[20].

The Sjeng program selected as the source program and re-

write the program to converted to watermark program. Thus,

the Sjeng program has been modified and added the ROP

Figure 5: Building block of the proposed work.

code and the proposed watermark, the ROP code transfer the

control to the gadgets when the user entered the secreted input

to extract the hidden watermark message then return back to

the program normal execution routine. Moreover, during the

program regular use, the extra code of ROP is always

executed because ROP does not change the original program

execution. Therefore, the code would be less suspicious

because it does not keep idle in the program.

The proposed ROP based watermarking implemented using a

combination of C++ and C programming language. Thus, the

Microsoft Visual Studio 2015 has been picked to implement

the proposed work. It provides a lot of features such as

creating software regardless of the software size and

complexity, ability to set environment only once, fixing error

easily and flexibility to analyze code quality and performance

[21]. Figure 6 shows the pseudocode of playing Sjeng

program, to start playing chess the user enter move and the

Sjeng program checks if the entered move is legal to move

and then the program play his move by his attempts to find the

best move and so on. In each user move the program check

the move possibility of being the secret input to extract

watermark and based on this the program may take one of two

possible paths:

1- The first path converts the secret input using hash

function SHA256 and compares it with the proposed

hidden method. When the move recognized as the secret

watermark then the program trigger the ROP. After that,

the program changes the normal execution path to the

ROP execution path to extract the watermark. The ROP

execution path executes all the gadgets in order and calls

the three dummy functions. Also embed the watermark

into the string S then extracted and display it on the

screen to the user.

2- The second path, when the move recognized as regular

chess move and not the secret watermark input, then the

program continue the original execution path of the

program without trigger the ROP.

Figure 6: Sjeng program pseudocode.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

26

5. RESULT AND DISCUSSION
In this section, evaluate the proposed software watermark

using ROP. The experimental watermarking is implemented

to display the watermark message on the screen. All tests

were run on a laptop with a 2.60GHz Intel Core i7-6500U

CPU, 8GB memory, and Windows 10 operating system. In

order to gain knowledge about its practical behavior, it has to

evaluate it under different assessment criteria [22]. Some of

the most important criteria are correctness, robustness, stealth,

Performance overhead, resistance, and credibility. Correctness

is keeping the program behavior similar before and after

watermark is embedded. Robustness means the watermarked

program should resist attacks. Stealth means the program

copy has the complexity to locate an embedded watermark.

Performance overhead means the watermark program and the

original program should be in same running time, memory

consumption and performance [23]. Resilience measures the

resistance against specific attempts at discovery or deletion.

Credibility defines how accurately the watermark can be

retrieved [4]. The following points are the evaluation of the

proposed work under different criteria.

1- Credibility and Correctness:

The proposed software watermark based on ROP takes string

“input” as input to extract the watermark message. The

watermark message, in this case, is proving of executing the

embedded ROP gadgets successfully. Thus, its credibility is

obvious.

It is believed that the correctness of our ROP-based

watermark is self- evident, and the behavior of the program

still the same after embedding the watermark.

2- Stealth:

The stealth of the proposed work proved by using the

dependence analysis on watermarking components to measure

the stealth of the software watermark. IDA pro 5.0 tool is used

to simulate a dependency analysis.

IDA pro is disassembler and debugger tool provide a lot of

features to the programmer to facilitate the understanding of

the program and analysis it. IDA pro support many platforms

such as Windows and Linux. There are two types of

dependency analysis can be generated for function and global

variable: first, cross-references to a symbol (Xrefs To) display

a graph with all functions and global variables that called the

selected symbol. Second, cross-references from a symbol

(Xrefs from) display a graph with all functions and global

variables that can be called from the selected symbol [24]. For

simplicity, the function that makes a comparison between the

user input and watermark secret input name “ROP function”

and if the condition is true, it will trigger the function name

“trigger” to extract the watermark message otherwise the

program will continue run without extraction of the

watermark. The watermark message is inside string name “S.”

The string will contain the watermark message only when the

trigger function is called. Thus, the string will hold the

watermark massage in the trigger function. Let assume an

attacker finds the distinguishable function “ROP” and uses the

IDA pro to find the dependence analysis of this function.

Figure 7 shows the dependence analysis of “ROP function,”

where we can see that “ROP function” called from function

name “is_move” and that gives the attacker a clear path where

can search for any function to find watermark code.

Figure 7: the dependence analysis of “ROP function.”

But the proposed watermark is hidden in the data region of the

program. For clarification, If the attacker wants to find all the

dependences of string “S” the graph only display “ROP”

function that means function “ROP” is the only function that

responsible for modifying and change the string “S,” Figure 8:

shows the dependence analysis of “S” string.

This is a prove that the watermark semantics is invisible to

code analysis and the attacker can not find the string that

holds the watermark message even after using IDA pro to find

the dependency analysis.

Figure 8: the dependence analysis of “S” string.

3- Resilience:

The method determines a strong resilience by test the strength

of the design against distortive attacks. The distortive attack is

the attacker ability to destroy the watermark code by changing

the binary code of the watermark. The distortive attack can

apply semantic-preserving transformations or binary

obfuscation to the watermark program to change or destroy

the watermark such as binary obfuscation and packing and

optimizing [2]. The method tested against a selection of well-

known transformation tools:

 UPX: stands for ultimate packer for executables, it

provides high quality compression and fast

decompression with no memory overhead [25].

 Stunnix CXX-Obfus: it performs professional

obfuscation to the code to make it difficult to understand,

it is very advanced cross platforms such as windows and

Mac OS X, it supports many languages such as java and

C/C++ [26]. In the test, the Stunnix C/C++ Obfuscator

has been used.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

27

The watermak program applied to upx and compared the

watermark extraction between the orignal program and the

program. After using upx, the results showed the watermark

program worked successfully with compression and

decompression. Thus, the results showd that after appled the

above transformation tools in the propsed method the program

status remain the same, and it still takes the secret input and

chain the watermark and extract the watermark message

correctly, this indicates that the new design has good

resilience.

4- Performance Overhead:

The performance overhead evaluated on three aspects: the

runtime overhead, code size increment, and the required

additional heap space. Therefore, the design evaluates in

comparison with the original ROP-based watermark in [4], the

performances analyze of the two programs using Microsoft

Visual Studio Enterprise 2015, and precisely Visual Studio

Profiling Tools has been used.

The runtime overhead is the time form the program start until

generates the watermark; Table 2 shows a summary of the

runtime overhead and additional heap space required, Figure 9

shows the program size increment. The results showed that

the runtime overhead in ms is significantly smaller than that in

the original ROP- based watermark, also the proposed design

has a smaller increase in the program size. The size of

additional heap space in the proposed design takes only 164

bytes when constructed the gadget while the original

watermark takes between 156 and 188 bytes depending on

gadgets format.

Table 2: summary of the runtime overhead and additional

heap space required.

Sjeng benchmark Our ROP-based

watermarking

Original

ROP-based

watermarking

Runtime Overhead (ms) 18 19.4

Additional heap space

required

164 Between 156

or 188

Figure 9: Increment in program size (bytes).

Heap sizes are analyzed and checked with the different

gadgets where formats of the random gadgets related to Sjeng

benchmark is considered as in Figure 10. This analysis

provides us the future computer security which could be

improved not only with the type of gadgets but also the

formation of the gadgets.

Figure 10: Heap sizes of gadgets related to Sjeng with

different formats.

6. CONCLUSION
The new software watermark designed using ROP with

complex trigger ROP function. In the trigger function, the

hash function SHA256 used to compare between the secret

input and user entered input. The proposed work evaluated

with many existing criteria also compare the proposed work

with an existing and only technique that used ROP to embed a

watermark into software. The result showed that the proposed

work hard for an attacker to understand in the program

analysis and it has better resilience, Stealth and minimum

runtime overhead.

The future work of software watermark using ROP is to

improve it by imbedding hard watermark into the program

such as adding watermark in the object of class instead of a

simple string. Also, improve the efficiency of software

watermark by distributing ROP payload among the program

to make it harder to recognize to the attacker.

7. ACKNOWLEDGMENTS
We are glad that we completed this work successfully. This

work would be impossible without the help of Dr. Vijey

Thayananthan. I would like to thank him for his expert advice

and usual support.

8. REFERENCES
[1] L. Chen and C. Zhang, “A Novel Algorithm for.NET

Programs Watermarking based on Obfuscation” in Int

Symposium on Instrumentation & Measurement, Sensor

Network and Automation, (IMSN). Sanya .2012 , pp.

583 - 586.

[2] Collberg, C. and C. Thomborson (1999). Software

watermarking: Models and dynamic embeddings.

Proceedings of the 26th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages,

ACM.

[3] C. Collberg and J. Nagra. Surreptitious Software —

Obfuscation, Watermarking, and Tamperproofing for

Software Protection. Software Security Series. Addison-

Wesley, 2009

[4] H. Ma, K.Lu , X.Ma ,H. Zhang,C Jia and D.Gao."

Software Watermarking using Return-Oriented

Programming ".on ACM Symposium on Information,

Computer and Communications Security.

ASIACCS.2015.pp. 369-380.Tavel, P. 2007 Modeling

and Simulation Design. AK Peters Ltd.

0
100
200
300
400
500
600
700
800
900

1000

Our ROP-based watermarking

Original ROP-based watermarking

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6313483
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6313483
http://dl.acm.org/event.cfm?id=RE289&CFID=719474005&CFTOKEN=73002729
http://dl.acm.org/event.cfm?id=RE289&CFID=719474005&CFTOKEN=73002729
http://dl.acm.org/event.cfm?id=RE289&CFID=719474005&CFTOKEN=73002729

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.8, May 2017

28

[5] Anley, C., et al. (2011). The shellcoder's handbook:

discovering and exploiting security holes, John Wiley &

Sons.

[6] M. Shirali-Shahreza and S. Shirali-Shahreza . "Software

Watermarking by Equation Reordering ".on 3rd Int Conf

on Information and Communication Technologies: From

Theory to Applications, ICTTA .2008.pp. 1 – 4.

[7] S. Zonglu, J.Hua and X.Aicheng. " Software

Watermarking Algorithm by Coefficients of Equation

".on 3rd Int Conf on Genetic and Evolutionary

Computing, 2009.pp. 410 - 413.

[8] J. Hua, H. Hanlei and W.Xin . "Software Watermark

Algorithm Based on Chinese Remainder Theorem".on

IEEE Conf Anthology, 2013.pp. 602 – 606.

[9] Z.Jian-qi, L.Yan-heng, and Y.Ke ." A Robust Dynamic

Watermarking Scheme based on STBDW ". WRI World

Congress on Computer Science and Information

Engineering, 2009.pp. 602 – 606.

[10] G.Gupta and J.Pieprzyk." Source Code Watermarking

Based on Function Dependency-Oriented

Sequencing".on Int Conf on Intelligent Information

Hiding and Multimedia Signal Processing,

IIHMSP.Harbin.2008.pp. 965 – 968.

[11] Zhang, X., et al. (2008). Hash function based software

watermarking. Advanced Software Engineering and Its

Applications, 2008. ASEA 2008, IEEE.

[12] Scut (2001). Exploiting format string vulnerabilities,

Team Teso.

[13] Shacham, H. (2007). "The Geometry of Innocent Flesh

on the Bone:Return-into-libc without Function Calls (on

the x86)." In Proceedings of the 14th ACM conference

onComputer and communications security (CCS): 552-

561.

[14] Buchanan, E., et al. (2008). When good instructions go

bad: Generalizing return-oriented programming to RISC.

Proceedings of the 15th ACM conference on Computer

and communications security, ACM.

[15] Immunity, I. Immunity debugger.

[16] Corelan (2015). Mona.

[17] Sharif, M. I., et al. (2008). Impeding Malware Analysis

Using Conditional Code Obfuscation. NDSS.

[18] Standard, S. H. (2002). "FIPS PUB 180-2." National

Institute of Standards and Technology.

[19] Palsberg, J., et al. (2000). Experience with software

watermarking. Computer Security Applications, 2000.

ACSAC'00. 16th Annual Conference, IEEE.

[20] Coffey, P. (2011). Benchmarking the amazon elastic

compute cloud (ec2), Worcester Polytechnic Institute.

[21] Microsoft (2015). Visual Studio.

[22] Collberg, C., et al. (2003). Error-correcting graphs for

software watermarking. Proceedings of the 29th

Workshop on Graph Theoretic Concepts in Computer

Science, Springer.

[23] Tang, Z. and D. Fang (2011). A tamper-proof software

watermark using code encryption. Intelligence and

Security Informatics (ISI), 2011 IEEE International

Conference on, IEEE.

[24] Eagle, C. (2011). The IDA pro book: the unofficial guide

to the world's most popular disassembler, No Starch

Press.

[25] Oberhumer, M., et al. (2004). UPX: the Ultimate Packer

for eXecutables.

[26] Stunnix Stunnix C/C++ Obfuscator.

IJCATM : www.ijcaonline.org

