
International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.12, June 2017 

25 

Dependency Parsing using the URDU.KON-TB Treebank 

Saima Munir  
Department of Computer Science 

& Information Technology 
University of Sargodha, 40100 

Sargodha, Pakistan 

 

Qaisar Abbas, PhD 
Department of Computer Science 

& Information Technology 
University of Sargodha, 40100 

Sargodha, Pakistan 

 

Bushra Jamil 
Department of Computer Science 

& Information Technology 
University of Sargodha, 40100 

Sargodha, Pakistan 

 

ABSTRACT 

In this paper, we present evaluation of URDU.KON-TB in the 

dependency parsing domain. The URDU.KON-TB treebank is 

developed on the bases of the phrase structure and hyper 

dependency structure which are only functional constituent’s 

label. Treebank was annotated with three levels of annotation 

tagset, the semi-semantic POS (SSP), semi-semantic Syntactic 

(SSS) and Functional (F) tagset and was checked for the 

Phrase Structure Parsing domain. To evaluate this treebank in 

the Dependency Parsing domain we have selected MaltParser. 

To use data in the parser, we have converted the 

URDU.KON-TB treebank annotated data according to the 

CONLL format. The compatibility of data to CoNLL is also 

measured along with usability of data in the dependency 

parsing domain. To make the data compatible, few 

assumptions are taken. The converted data is used to evaluate 

the system by dividing 80% data as training data and 20% 

data as testing data. We have performed eight experiments. 

Four experiments are conducted with six different feature 

models with converted data.  The experiments results show 

URDU.KON-TB treebank is not suitable for the dependency 

parsing as dependency relation because Head information was 

missing in the treebank. We then performed four experiments 

with an assumption based enhancement by adding Head 

information.  The algorithm used to train and test data is Nivre 

arc-agear algorithm. The new experiments show this treebank 

data can be used to develop new dependency treebank for 

Urdu.  

General Terms 

URDU.KON-TB, MaltParser and Dependency parsing 

Keywords 

Phrase structure parsing, Data Driven Dependency 

Parsing, MaltParser 

1. INTRODUCTION 
Urdu is a South Asian and the national language of Pakistan 

with rich morphology [1]. It is an Indo-Aryan language, and is 

a free phrase-order language. In a free phrase language, the 

phrases within a sentence have free order but the words within 

a phrase have a fixed order [3]. In parsing we assign a 

syntactic representation and analyze the grammatical structure 

of a natural language sentence [2]. The parsing is done using a 

treebank data. A treebank is a text corpus of sentences 

annotated with syntactic structure. Corpus annotation is the 

process of adding the interpretative linguistic information in 

form of the labels or tags of text. Tag is identifying the class 

of words as part of speech (POS) and arrangement of words 

and phrases in form of sentence is a syntactic tagging [1]. The 

most popular parsing representations are the phrase structure 

(PS) and the dependency structure (DS) [2]. 

For a treebank, the traditional annotation structure is Phrase 

structure. In Phrase Structure node represents the noun phrase 

NP and a verb phrase VP.  Example of such a sentence is 

shown in Figure 1. 

 

Fig 1: Phrase structure example 

The set of rules used for describing dependencies is a 

Dependency grammar. The asymmetrical relation between a 

head and dependent is a Dependency [2]. Head and 

Dependent are related.  Every dependent (word or phrase) 

depends on head of the sentence is a main verb [2]. In 

dependency parsing the relations between words of the 

sentence are established [2].  Parsing can be divided into 

grammar-driven dependency parsing and data-driven 

dependency parsing. Example of dependency structure is 

shown in Figure 2. 

 

Fig 2: Dependency Structure of an English Sentence 

In this example, the dependency structure is built up with 

recognizing a subject relation (SBJ) from the finite verb had 

to the noun news, a nominal modifier relation (NMOD) from 

news to the adjective Economic, an object relation (OBJ) from 

head to the noun effect, and so on [2]. In data-driven 

dependency parsing we map input strings to output using 

inductive mechanism. This mechanism is applied to a text 

sample taken from the language [3]. In Grammar driven 

dependency parsing approach, we use grammar parsing 

algorithm for computing the analysis of a given selected input 

string [3]. your own material.  

2. URDU.KON-TB Treebank 
In this section, we discuss bracketing notation of treebank, 

CFG and URDU.KON-TB. The Bracketing is computational 

treebank as shown in Figure 3. S in this bracketed form is the 

same two child nodes NP and VP as given in the tree 

representation. Similarly, the VP is the same structure of VBZ 

and NP at parallel level and so on [1]. So, URDU.KON-TB 

treebank is developed along with POS and syntactic an-

notation [1]. 
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Fig 3: Bracketing notation of Treebank 

The context free grammar (CFG) and constraints based 

grammar parsing are the types of grammar-driven parsing. 

The first one was performed on the URDU.KON-TB treebank 

earlier by Abbas [1]. URDU.KON-TB treebank adopted the 

same phrase structure annotation and hyper dependency 

structures. It is performed in three steps is as following: The 

collection of sentences in the form of a corpus, Manufacturing 

of an annotation scheme and the employment of the 

annotation scheme on the said corpus [1]. 

The corpus contains 1400 sentences, in URDU.KON-TB 

treebank are divided into 80% training data and 20% test data. 

It describes twenty-two semi-semantic part of speech tagset, 

twenty-six semi-semantic syntactic tagset and eighteen 

functional tagset. A context free grammar is extracted from 

this training data. Urdu parser is an extended version of 

dynamic programming algorithm [1]. Earlier developed 

parsers view parsing as a constraint-satisfaction problem and 

for parsing them use constraint based grammar [2]. The 

MaltParser is also known to have good result on dependency 

parsing discussed next section. To parse UDU.KON-TB 

treebank in the Dependency Parsing domain, the treebank 

already contains the POS and syntactic tagging (chunk/phrase 

level annotation) annotation except the last one option of 

dependency relations which are missing in the URDU.KON-

TB treebank. But it has functional tagset. 

3. MALTPARSER 
Maltparser is a system based on data-driven dependency 

parsing. It allows user-defined feature models that contain 

lexical features, part-of-speech features and dependency 

feature. Three components of parsing methodology are the 

deterministic parsing algorithms for building labeled 

dependency graphs, History-based models for predicting the 

next parser action at nondeterministic choice points and the 

discriminative learning to map histories to parser actions. 

MaltParser achieve state-of-the-art accuracy for languages 

with short distance relation. MaltParser system use Nivre arc-

agear algorithm in parsing system to train and test the data [3]. 

It uses four transitions first is the shift for push the next word 

in the buffer onto the stack, second is Left-Arc for add an arc 

from the topmost word on the stack. Third is Right-Arc to add 

an arc from the second-topmost word on the stack and four is 

the Reduction for pop the stack [2], [7], [14], [18], [19]. 

Classifier induces from treebank data using different machine 

learning methods with predict next action based on the feature 

vector. Feature vector is a setting in which change to suit the 

data with different features of the data like POS tags, words 

etc.  Our system uses all features that represent all attributes 

of tokens. These features have been extracted from the fields 

of the CoNLL data representation [2]. MaltParser for a new 

language for need to be optimize Parsing algorithm, Feature 

model and Learning algorithm [2],[9],[18]. Moreover, the 

MaltParser is popular for its dependency parsing. So, we have 

a cushion to work and have a motivation to produce quite 

good results in this untouched domain. To prove our 

argument, the literature is presented next section to fulfill the 

evidence.  

4. LITERATURE REVIEW 
In 2010, Ali et al. worked on data-driven dependency parsing 

for Urdu [3]. They used MaltParser for training and tuning on 

the Urdu dependency treebank (UDT). Multi-level and multi-

representational annotations like part-of-speech, chunking and 

dependency relation representation were used in developing 

this treebank [2]. There were 2853 sentences averaging length 

of 14.03 words in this treebank. The developed treebank had 

approximately 40012 tokens [2]. The selected corpus of UDT 

was constituent of all type of sentences, simple or complex. 

The corpus was manually annotated. It contained 35 POS 

tags, 9 chunk (phrase level) tags and small set of dependency 

relations [2]. 

UDT used only six dependency structures, which were the 

subject (subj), the object (obj), the secondary object (obj2), 

the adjectival modification (jmod), the adverbial modification 

(rmod) and the noun modification (nmod) [3].The authors 

converted the treebank data to CoNLL data format which was 

given to MaltParser as given input [3]. The selected CoNLL 

fields for the feature models contained were: ID (token 

counter, initialized by 1 for each new sentence), FORM (word 

form), CPOSTAG (coarse-grained part-of-speech tag), and 

POSTAG (Fine-grained POS tag), and the HEAD (head of the 

current token [3], which is a value of ID). The given input was 

in CoNLL format that is helpful for data-driven parsers. As a 

head of sentence Zero (0) is used and for phrase's head the 

value of ID is used and DEPREL (Dependency relation to the 

HEAD) [3]. The CoNLL format and annotation is 

demonstrated in Figure 4, by a typical sentence example [3]. 

 

Table 1. CONLL formate of the above sentence 

I

D 

FOR

M 

POSTA

G 

CPOSTA

G 

HEA

D 

DEPRE

L 

علی   1  NNP B-NP 8 subj 

 PP I-NP 8 subj نے 2

 NN B-NP 8 obj2 بازار 3

 PP I-NP 8 obj2 میں 4

 CD B-NP 7 nmod ایک 5

 JJ B-JJP 7 jmod کالی 6

 NN B-NP 8 obj گاۓ 7

دیکھی  8  VB B-VP 0 main 

The authors performed a series of experiments for evaluation 

of Urdu dependency parsing system. They performed all 

experiments using the Maltparser’s default algorithm but each 

time selecting different feature models [3]. Their initial base 

line feature model used for Urdu Dependency Parsing was 

simple and it consists of word position, word, head and 

dependency relation. After that they enhanced the feature 

model by adding POS and chunk information [3]. The overall 

best achieved labeled accuracy (LA) for their experiments was 

74.48% while for unlabeled attachment score (UAS) was 

about 90.14% that was achieved successively [3]. After that 

they manually did parsing to analyze and classify the different 
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types of errors produced by the parser. The obtained manual 

results were then compared with the treebank test data [3]. 

Another experiment was performed in 2012 by Ambati et al, 

in which they split UDT into training, testing and 

development sets. There were 2258 sentences in the training 

set and it was about 70% of total sentences in the corpus. 

Their test sets contained 484 that were about 15% of the total 

corpus. For sentence selection they used stratified partitioning 

technique. They tried to ensure that the three sets had 

approximately the same distribution of the parameters. They 

also used the “nivre-eager"and “nivre standard" parsing 

algorithm with default SVM setting parameters. They 

achieved 76.61 were76.61% LA, 88.45% UAS and 80.03% 

labeled accuracy scores using MaltParser. They desired to add 

chunk heads to check intra-chunk dependencies. Some other 

experiments had also been performed in many studies like [4], 

[5], [6], [8], [10], [11], [12], [13], [15], [16], [17], [20], [21] 

for various languages and results are reported in favor of the 

MaltParser.  

5. PROBLEM STATEMENT 
The treebanks are being built and checked against the 

different parsing mechanism specially the phrase structure and 

dependency structure. After this evaluation check their 

usefulness is normally reported. As for as, the phrase structure 

is concerned the URDU.KON-TB treebank has been 

evaluated and results are reported in [16]. However, this 

treebank has not been evaluated in the dependency parsing 

domain. The URDU.KON-TB treebank has the hyper 

dependency structure (HDS) encoded in it, which we will 

have to extract and parse accordingly. This evaluation will 

finally give us the answer that the URDU.KON-TB treebank 

is suitable for phrase or dependency parsing comparatively. 

To use the URDU.KON-TB treebank, we will have to convert 

its annotated data according to the format of the MaltParser’s 

input e.g. CONLL format. As we are going to develop and 

experiment the computational resources in the domain of 

dependency parsing, so our research objectives/tasks will 

include the following 

1. We will measure the compatibility of the 

URDU.KON-TB treebank w.r.t the format of the 

MaltParseras the treebank has the HDS annotation 

scheme encoded in it [16] and then we will claim its 

usability. 

2. We will extract the data in CONLL format from the 

URDU.KON-TB treebank [1], so that it can be used 

to train the MaltParser.  

3. We will perform experiments between the extracted 

data of the URDU.KON-TB treebank [1] and the 

MaltParser, and then finally report the suitability of 

the treebank in the domain of data-driven 

dependency parsing. 

6. METHODOLOGY AND RESULTS 
Computational model is an Urdu Dependency Parsing System 

[2]. We have used proposed Data-Driven Dependency Parsing 

computational model for Urdu language [3] on URDU.KON-

TB [1]. 

6.1 Data Conversion process 
In dependency treebank, the precedence order of annotation 

from lexical level to dependency level is POS > Syntactic > 

Dependency Relation which is a semantic relation between 

Head and Dependent as discussed in [3]. While the 

precedence order of the URDU.KON-TB treebank annotation 

from lexical level to functional level is the POS > Syntactic > 

1st Division of the Functional tag > 2nd Division of the 

Functional tag [1]. At POS level ‘.’ is the only symbol used to 

connect POS with semantical and morphological 

subcategories e.g. N.SPT (the POS of noun N with spatial 

SPT semantics). At syntactical level, ‘.’ symbol is used to 

connect syntactical subcategories and ‘-’ symbol is used to 

add all functional labels including semantical tags after the 

syntactic tags [1]. Although URDU.KON-TB contains 

semantic information at each level proposed as future work 

(morpho-syntactic and syntactic-semantic) was proposed [2] 

but treebank does not contain dependency relation according 

to dependency grammar rules. So, we assumed the functional 

tagset as a Dependency Relation which are against the 

dependency. As Head information is also not available in the 

URDU.KON-TB treebank to run in MaltParser. According to 

treebank, we considered each word in the treebank is not head 

of any other word and nor dependent of any other word in the 

sentence. So, we assigned index value of token (ID) to the 

Head value in CONLL format. All these assumptions were 

made to make URDU.KON-TB data compatible and usable to 

run in MaltParser. But these assumptions did not fulfill the 

requirement of Dependency Treebank.   

To convert the URDU.KON.TB tree to CoNLL based tree 

representation, we divide tree into multiple layers which 

represent columns in the CoNLL format. We defined 

following process or rules of conversion 

 A layer is added at the bottom of the tree (below of 

edge leaves). This layer is named as ID in CoNLL. 

ID is an index of token which is an integer starting 

from 1 at each new sentence. 

 Each word of the sentence is called FORM in 

CoNLL format. 

 Semi-Semantic POS (SSP) tagged is listed under a 

layer called POSTAG, a column in CoNLL. It may 

contain POS with semantical and morphological 

subcategories but categories are optional. 

 The next layer is based on Semi-Semantic Syntactic 

(SSS) annotation. This layer is called CPOSTAG. It 

is syntactic tag with morphosyntactic information 

and addition information is optional. 

 The HEAD of each word is required in dependency 

parsing which is not available in URUDU.KON-TB. 

We considered each word in the treebank is not 

head of any other word and nor dependent of any 

other word in the sentence. So, we assigned index 

value of token (ID) to the Head value to make 

compatible w.r.t CoNLL format. 

 Functional (F) tagset is called DEPREL. As there 

are two division level of functional tagset. We will 

keep in mind immediate functional tag to syntactic 

tag is consider as DEPREL otherwise mark as ‘_’. 

In case of ‘_’ information is missing. 

Here we will show conversion process to CONLL format by 

taking a sample sentence. Rules implementation and data 

extraction to save in CONLL to use in parsing.  
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Hamid killed the lion with a gun in the jungle.  

Here is graphic representation of the given sentence which 

showing Semi-Semantic POS (SSP), Semi-Semantic Syntactic 

(SSS) and Functional (F) tagset [16].  

Fig 4: URDU.KON.TB representation 

By applying above rules which were prose above, we will get 

the following representation of an URDU.KON.TB’s 

sentence. 

An example of a complete syntactic tag along with the 

functional labels according to the precedence order of the 

annotation for word ‘hAmed’ is N.PROP > KP.ERG > 

KP.ERG-SUB. Here, N.PROP is POS and a proper Noun, a 

syntactic tag KP with morphosyntactic information of 

ERGatove case (.ERG) is syntactic part, - SUB from the 2nd 

division of the functional tags is giving us information that KP 

is acting as subject of the sentence.   Here 1st division of the 

functional tag is missing. N.PROP tag is listed under the 

POSTAG, KP.ERG is listed under the CPOSTAG and 

functional tagset is listed under DEPREL although it is 

against the dependency. From the above tree representation, 

we get following CoNLL format. This tree data saved in a 

.conll file to train and test the data in MaltParser dependency 

system. 

This evaluated during the manual conversion process, the 

dependency relations and Head information is not available in 

the treebank. To make treebank compatible w.r.t to CONLL, 

we had made few assumptions to parse the data in MaltParser. 

So, there is issue of compatibility and data usability of 

URDU.KON-TB treebank in the dependency parsing domain.

 

Fig 5: CoNLL format based treebank representation 

Table 2. CoNLL file format of given sentence 

ID FORM - POSTAG CPOSTAG - HEAD DEPREL - - 

حامد  1  - N.PROP KP.ERG - 1 KP.ERG.SUB - - 

 - - CM KP.ERG - 2 KP.ERG.SUB - نے 2

 - - N KP.ACC - 3 KP.ACC.OBJ - شیر 3

 - - CM KP.ACC - 4 KP.ACC.OBJ - کو 4

 - - N.SPT KP.SPT - 5 KP.SPT.MODF - جنگل 5

 - - CM KP.SPT - 6 KP.SPT.MODF - میں 6

 - - N KP.INST - 7 KP.INST.MODF - بندوق 7

 - - CM KP.INST - 8 KP.INST.MODF - سے 8

 - - V.PERF VCMAIN - 9 VCMAIN.Root - مارا 9

                                                           

6.2 Architecture 
The architecture of our Dependency Parsing System (DPS) is 

presented in figure 6. Input of the system is URDU.KON-TB 

which was based on the bracketing notation. As we are using 

MaltParser, so we need to convert this tree to CoNLL format 

first then we can use converted data into the system. A 

complete conversion process by defining conversion rules is 

proposed here. 

The conversion rules applied manually and data is prepared in 

CoNLL format, then this data is passed to the Dependency 

Parsing system which uses MaltParser. MaltParser is trained 

on this dependency tree which annotated by SSP, SSS and F 

tagset. Then the sentence is parsed to get the dependency 

relation (DEPREL). 
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Fig 6: Dependency Parsing System 

6.3 Experiments 
The series of experiments performed to evaluate treebank in 

the Urdu dependency parsing system. The treebank 

URDU.KON.TB data is converted to CoNLL format, and then 

converted data after splitting it to trained data and tested data 

is given to MaltParser. Nivre arc-eager algorithm is used for 

parsing in training and testing but with different feature 

models as proposed by Ali [2]. Six different feature models 

are used [2]. In initial, a simple feature model containing ID, 

FORM, assumed head of current token and DEPREL 

(assumed Functional (F) tagset) of current token is used. The 

next experiment is performed by extending the feature model 

and semi-semantic POS (SSP) added. In third experiment, the 

feature model extended by adding semi-semantic Syntactic 

(SSS). In the last experiment, both included. So, the total 

numbers of four experiments are performed [2] which are 

listed in the table 3.  

Table 3. Experiments 

No. Parsing Algorithm Feature Model 

1. Nivre-arc-eager ID, FORM, HEAD, 

DEPREL (F) 

2. Nivre-arc-eager ID, FORM, POSTAG (SSP), 

HEAD, DEPREL (F) 

3. Nivre-arc-eager ID, FORM, CPOSTAG 

(SSS), HEAD, DEPREL (F) 

4. Nivre-arc-eager ID, FORM, POSTAG (SSP), 

CPOSTAG (SSS), HEAD, 

DEPREL (F) 

 
To check the data of URDU.KON-TB is usable for 

developing a new dependency treebank, we make an 

assumption based enhancement. We assume, every word in a 

sentence is Head of the sentence although it is not following 

dependency grammar rules. But the aim is to check the 

usability of data. So, the value of Head will become zero. 

Same four experiments which are listed in table (3) are 

performed with new assumed Head value.  

 

6.4 Result 
MaltParser was trained and tested on URDU.KON-TB 

Treebank converted data. As the given URDU.KON-TB 

contains 25 sentences with average length of 15 words. We 

prepared the training data by applying rules which were 

proposed to convert. Then the system was trained with 80% 

data and tested on 20% data. The series of four experiments 

were performed which are based on different feature models.  

The accuracy and correctness of DEPREL tag is calculated by 

comparing MaltParser parse output with manually tagged test 

data. The accuracy percentage of each experiment is 

calculated using this formula:   

 

              
                                 

                  
        

 

The accuracy of zero percent is noted in first four 

experiments. As the given treebank was based on phrase 

structure and do not contained dependency head and 

dependent information. So, the MaltParser is unable to parse 

without dependency relation with head and dependent 

information. On the bases of results, we can say that 

URDU.KON-TB treebank is not suitable for the dependency 

parsing domain. The results also show increasing the features 

in the model is not helpful to increase the accuracy until the 

head and dependent information is not available in the 

treebank. To support our finding and argument, we assumed 

that every word in a sentence is Head of the sentence and four 

experiments performed to check URDU.KON-TB is not 

suitable for dependency due to information missing according 

to dependency grammar. The result of experiments listed in 

table 4, show MaltParser parsed and some reasonable 

accuracy also noted. So, it is evaluated URDU.KON-TB is not 

suitable for the dependency parsing domain but the data of 

this treebank (SSP and SSS) is usable to develop a new 

treebank which will be a dependency treebank. 

Table 4. Results 

Experiments with Feature 

Model 

Accuracy (%) 

Default 

Experiment 

Enhance 

Experiment 

ID, FORM, HEAD, DEPREL 

(F) 

0 22 

ID, FORM, POSTAG (SSP), 

HEAD, DEPREL (F) 

0 22 

ID, FORM, CPOSTAG (SSS), 

HEAD, DEPREL (F) 

0 49 

ID, FORM, POSTAG (SSP), 

CPOSTAG (SSS), HEAD, 

DEPREL (F) 

0 49 

 

6.5 Discussion 
The URDU.KON-TB was annotated from lexical level to 

functional level (POS, Syntactic and Functional) which is 

suitable for the phrase structure parsing because all these tags 

related to constituents. The semantic information is available 

on each level as future work (morpho-syntactic and syntactic-

semantic) was proposed [2] but treebank did not include 

dependency relation which are required for the dependency 

parsing. Head and dependent are not marked in the treebank. 

The immediate relation of head and dependent is also not 

available. The functional tags are just constituents’ tags. The 

converted data based on assumptions was trained and parsed 
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using MaltParser. The result clearly shows. URDU.KON-TB 

treebank is not suitable for dependency parsing domain. Then 

by adding assumption based Head information and the results 

of new experiment validate our argument. From new 

experiments, we also concluded, some data of the treebank 

(SSP and SSP) is usable in making dependency treebank. It is 

also evaluated during conversion process due to missing 

information; URDU.KON-TB treebank data is also not fully 

compatible to CONLL format. Head information added on 

assumption to make it compatible. In same way, as 

dependency relations are not available to parse in MaltParser, 

it was assumed the Functional tags are DEPREL which is 

against the dependency grammar and treebank. There are also 

issue of annotation level; as per dependency, there should be 

immediate tags relation. But it is observed, there is no 

immediate a functional tag available above the syntactic tag in 

URDU.KON-TB. 

7. CONCLUSION 
 In this paper, our task was to evaluate URDU.KON-TB in the 

dependency parsing domain. As for as, the phrase structure is 

concerned the URDU.KON-TB treebank has been evaluated 

and results are reported in [16]. To use the URDU.KON-TB 

treebank, we have converted the annotated data according to 

the format of the MaltParser’s input e.g. CONLL format by 

proposing rules. During the conversion process, we also 

checked the treebank data compatibility w.r.t to CoNLL and 

usability of data. A few assumptions were taken to make the 

data compatible in MaltParser although these assumptions 

were against the dependency grammar rule. Nivre arc-agear 

algorithm is used in parsing system to train and test the data 

with six different feature models and four experiments [2]. To 

validate our findings, we conduction four more experiment 

using assumption based Head information although 

information was not following dependency grammar. The 

results show some accuracy due to Head information and 

support our argument, the URDU.KON-TB does not have 

information which are required for the dependency parsing 

domain. It is not suitable for the dependency parsing domain. 

In future work, we can use some data of URDU.KON-TB to 

develop a new dependency treebank. The SSP and SSS 

information can be used but we need all other effort which are 

required for dependency treebank, the head dependent 

relationship. Then the functional tagset can be marked by 

following the dependency grammar rules which are more than 

constituents’ tags. We can also enhance it by adding boundary 

of phrases as proposed [2]. In this way, we can conduct more 

experiment.  
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