
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.12, June 2017

25

Dependency Parsing using the URDU.KON-TB Treebank

Saima Munir
Department of Computer Science

& Information Technology
University of Sargodha, 40100

Sargodha, Pakistan

Qaisar Abbas, PhD
Department of Computer Science

& Information Technology
University of Sargodha, 40100

Sargodha, Pakistan

Bushra Jamil
Department of Computer Science

& Information Technology
University of Sargodha, 40100

Sargodha, Pakistan

ABSTRACT

In this paper, we present evaluation of URDU.KON-TB in the

dependency parsing domain. The URDU.KON-TB treebank is

developed on the bases of the phrase structure and hyper

dependency structure which are only functional constituent’s

label. Treebank was annotated with three levels of annotation

tagset, the semi-semantic POS (SSP), semi-semantic Syntactic

(SSS) and Functional (F) tagset and was checked for the

Phrase Structure Parsing domain. To evaluate this treebank in

the Dependency Parsing domain we have selected MaltParser.

To use data in the parser, we have converted the

URDU.KON-TB treebank annotated data according to the

CONLL format. The compatibility of data to CoNLL is also

measured along with usability of data in the dependency

parsing domain. To make the data compatible, few

assumptions are taken. The converted data is used to evaluate

the system by dividing 80% data as training data and 20%

data as testing data. We have performed eight experiments.

Four experiments are conducted with six different feature

models with converted data. The experiments results show

URDU.KON-TB treebank is not suitable for the dependency

parsing as dependency relation because Head information was

missing in the treebank. We then performed four experiments

with an assumption based enhancement by adding Head

information. The algorithm used to train and test data is Nivre

arc-agear algorithm. The new experiments show this treebank

data can be used to develop new dependency treebank for

Urdu.

General Terms

URDU.KON-TB, MaltParser and Dependency parsing

Keywords

Phrase structure parsing, Data Driven Dependency

Parsing, MaltParser

1. INTRODUCTION
Urdu is a South Asian and the national language of Pakistan

with rich morphology [1]. It is an Indo-Aryan language, and is

a free phrase-order language. In a free phrase language, the

phrases within a sentence have free order but the words within

a phrase have a fixed order [3]. In parsing we assign a

syntactic representation and analyze the grammatical structure

of a natural language sentence [2]. The parsing is done using a

treebank data. A treebank is a text corpus of sentences

annotated with syntactic structure. Corpus annotation is the

process of adding the interpretative linguistic information in

form of the labels or tags of text. Tag is identifying the class

of words as part of speech (POS) and arrangement of words

and phrases in form of sentence is a syntactic tagging [1]. The

most popular parsing representations are the phrase structure

(PS) and the dependency structure (DS) [2].

For a treebank, the traditional annotation structure is Phrase

structure. In Phrase Structure node represents the noun phrase

NP and a verb phrase VP. Example of such a sentence is

shown in Figure 1.

Fig 1: Phrase structure example

The set of rules used for describing dependencies is a

Dependency grammar. The asymmetrical relation between a

head and dependent is a Dependency [2]. Head and

Dependent are related. Every dependent (word or phrase)

depends on head of the sentence is a main verb [2]. In

dependency parsing the relations between words of the

sentence are established [2]. Parsing can be divided into

grammar-driven dependency parsing and data-driven

dependency parsing. Example of dependency structure is

shown in Figure 2.

Fig 2: Dependency Structure of an English Sentence

In this example, the dependency structure is built up with

recognizing a subject relation (SBJ) from the finite verb had

to the noun news, a nominal modifier relation (NMOD) from

news to the adjective Economic, an object relation (OBJ) from

head to the noun effect, and so on [2]. In data-driven

dependency parsing we map input strings to output using

inductive mechanism. This mechanism is applied to a text

sample taken from the language [3]. In Grammar driven

dependency parsing approach, we use grammar parsing

algorithm for computing the analysis of a given selected input

string [3]. your own material.

2. URDU.KON-TB Treebank
In this section, we discuss bracketing notation of treebank,

CFG and URDU.KON-TB. The Bracketing is computational

treebank as shown in Figure 3. S in this bracketed form is the

same two child nodes NP and VP as given in the tree

representation. Similarly, the VP is the same structure of VBZ

and NP at parallel level and so on [1]. So, URDU.KON-TB

treebank is developed along with POS and syntactic an-

notation [1].

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.12, June 2017

26

Fig 3: Bracketing notation of Treebank

The context free grammar (CFG) and constraints based

grammar parsing are the types of grammar-driven parsing.

The first one was performed on the URDU.KON-TB treebank

earlier by Abbas [1]. URDU.KON-TB treebank adopted the

same phrase structure annotation and hyper dependency

structures. It is performed in three steps is as following: The

collection of sentences in the form of a corpus, Manufacturing

of an annotation scheme and the employment of the

annotation scheme on the said corpus [1].

The corpus contains 1400 sentences, in URDU.KON-TB

treebank are divided into 80% training data and 20% test data.

It describes twenty-two semi-semantic part of speech tagset,

twenty-six semi-semantic syntactic tagset and eighteen

functional tagset. A context free grammar is extracted from

this training data. Urdu parser is an extended version of

dynamic programming algorithm [1]. Earlier developed

parsers view parsing as a constraint-satisfaction problem and

for parsing them use constraint based grammar [2]. The

MaltParser is also known to have good result on dependency

parsing discussed next section. To parse UDU.KON-TB

treebank in the Dependency Parsing domain, the treebank

already contains the POS and syntactic tagging (chunk/phrase

level annotation) annotation except the last one option of

dependency relations which are missing in the URDU.KON-

TB treebank. But it has functional tagset.

3. MALTPARSER
Maltparser is a system based on data-driven dependency

parsing. It allows user-defined feature models that contain

lexical features, part-of-speech features and dependency

feature. Three components of parsing methodology are the

deterministic parsing algorithms for building labeled

dependency graphs, History-based models for predicting the

next parser action at nondeterministic choice points and the

discriminative learning to map histories to parser actions.

MaltParser achieve state-of-the-art accuracy for languages

with short distance relation. MaltParser system use Nivre arc-

agear algorithm in parsing system to train and test the data [3].

It uses four transitions first is the shift for push the next word

in the buffer onto the stack, second is Left-Arc for add an arc

from the topmost word on the stack. Third is Right-Arc to add

an arc from the second-topmost word on the stack and four is

the Reduction for pop the stack [2], [7], [14], [18], [19].

Classifier induces from treebank data using different machine

learning methods with predict next action based on the feature

vector. Feature vector is a setting in which change to suit the

data with different features of the data like POS tags, words

etc. Our system uses all features that represent all attributes

of tokens. These features have been extracted from the fields

of the CoNLL data representation [2]. MaltParser for a new

language for need to be optimize Parsing algorithm, Feature

model and Learning algorithm [2],[9],[18]. Moreover, the

MaltParser is popular for its dependency parsing. So, we have

a cushion to work and have a motivation to produce quite

good results in this untouched domain. To prove our

argument, the literature is presented next section to fulfill the

evidence.

4. LITERATURE REVIEW
In 2010, Ali et al. worked on data-driven dependency parsing

for Urdu [3]. They used MaltParser for training and tuning on

the Urdu dependency treebank (UDT). Multi-level and multi-

representational annotations like part-of-speech, chunking and

dependency relation representation were used in developing

this treebank [2]. There were 2853 sentences averaging length

of 14.03 words in this treebank. The developed treebank had

approximately 40012 tokens [2]. The selected corpus of UDT

was constituent of all type of sentences, simple or complex.

The corpus was manually annotated. It contained 35 POS

tags, 9 chunk (phrase level) tags and small set of dependency

relations [2].

UDT used only six dependency structures, which were the

subject (subj), the object (obj), the secondary object (obj2),

the adjectival modification (jmod), the adverbial modification

(rmod) and the noun modification (nmod) [3].The authors

converted the treebank data to CoNLL data format which was

given to MaltParser as given input [3]. The selected CoNLL

fields for the feature models contained were: ID (token

counter, initialized by 1 for each new sentence), FORM (word

form), CPOSTAG (coarse-grained part-of-speech tag), and

POSTAG (Fine-grained POS tag), and the HEAD (head of the

current token [3], which is a value of ID). The given input was

in CoNLL format that is helpful for data-driven parsers. As a

head of sentence Zero (0) is used and for phrase's head the

value of ID is used and DEPREL (Dependency relation to the

HEAD) [3]. The CoNLL format and annotation is

demonstrated in Figure 4, by a typical sentence example [3].

Table 1. CONLL formate of the above sentence

I

D

FOR

M

POSTA

G

CPOSTA

G

HEA

D

DEPRE

L

علی 1 NNP B-NP 8 subj

 PP I-NP 8 subj نے 2

 NN B-NP 8 obj2 بازار 3

 PP I-NP 8 obj2 میں 4

 CD B-NP 7 nmod ایک 5

 JJ B-JJP 7 jmod کالی 6

 NN B-NP 8 obj گاۓ 7

دیکھی 8 VB B-VP 0 main

The authors performed a series of experiments for evaluation

of Urdu dependency parsing system. They performed all

experiments using the Maltparser’s default algorithm but each

time selecting different feature models [3]. Their initial base

line feature model used for Urdu Dependency Parsing was

simple and it consists of word position, word, head and

dependency relation. After that they enhanced the feature

model by adding POS and chunk information [3]. The overall

best achieved labeled accuracy (LA) for their experiments was

74.48% while for unlabeled attachment score (UAS) was

about 90.14% that was achieved successively [3]. After that

they manually did parsing to analyze and classify the different

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.12, June 2017

27

types of errors produced by the parser. The obtained manual

results were then compared with the treebank test data [3].

Another experiment was performed in 2012 by Ambati et al,

in which they split UDT into training, testing and

development sets. There were 2258 sentences in the training

set and it was about 70% of total sentences in the corpus.

Their test sets contained 484 that were about 15% of the total

corpus. For sentence selection they used stratified partitioning

technique. They tried to ensure that the three sets had

approximately the same distribution of the parameters. They

also used the “nivre-eager"and “nivre standard" parsing

algorithm with default SVM setting parameters. They

achieved 76.61 were76.61% LA, 88.45% UAS and 80.03%

labeled accuracy scores using MaltParser. They desired to add

chunk heads to check intra-chunk dependencies. Some other

experiments had also been performed in many studies like [4],

[5], [6], [8], [10], [11], [12], [13], [15], [16], [17], [20], [21]

for various languages and results are reported in favor of the

MaltParser.

5. PROBLEM STATEMENT
The treebanks are being built and checked against the

different parsing mechanism specially the phrase structure and

dependency structure. After this evaluation check their

usefulness is normally reported. As for as, the phrase structure

is concerned the URDU.KON-TB treebank has been

evaluated and results are reported in [16]. However, this

treebank has not been evaluated in the dependency parsing

domain. The URDU.KON-TB treebank has the hyper

dependency structure (HDS) encoded in it, which we will

have to extract and parse accordingly. This evaluation will

finally give us the answer that the URDU.KON-TB treebank

is suitable for phrase or dependency parsing comparatively.

To use the URDU.KON-TB treebank, we will have to convert

its annotated data according to the format of the MaltParser’s

input e.g. CONLL format. As we are going to develop and

experiment the computational resources in the domain of

dependency parsing, so our research objectives/tasks will

include the following

1. We will measure the compatibility of the

URDU.KON-TB treebank w.r.t the format of the

MaltParseras the treebank has the HDS annotation

scheme encoded in it [16] and then we will claim its

usability.

2. We will extract the data in CONLL format from the

URDU.KON-TB treebank [1], so that it can be used

to train the MaltParser.

3. We will perform experiments between the extracted

data of the URDU.KON-TB treebank [1] and the

MaltParser, and then finally report the suitability of

the treebank in the domain of data-driven

dependency parsing.

6. METHODOLOGY AND RESULTS
Computational model is an Urdu Dependency Parsing System

[2]. We have used proposed Data-Driven Dependency Parsing

computational model for Urdu language [3] on URDU.KON-

TB [1].

6.1 Data Conversion process
In dependency treebank, the precedence order of annotation

from lexical level to dependency level is POS > Syntactic >

Dependency Relation which is a semantic relation between

Head and Dependent as discussed in [3]. While the

precedence order of the URDU.KON-TB treebank annotation

from lexical level to functional level is the POS > Syntactic >

1st Division of the Functional tag > 2nd Division of the

Functional tag [1]. At POS level ‘.’ is the only symbol used to

connect POS with semantical and morphological

subcategories e.g. N.SPT (the POS of noun N with spatial

SPT semantics). At syntactical level, ‘.’ symbol is used to

connect syntactical subcategories and ‘-’ symbol is used to

add all functional labels including semantical tags after the

syntactic tags [1]. Although URDU.KON-TB contains

semantic information at each level proposed as future work

(morpho-syntactic and syntactic-semantic) was proposed [2]

but treebank does not contain dependency relation according

to dependency grammar rules. So, we assumed the functional

tagset as a Dependency Relation which are against the

dependency. As Head information is also not available in the

URDU.KON-TB treebank to run in MaltParser. According to

treebank, we considered each word in the treebank is not head

of any other word and nor dependent of any other word in the

sentence. So, we assigned index value of token (ID) to the

Head value in CONLL format. All these assumptions were

made to make URDU.KON-TB data compatible and usable to

run in MaltParser. But these assumptions did not fulfill the

requirement of Dependency Treebank.

To convert the URDU.KON.TB tree to CoNLL based tree

representation, we divide tree into multiple layers which

represent columns in the CoNLL format. We defined

following process or rules of conversion

 A layer is added at the bottom of the tree (below of

edge leaves). This layer is named as ID in CoNLL.

ID is an index of token which is an integer starting

from 1 at each new sentence.

 Each word of the sentence is called FORM in

CoNLL format.

 Semi-Semantic POS (SSP) tagged is listed under a

layer called POSTAG, a column in CoNLL. It may

contain POS with semantical and morphological

subcategories but categories are optional.

 The next layer is based on Semi-Semantic Syntactic

(SSS) annotation. This layer is called CPOSTAG. It

is syntactic tag with morphosyntactic information

and addition information is optional.

 The HEAD of each word is required in dependency

parsing which is not available in URUDU.KON-TB.

We considered each word in the treebank is not

head of any other word and nor dependent of any

other word in the sentence. So, we assigned index

value of token (ID) to the Head value to make

compatible w.r.t CoNLL format.

 Functional (F) tagset is called DEPREL. As there

are two division level of functional tagset. We will

keep in mind immediate functional tag to syntactic

tag is consider as DEPREL otherwise mark as ‘_’.

In case of ‘_’ information is missing.

Here we will show conversion process to CONLL format by

taking a sample sentence. Rules implementation and data

extraction to save in CONLL to use in parsing.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.12, June 2017

28

Hamid killed the lion with a gun in the jungle.

Here is graphic representation of the given sentence which

showing Semi-Semantic POS (SSP), Semi-Semantic Syntactic

(SSS) and Functional (F) tagset [16].

Fig 4: URDU.KON.TB representation

By applying above rules which were prose above, we will get

the following representation of an URDU.KON.TB’s

sentence.

An example of a complete syntactic tag along with the

functional labels according to the precedence order of the

annotation for word ‘hAmed’ is N.PROP > KP.ERG >

KP.ERG-SUB. Here, N.PROP is POS and a proper Noun, a

syntactic tag KP with morphosyntactic information of

ERGatove case (.ERG) is syntactic part, - SUB from the 2nd

division of the functional tags is giving us information that KP

is acting as subject of the sentence. Here 1st division of the

functional tag is missing. N.PROP tag is listed under the

POSTAG, KP.ERG is listed under the CPOSTAG and

functional tagset is listed under DEPREL although it is

against the dependency. From the above tree representation,

we get following CoNLL format. This tree data saved in a

.conll file to train and test the data in MaltParser dependency

system.

This evaluated during the manual conversion process, the

dependency relations and Head information is not available in

the treebank. To make treebank compatible w.r.t to CONLL,

we had made few assumptions to parse the data in MaltParser.

So, there is issue of compatibility and data usability of

URDU.KON-TB treebank in the dependency parsing domain.

Fig 5: CoNLL format based treebank representation

Table 2. CoNLL file format of given sentence

ID FORM - POSTAG CPOSTAG - HEAD DEPREL - -

حامد 1 - N.PROP KP.ERG - 1 KP.ERG.SUB - -

 - - CM KP.ERG - 2 KP.ERG.SUB - نے 2

 - - N KP.ACC - 3 KP.ACC.OBJ - شیر 3

 - - CM KP.ACC - 4 KP.ACC.OBJ - کو 4

 - - N.SPT KP.SPT - 5 KP.SPT.MODF - جنگل 5

 - - CM KP.SPT - 6 KP.SPT.MODF - میں 6

 - - N KP.INST - 7 KP.INST.MODF - بندوق 7

 - - CM KP.INST - 8 KP.INST.MODF - سے 8

 - - V.PERF VCMAIN - 9 VCMAIN.Root - مارا 9

6.2 Architecture
The architecture of our Dependency Parsing System (DPS) is

presented in figure 6. Input of the system is URDU.KON-TB

which was based on the bracketing notation. As we are using

MaltParser, so we need to convert this tree to CoNLL format

first then we can use converted data into the system. A

complete conversion process by defining conversion rules is

proposed here.

The conversion rules applied manually and data is prepared in

CoNLL format, then this data is passed to the Dependency

Parsing system which uses MaltParser. MaltParser is trained

on this dependency tree which annotated by SSP, SSS and F

tagset. Then the sentence is parsed to get the dependency

relation (DEPREL).

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.12, June 2017

29

Fig 6: Dependency Parsing System

6.3 Experiments
The series of experiments performed to evaluate treebank in

the Urdu dependency parsing system. The treebank

URDU.KON.TB data is converted to CoNLL format, and then

converted data after splitting it to trained data and tested data

is given to MaltParser. Nivre arc-eager algorithm is used for

parsing in training and testing but with different feature

models as proposed by Ali [2]. Six different feature models

are used [2]. In initial, a simple feature model containing ID,

FORM, assumed head of current token and DEPREL

(assumed Functional (F) tagset) of current token is used. The

next experiment is performed by extending the feature model

and semi-semantic POS (SSP) added. In third experiment, the

feature model extended by adding semi-semantic Syntactic

(SSS). In the last experiment, both included. So, the total

numbers of four experiments are performed [2] which are

listed in the table 3.

Table 3. Experiments

No. Parsing Algorithm Feature Model

1. Nivre-arc-eager ID, FORM, HEAD,

DEPREL (F)

2. Nivre-arc-eager ID, FORM, POSTAG (SSP),

HEAD, DEPREL (F)

3. Nivre-arc-eager ID, FORM, CPOSTAG

(SSS), HEAD, DEPREL (F)

4. Nivre-arc-eager ID, FORM, POSTAG (SSP),

CPOSTAG (SSS), HEAD,

DEPREL (F)

To check the data of URDU.KON-TB is usable for

developing a new dependency treebank, we make an

assumption based enhancement. We assume, every word in a

sentence is Head of the sentence although it is not following

dependency grammar rules. But the aim is to check the

usability of data. So, the value of Head will become zero.

Same four experiments which are listed in table (3) are

performed with new assumed Head value.

6.4 Result
MaltParser was trained and tested on URDU.KON-TB

Treebank converted data. As the given URDU.KON-TB

contains 25 sentences with average length of 15 words. We

prepared the training data by applying rules which were

proposed to convert. Then the system was trained with 80%

data and tested on 20% data. The series of four experiments

were performed which are based on different feature models.

The accuracy and correctness of DEPREL tag is calculated by

comparing MaltParser parse output with manually tagged test

data. The accuracy percentage of each experiment is

calculated using this formula:

The accuracy of zero percent is noted in first four

experiments. As the given treebank was based on phrase

structure and do not contained dependency head and

dependent information. So, the MaltParser is unable to parse

without dependency relation with head and dependent

information. On the bases of results, we can say that

URDU.KON-TB treebank is not suitable for the dependency

parsing domain. The results also show increasing the features

in the model is not helpful to increase the accuracy until the

head and dependent information is not available in the

treebank. To support our finding and argument, we assumed

that every word in a sentence is Head of the sentence and four

experiments performed to check URDU.KON-TB is not

suitable for dependency due to information missing according

to dependency grammar. The result of experiments listed in

table 4, show MaltParser parsed and some reasonable

accuracy also noted. So, it is evaluated URDU.KON-TB is not

suitable for the dependency parsing domain but the data of

this treebank (SSP and SSS) is usable to develop a new

treebank which will be a dependency treebank.

Table 4. Results

Experiments with Feature

Model

Accuracy (%)

Default

Experiment

Enhance

Experiment

ID, FORM, HEAD, DEPREL

(F)

0 22

ID, FORM, POSTAG (SSP),

HEAD, DEPREL (F)

0 22

ID, FORM, CPOSTAG (SSS),

HEAD, DEPREL (F)

0 49

ID, FORM, POSTAG (SSP),

CPOSTAG (SSS), HEAD,

DEPREL (F)

0 49

6.5 Discussion
The URDU.KON-TB was annotated from lexical level to

functional level (POS, Syntactic and Functional) which is

suitable for the phrase structure parsing because all these tags

related to constituents. The semantic information is available

on each level as future work (morpho-syntactic and syntactic-

semantic) was proposed [2] but treebank did not include

dependency relation which are required for the dependency

parsing. Head and dependent are not marked in the treebank.

The immediate relation of head and dependent is also not

available. The functional tags are just constituents’ tags. The

converted data based on assumptions was trained and parsed

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.12, June 2017

30

using MaltParser. The result clearly shows. URDU.KON-TB

treebank is not suitable for dependency parsing domain. Then

by adding assumption based Head information and the results

of new experiment validate our argument. From new

experiments, we also concluded, some data of the treebank

(SSP and SSP) is usable in making dependency treebank. It is

also evaluated during conversion process due to missing

information; URDU.KON-TB treebank data is also not fully

compatible to CONLL format. Head information added on

assumption to make it compatible. In same way, as

dependency relations are not available to parse in MaltParser,

it was assumed the Functional tags are DEPREL which is

against the dependency grammar and treebank. There are also

issue of annotation level; as per dependency, there should be

immediate tags relation. But it is observed, there is no

immediate a functional tag available above the syntactic tag in

URDU.KON-TB.

7. CONCLUSION
 In this paper, our task was to evaluate URDU.KON-TB in the

dependency parsing domain. As for as, the phrase structure is

concerned the URDU.KON-TB treebank has been evaluated

and results are reported in [16]. To use the URDU.KON-TB

treebank, we have converted the annotated data according to

the format of the MaltParser’s input e.g. CONLL format by

proposing rules. During the conversion process, we also

checked the treebank data compatibility w.r.t to CoNLL and

usability of data. A few assumptions were taken to make the

data compatible in MaltParser although these assumptions

were against the dependency grammar rule. Nivre arc-agear

algorithm is used in parsing system to train and test the data

with six different feature models and four experiments [2]. To

validate our findings, we conduction four more experiment

using assumption based Head information although

information was not following dependency grammar. The

results show some accuracy due to Head information and

support our argument, the URDU.KON-TB does not have

information which are required for the dependency parsing

domain. It is not suitable for the dependency parsing domain.

In future work, we can use some data of URDU.KON-TB to

develop a new dependency treebank. The SSP and SSS

information can be used but we need all other effort which are

required for dependency treebank, the head dependent

relationship. Then the functional tagset can be marked by

following the dependency grammar rules which are more than

constituents’ tags. We can also enhance it by adding boundary

of phrases as proposed [2]. In this way, we can conduct more

experiment.

8. ACKNOWLEDGMENTS
We are thankful to Sir Wajid Ali for working with us.

9. REFERENCES
[1] Abbas, Q. (2014). Building Computational Resources:

The URDU. KON-TB Treebank and the Urdu Parser

(Doctoral dissertation).

[2] Ali, W., &Hussain, S. (2010). Urdu dependency parser: a

data-driven approach. In Proceedings of Conference on

Language and Technology (CLT10), SNLP, Lahore,

Pakistan.

[3] Ali, W, (2010). Data-Driven Dependency Parsing for

Urdu, MS (MPhil), Computer Sciences thesis,

Department of Computer Sciences, National University

of Computer and Emerging (NUCES), Lahore, Pakistan.

[4] Bhat, R. A., Jain, S., & Sharma, D. M. (2012).

Experiments on dependency parsing of

Urdu. Proceedings of TLT11, 31-36.

[5] Bhat, R. A., & Sharma, D. M. (2012, July). A

dependency treebank of Urdu and its evaluation.

In Proceedings of the Sixth Linguistic Annotation

Workshop (pp. 157-165). Association for Computational

Linguistics.

[6] Abbas, Q. (2014). Semi-semantic part of speech

annotation and evaluation.LAW VIII, 75.

[7] Nivre, J., Hall, J., & Nilsson, J. (2006, May). Maltparser:

A data-driven parser-generator for dependency parsing.

In Proceedings of LREC (Vol. 6, pp. 2216-2219).

[8] Bharati, A., Husain, S., Ambati, B., Jain, S., Sharma, D.,

&Sangal, R. (2008). Two semantic features make all the

difference in parsing accuracy.Proc. of ICON, 8.

[9] Ballesteros, M., &Nivre, J. (2012, May). MaltOptimizer:

A System for MaltParser Optimization. In LREC (pp.

2757-2763).

[10] Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G.,

Kübler, S., ... &Marsi, E. (2007). MaltParser: A

language-independent system for data-driven

dependency parsing. Natural Language

Engineering, 13(02), 95-135.

[11] Bohnet, B., &Nivre, J. (2012, July). A transition-based

system for joint part-of-speech tagging and labeled non-

projective dependency parsing. In Proceedings of the

2012 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural

Language Learning (pp. 1455-1465). Association for

Computational Linguistics.

[12] Spreyer, K., & Kuhn, J. (2009, June). Data-driven

dependency parsing of new languages using incomplete

and noisy training data. In Proceedings of the Thirteenth

Conference on Computational Natural Language

Learning (pp. 12-20). Association for Computational

Linguistics.

[13] Ambati, B. R., Husain, S., Nivre, J., &Sangal, R. (2010,

June). On the role of morphosyntactic features in Hindi

dependency parsing. In Proceedings of the NAACL HLT

2010 First Workshop on Statistical Parsing of

Morphologically-Rich Languages (pp. 94-102).

Association for Computational Linguistics.

[14] Nilsson, J. (2009). Transformation and Combination in

Data-Driven Dependency Parcing.

[15] Nivre, J. (2008). Sorting out dependency parsing.

In Advances in Natural Language Processing (pp. 16-

27). Springer Berlin Heidelberg.

[16] Abbas, Q. 2015, Morphologically rich Urdu grammar

parsing using Earley algorithm, Natural Language

Engineering (NLE), Vol.21(2), PP.1-36, ISSN: 1351-

3249, DOI: 10.1017/S1351324915000133, Cambridge

University Press, UK

[17] N. Chomsky. Three Models For The Description Of

Language. Information Theory, IRE Transactions on,

2(3):113–124, 1956.

[18] PUNEETH, K. (2016). Dependency Parsing and Empty

Category Detection in Hindi Language (Doctoral

dissertation, International Institute of Information

Technology Hyderabad).

http://clsp.org/qabbas/documents/Urdu-Parser-NLE.pdf
http://clsp.org/qabbas/documents/Urdu-Parser-NLE.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.12, June 2017

31

[19] GADE, R. P. (2014). Dependency parsing approaches for

Indian Languages: Hindi and Sanskrit (Doctoral

dissertation, International Institute of Information

Technology Hyderabad).

[20] J. Nivre, Inductive Dependency Parsing, Springer, 2006.

[21] M. Marcus, B. Santorini, and M.A. Marcinkiewicz,

"Building a large annotated corpus of English: The Penn

Treebank", Computational Linguistics 1993

IJCATM : www.ijcaonline.org

