
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

15

The Implementation and Assessment of Snort

Capabilities

Aaruni Goel
Department of Computer Science and Engineering

Research Scholar, Mewar University
Chittorgarh, Rajasthan, India

Ashok Vasishtha, PhD
Department of Computer Science and Engineering

Research Supervisor, Mewar University
Chittorgarh, Rajasthan, India

ABSTRACT

The attacks on computer networks are not a new deal. In

general except for financial institutions and military or

intelligence organizations nobody bothers about it. But in

recent times it is being observing that it effects much more

than the said calculations. Assuming that somebody (attacker)

blocked the access of particular seller’s website at peak times

then it results that his customer would like to choose another

seller’s website whose outcome may result to tremendous loss

of permanent seller. Likewise, there are many instances

where the impact on network attacks has been observed from

top notch to common people. Snort has emerged as a powerful

solution to those organizations that could not spent much on

purchasing licensed intrusion detection and prevention system

as snort is free ware. This paper is aiding to popularize the

techniques that can help everybody to identify and prevent

from these attacks. The discussed medium in this paper is

SNORT, an open source and powerful network intrusion

detection and prevention tool.

Keywords

Snort, Libcap, swatch, sendmail, packet logging

1. INTRODUCTION

Snort is a most widely used open source Network Intrusion

Detection and Prevention System (NIDPS). It is developed by

Martin Roesch and his team under the parent organization

Sourcefire. Since October 2013 it has been taken over by

Cisco. Snort NIDPS is written in Language C and performs

real time packet analysis and it also consists of smart logging

capabilities. It is used to identify signature based detection,

anomaly based detection and stateful protocol analysis. This

paper will focus on installation part of snort-2.9.7.2 and

another center of attention will to find out the impact of this

tool on intrusion detection and prevention data set as provided

by MIT Lincoln Institute. In this paper so far the whole work

is carrying out on Ubuntu 14.04 operating system (OS) and 2

GB RAM.

2. ARCHITECTURE OF SNORT
The architecture of snort can be categorized into five basic

modules namely Libcap, Packet Decoder, Preprocessors,

Detection Engine and Output plugins. The traffic comes from

Internet are received by routers and passed to switch. The

switch then delivers this data traffic to firewalls for first level

of evaluation. After that the firewalls passed them to the

Ethernet adapter of server. Here the Snort came into focus for

any type of evaluation of those data packets.

 The detailed pictorial view of integrated architecture of snort

is explained in Fig. 1. These modules make the snort as a

complete body.

Fig. 1: The integrated modules in Snort architecture

The brief description of each component is explained as under

[1],[3]:

 Libcap
With the help of this utility snort is able to capture raw

packets directly from Ethernet adapter of server which is

needful. Otherwise there are chances that these packets

go to any alteration process as instructed by operating

system without using this service. Snort always needs a

crude or raw packet directly from ethernet. It then

analyzes them thoroughly and accurately according to its

own norms.

 Packet Decoder

This is the first place where raw data traffic comes and

reaches to this module of snort i.e. from ethernet adapter

after passing from libcap utility. The packets are decoded

here on the manner that each packet is diagnosed in

terms of proper and rightful protocol implementation as

to follow TCP/IP protocol suite with the help of multiple

decoders. It can be thereby said that they are based on

signature based detection. The final verdict is calculated

and transferred to next module as stated in Fig. 1.

 Pre-processors

They are involved in finding out the abnormalities (i.e.,

anomaly based detection). It generally involves

identifying the anomaly detection by varying the data

traffic pattern that was based on signature based

detection. With the help of such pre-processors, this

module provides the normalized data traffic to detection

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

16

engine. By using such normalized traffic, detection

engine identifies many evasion techniques and anomaly

based attacks. There are different types of preprocessors

included in snort 2.9.7.2 with optional options, however

in this paper no preprocessor configured but for actual

intrusion detection and prevention they are necessary to

control. The significant ones are as under:

frag3, stream5, http_inspect, ftp_telnet, smtp,

sfportscan, arpspoof, ssh, dns, imap, pop and reputation.

The description of each of the preprocessor is very wide

and beyond the scope of this research paper [5],[7].

 Detection Engine
This portion of snort is principally very dynamic and

unified. This module is very vital in terms of multiple

rules examination in terms of their priority order. When

snort use to inspect the packets multiple rules with

different priorities are reported and stored in a queue.

However then it only reports out the rule(s) with highest

priority. This is specially used to avoid deep evasion

techniques if used by attacker. This makes the snort as a

highly proficient in terms of attack identification.

 Output Modules

This module design came up after Snort 1.6 version.

This is the last segment of snort where packets come

from detection engine and disseminated to network in

different modes as per the convenience of the network

administrator. The convenience of network

administrator is in terms to view the real time alerts,

logs and other parameters to evaluate the performance

of the network of the organization. Third party tools

such as mysql, a database, can also used for the same

purpose. But in this paper the logs are stored into

/var/log/snort directory.

Furthermore, in this research work it is also not focusing

about the details of snort.conf file which is very essential to

configure for smooth functioning of snort as per the network

policy, however important details of this file will be provided

timely as per the need. In this research work, snort is

postulated as strong NIDPS, an open source. This project

work shows how an intrusion detection and prevention

capability is open for common man with free of cost charge.

In this work it is also focused on how a simple computer

educated person can easily manage this tool with the

knowledge of basic rules even for small and medium

enterprises.

3. INSTALLATION OF SNORT AND

RELATED PACKAGES
The installation part encompassed the one to two hours

installation with normal internet speed of 80-120 kbps. In this

section under sub-section 3.1, 3.2, 3.3, the main focus is on

the installation part of snort-2.9.7.2 with the real time

intrusion detection and prevention features [11].

3.1 Snort Prerequisite on Terminal
Before fresh installation of snort, it is recommended to run the

following commands on the terminal:

sudo apt-get update
This command updates the system in terms of providing

information of new dependencies, versions etc. but not any

type of real upgradation.

sudo apt-get upgrade

This command uses the information from previous command

and really upgrades the system accordingly to the current

level.

3.2 Pre-Installation and Support of

different Packages
Before the installation of snort the following command sets

are executed to provide proper base for snort. These

commands basically install some packages and are

prerequisites before the installation of snort. The names of

those packages are given itself in the command separated by

white line character [11].

The description of installed command parameters are as under

describes the necessities of all features are shown in Fig. 2:

sudo apt-get install flex bison build-essential checkinstall

libpcap-dev libnet1-dev libpcre3-dev libmysqlclient-dev

libnetfilter-queue-dev

Fig. 2: Installation of prerequisite packages for Snort

flex

It is acronym for fast lexical analyzer which is used to identify

the lexical patterns for matching and generating the desired

result in a given text.

bison

It is a broadly useful parser generator that changes over an

explained setting free linguistic use into a deterministic LR or

summed up with LR parser tables. Bison underpins both

mnemonic and single-letter alternatives along with choice

names. The L implies that the parser peruses input message in

one course without moving down; that bearing is normally left

to appropriate inside every line, and start to finish over the

lines of the full info document. (This is valid for most

parsers.) The R implies that the parser delivers a furthest right

determination in turn around.

build-essentials

It is generally used to compile the debian packages using gcc

and/or g++ compilers.

checkinstall

This is a better substitute to make install command. It is used

just after the make command and generates a debian package

with the help of files that came up from make command. It

then adds it to the installed packages database, allowing for

easy package distribution or removal.

libpcap-dev

As explained in previous section 2 with the help of libcap

Snort occupies all the packets directly from interface so that

no modification can be performed by operating system.

libnet1

It works generally in the association of libpcap for handling

and managing packets received from low-level network.

Simple to complicated programs can be written at lower level

packets can be written with the help libnet application

program interface (API).

libpcre3-dev

It stands for library Perl-compatible regular expression, a

library whose syntax and semantics are nearly very same to

the Perl 5 language which uses its API and wrapper functions

to support POSIX (Portable Operating System Interface).

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

17

libnetfilter_queue

Again an API, which in general, discards the packets that are

being in queue and processing old IP address containing

packets or reinserted the modified packets.

After the execution of the above commands successfully, the

package libdnet is downloaded and manually installed. As

said earlier it is used to offer interface which is portable to

support many low-level networking functions. The download

(wget), unzipping (tar) and installation (./conFig.) part details

are mentioned Fig. 3 and Fig. 4 respectively:

wget https://libdnet.googlecode.com/files/libdnet-1.12.tgz

tar xvfz libdnet-1.12.tgz

Fig. 4: Configuring libdnet with "CFLAGS=-fpic"

Note that, as mentioned in Fig. 4, “./”conFig. “CFLAGS=-

fpic" is necessary for the compatibility with 64 bits operating

system for libdnet. Then the next command that is to be

executed:

make

By use of this command one is permitted to download the

most recent variant and update of mainstream tools at host,

introducing it close by the majority of the required conditions

(dependencies) which will request root get to in the event that

you don't have all the required dependencies introduced

effectively (see Fig. 5).

Fig. 5: Running make command in libdnet package

sudo checkinstall

It is a utility that assembles a .deb, .rpm or slackware package

from an outsider source code tarball. This permits present

such outsider programming utilizing the standard packet

administration components for administrator’s dispersion as

per the linux (Ubuntu, Fedora etc.) is used, (refer Fig. 6) .

Fig. 6: Usage of checkinstall command

sudo dpkg -i libdnet_1.12-1_amd64.deb

The dpkg or the debian package is a chief package supervisor

for debian and other debian based Linux disseminations like

Ubuntu. dpkg can be utilized for an range of purposes like

installation, uninstallation and

knowing the present state of package, refer Fig. 7.

Fig. 7: Conversion of lidnet into debian package

After that a symbolic link is made by issuing the command:

sudo ln-s /usr/lib/libdnet.1.0.1 /usr/lib/libdnet.1
A ln –s is a symbolic view that contains a content string that is

naturally translated and taken after by the working operating

system (OS). This other document or registry is known as the

target and is registered or indexed with OS itself. In the event

that a symbolic link connection is erased, its target stays

unaffected and acts like a backup. Moreover that a symbolic

connection focuses to an target, and at some point later that

target is moved, renamed or erased, the typical connection is

not consequently redesigned or erased, but rather keeps on

existing and still indicates the old target, now a non-existing

area or document, refer Fig. 8.

Fig. 8: Creating symbolic link of libdnet.1.0.1 package

3.3 Snort Installation
Now it is time for the entry of our most awaited snort NIDPS.

One thing must be kept in notice before going further path

names must be carefully learnt throughout the installation

process and this tool management. The rest of installation is

more or less same like the previous installation of the libdnet

package [7],[11].

The snort is installed in /etc/snort directory. Fig. 9 announces

the free download of snort from www.snort.org.

Fig. 9: Download of Snort from Snort.org

Then again all the previous commands are going to be

repeated from Fig. 10 to Fig. 15 for complete installation of

snort. All Figures from Fig. number 10 to 15 are self

explanatory.

Fig. 10: Unzipping Snort’s tar package

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

18

Fig. 11: Configuring Snort

Fig. 12: Updation of Snort through make command

Fig. 13: Running checkinstall command for Snort

Fig. 14: Installation of debianpackage for snort

Fig. 15: Making symbolic link of Snort

Now execution of another command:

sudo ldcofig -v

This command is again utilized to keep up the common

library store. This reserve is regularly put away in the record

/etc/so.cache and is utilized by the OS to outline shared

library name to the area of the relating shared library

document. It makes, upgrades, and removes the essential

connection links and cache (for use by the run-time linker,

ld.so) to the latest shared libraries found in the registries

determined on the order line, in the record /etc/ld.so.cache,

and in the trusted libraries (/usr/lib and /lib). It then checks the

header and record names of the libraries it experiences while

figuring out which variants ought to have their connection

links renovated. ldconfig neglects symbolic links when

examining for libraries [7](refer Fig. 16).

Fig. 16: Execution of ldconfig in verbose mode (-v)

Snort 2.9 series presents the DAQ, or Data Acquisition

library, for Input/Output[13]. The DAQ straight away guide

calls to libpcap capacities with a conceptual layer that

encourages operation on varieties of hardware and

programming interfaces without agreeable changes to snort. It

is feasible to choose the DAQ class and mode when call snort

to perform pcap read back or inline operation, and so forth.

Such type of changes makes the snort architecture very

flexible in nature user friendly for different users using

especially different OS platform. Thereby DAQ has been also

installed in this work in the similar manner as previous

installation took place. The Fig. 17 shows the download of

DAQ.

wget https://www.snort.org/downloads/snort/daq-

2.0.4.tar.gz

Fig. 17: Download of DAQ from Snort.org

Rest of the process is same as repeated in libdnet and snort

installation part. The said commands are once again

sequentially listed as:

tar xvfz daq-2.0.4.tar.gz (Unzipping the DAQ package)

cd daq-2.0.4 (Moving inside the DAQ directory)

make (Usage of make command in DAQ updation)

sudo checkinstall (To make DAQ debian package)

sudo dpkg -i daq_2.0.4-1_amd64.deb (debian package

installation)

Now to check the working that Snort got installed properly it

is written on terminal:

snort –v (Snort in verbose mode)

The following commands depicts the Snort in verbose. A

verbose mode is a choice accessible in numerous systems

working OSs, including Microsoft Windows, Mac OS and

Linux that gives extra points of interest with respect to what

the computer is doing and what drivers and programming it is

unpacking during start-up. This level of detail is extremely

useful for investigating issues with hardware or software, if

mistakes are happening during or after start-up of applications

OS. The Fig. 18 depicts that the snort is properly configured

and able to detect and prevent attacks related networks

[1],[10].

Fig. 18: The Snort in verbose mode

Then a directory is created for snort rules. In this directory the

pre-defined snort rules directly from www.snort.org. would be

downloaded and stored. In this paper work, along with

predefined rules from snort rules, organization policies are

stored in /etc/snort/rules folder.

sudo mkdir /etc/snort/rules

In /etc/snort/rules snort stores its own as downloaded from

www.snort.org rules. These are later unzipped in this folder.

tar xvfz snortrules-snapshot-2960.tar.gz /etc/snort/rules

At the path /etc/snort/rules all the unzipped rules would be

stored as a result all open accessible rules provided by snort

team.
It is to be remembered that for more simplicity to execute

snort as daemon (background process). By typing which

automatic logging starts to /var/log/snort/ folder related to

suspicious events.

http://www.snort.org/

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

19

snort –D –c /etc/snort/snort.conf –l /var/log/snort/

3.4 Snort Logs
As we all know logs are the major source to identify any type

of intrusion or for a forensic analysis. The snort with the help

of its rule set generates its own logs on the basis of rule set

configured. The logs collected by snort can display and log

the header and if needed data part of packets. It is

demonstrated in the Fig. 19 which contains the header part

and data part is clearly marked and snort is working as in

packet sniffer mode on the impact of the command:

snort –vde

Fig. 19: The display of complete packet (Header + Data)

on the basis –vde

One can also log these packets of Fig. 19, by issuing the

command:

snort –vde –l /var/log/snort

Now it is check how the logs are stored in the system itself.

For the sake of convenience it is assumed that a rule is crafted

(for rules, refer section 4.2) and launch the command as

depicted in Fig. 19 along with –l /var/log/snort option.

According to the rule whenever anybody will ping gmail.com,

then the corresponding packets will get logged in

/var/log/snort directory. Now it demonstrated with the help of

two terminals. The work on first terminal is shown in Fig. 20

which shows that ping command has been executed.

Fig. 20: IP address of system and ping command

The Fig. 20 provides the details of logs generated and

collected in the /var/log/snort/10.11.5.184 folder. The folder

/216.58.199.133 which is also the IP address of gmail.com

reflects that it pings using Internet Control Message Protocol

(ICMP). On the second terminal the following command

executed in parallel:

snort -c /etc/snort/snort.conf –l /var/log/snort

Fig. 21: Snort as a logger to spot rule based packet

Fig. 22 shows the logs generated by ping command along

with its anatomy.

Fig. 22: Verifying the logs generated by Snort

This subsection therefore elaborated the storage and working

of snort to accumulate the logs in server. On this basis it can

also be said that these logs also provide the valuable forensic

details in case of any type of intrusion.

4. RULES

Rules are the laws that give directions to network at the

network intrusions. They are composed to prevent network

from any attack and also provide guidelines to formulate the

network policy of organization. The rules are the whole sole

governor in intrusion detection and prevention in NIDPS

environment [1].

4.1 Format of Rule
The structure of snort rules are shown in Fig. 23, according to

which mandatory parts are action variants, protocols involved,

source and destination IP addresses, source and destination

port addresses and direction signs as specified. On the other

hand optional part contains a message which can be a blend of

one or more than one numerous syntaxes as provided by snort

team [6],[9].

Fig. 23: The Format of a Rule

Action: It defines that what type of action is to be taken before

creating a rule related to the policy of the organization. There

are eight such actions that can be provided to any packet but

only one on a given rule. For the scope of this research work

only six actions are discussed. A packet may use:

 Pass: To move directly to network with no hindrance and

not being logged.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

20

 Alert: To provide alert notification to administrator and

then get logged.

 Log: To directly get logged in pre specified file or

database.

 Drop: To directly got dropped before entering the network

and then logged.

 Reject: To directly being dropped from ip-tables and then

got logged.

 Sdrop: To being directly dropped silently without any

logging.

Protocol: The rule can opt only one of the four available

protocols -- Transmission Control Protocol (TCP), User

datagram Protocol (UDP), Internet Control Message Protocol

(ICMP) and Internet Protocol (IP).

Source and Destination IP address: It is 32 bits binary format

in network layer to identify any user.

Source and Destination Port address: It is 16 bits binary

structure responsible for peer to peer delivery at transport

layer.

Direction Sign: It specifies the unidirectional or bidirectional

transfer of data from inside network to outside network and

vice versa. The sign part is more elaborated in next subsection

4.2.

It is to be noted that snort detects attacks primarily by using

signature based detection methodology. Boyer-Moore

algorithm is deployed for pattern comparison and matching to

identify the attacks in rules. Vulnerability Research Team

(VRT) is organized by snort team to test and implement

various rules for new attacks. The VRT team analyzes all the

real time attacks and creates the rule sets against them. Beside

this it also evaluates the rules created by snort user which he

submitted to snort forum under its test condition and if found

fruitful, this team add such rules in its rule sets. The VRT new

rules are freely given to paid subscribers while after 30 days’

time period they are also available to free users also.

Emerging Threats Pro LLC is another organization which

provides the rule sets to Snort. It also provides free rule sets

with name ETopen and paid rule sets with title ET pro to

users. In Snort both VRT and ET rule sets can be packed

simultaneously due to their same format structure.

4.2 Case Study and Configuration of Rules
The first basic rule explains that network administrator of

college administration wants to see the activities of students

on www.facebook.com. The rule then logs the details of every

tcp packet that comes as a part of internet but only alert the

traffic activity that has www.facebook.com. The result will

display on console in the form of sense message: “The

facebook has been accessed”.

alert tcp $EXTERNAL_NET any -> $HOME_NET 80

(content:“www.facebook.com”;msg:“The facebook has been

accessed”;)

But this will alert every time the network administrator

whenever any machine in college will try to attempt

facebook.com. This make his time totally at waste. He then

uses same command with minor change so that whenever he

is free he himself can find out the activities of students.

log tcp any any -> $HOME_NET 80

(content:“www.facebook.com”;msg: “The facebook has been

accessed”;)

Further if network administrator wants that student must not

waste their time on facebook then he can use another rule with

little difference:

droptcp $EXTERNAL_NET any -> $HOME_NET any

(content:“www.facebook.com”;msg:“The facebook has been

accessed”;)

As per the three case studies, now the basic structure says that

(as already mentioned in section 4.1) action, protocol, IP

addresses, port addresses and direction are necessary parts to

formulate a basic rule.

$EXTERNAL_NET is any IP address that routes through

administrtor server $HOME_NET. Next “any” specifies

whichever IP address and whatever the port number all are

bound to $HOME_ NET as a default gateway for mutual

communication. The direction in these examples is

unidirectional (->) i.e. from network of network IP systems to

administrator’s server. Many situation comes when

bidirectional angle brackets (<>) sign or unidirectional (<-) is

used for local and remote administration.

Now focusing on optional message part also known as body

where it is stated that take appropriate action whenever snort

finds matched string www.facebook.com with message “The

facebook has been accessed”. The body part always starts and

closed with parenthesis and every optional syntax and its

value in the body is separated by semicolon.

Now some important and some advance rule sets that one

should understand and are categorized in three parts as under

in sub-sections 4.2.1, 4.2.1 and 4.2.3.

4.2.1 Signature Based Detection/Prevention

Snort is able to tackle the signatures based detection with the

rules.

The first study to detect the infamous nimda Virus whose

signature is already well known. The snort rule to avoid such

virus is

drop tcp $EXTERNAL_NET->$HOME_NET 80 (msg:

“Web-IIS cmd.exe access”;flags:A+;content:“cmd.exe”,

nocase; classtype:web-application-attack;sid:1002;rev:2;)

This is a case where a known attack of nimda virus is

identified; the body is read as under:

o msg: WEB-IIS cmd.exe access

flags: A+ : As shown in Fig. 24, a TCP header contains the six

flags in total are implemented. Here Acknowledgement flag

(ACK) is set. In general other options may also incorporate

like SA+, !R, etc.

Fig. 24: TCP protocol structure Header

o Content: If data traffic contains cmd.exe type of pattern.

o Nocase: The content part should be treated as case

insensitive.

o Classtype: It is used to classify the type of rule. The value

web-application-attack is a class name; network

administrator can create other classifications for the

attacks related to organization policy or any new that he

wishes to add. By default snort has its own classification

with four priorities and exist in classification.config file.

To grouping the rules in classtype is a better way to shape

the events related to attacks. It has a format that looks like

as --config classification: <class name>,<class

description>,<default priority>

The top priority is 1 which means High alert and 4 implies

merely a simple suspicious activity.

o Sid: Snort Identifier; here it is 1002. It uniquely uses to

find out Snort rules i.e. every rule is unique. In general

less than 100 is kept for future distribution; The range100-

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

21

999,999 is for Snort’s own use and over 999,999 is for

local use of organizations.

o Rev: It shows the number of times a revision has been

done to improve this rule either to detect new or modified

attacks or to reduce the false positive. The value in this

rule illustrates the two times revision of the said rule.

It is to be noticed carefully that “!” is used as NOT, “+” is for

AND, and “*”is for OR operations. Finally after detection as

an Snort IPS can dropped it too using either drop or sdrop

syntax [6].

4.2.2 Anomaly Based Detection/Prevention

Sometimes buffer overflow exploits can be identified when

host receive large packets size. In such cases the size of

packet is measured and dropped by utilizing the dsize

keyword in the rule. This is used to permit that what

maximum or minimum or equal size is needed by network

administrator.
drop ip any any ->$HOME_NET ANY (dsize:>6000; msg:

“IP packet has more than 6000 bytes”;)

As looking the IP header in Fig. 25 the maximum size of data

65,536 –(20 or 60) is 65,516 to 65,476 bytes. By this analogy

if Snort finds the packet of size greater than 6000 bytes it can

be dropped. This is in keeping view to avoid buffer over flow

problem [12].

Fig. 25: IP protocol structure Header

4.2.3 Deep Packet Inspection

This rule gives the details of vulnerable protocol

implementation. According to TCP header SYN and FIN

cannot be set at the same time. The blend of SYN and FIN

being set in TCP header is unlawful and it has a place with the

class of illicit combination since it calls for both foundation of

connection(via SYN) and end of connection(via FIN). So for

this special case a rule is created as:

alert tcp any any -> $HOME_NET any (msg:“SYN-FIN

packet detected”;flags:SF;)

This is a major miserable situation toward security group

since aggressors might abuse this by get to know that which

type of OS or its version victim belongs to, so that they craft

packets for that particular OS.

As a NA this rule is very useful rule which depicts if any user

or unauthorized porn sites may try to communicate then:

alert tcp any any <> $HOME_NET any (msg:Censored!!!

Porn Content”; content-list= “porn”, react:block;)

Here two new parameters are declared:

o Content-list: This is list configured in snort.conf and

many such lists can be created as per the need of the

organization. A list is created with name ‘porn’ that

includes hundreds of websites those are involved in

pornography.

o React: This is the way by which Snort as an IPS blocks

those websites that are added in one of the list named as

porn.

Finally the most common but very important part needs to be

discussed as per the rule statistics, that uses to show the

actual content syntax working. In general the next defined rule

is to explain the basic working of the said keyword.

alert tcp any any -> !HOME_NET any (content: "|47|45|

54|"; msg: "GET matched";)

Actually the content part reads the hexadecimal-binary-ASCII

trilogy. The “|” symbol represents byte-code for binary data

(or the representation of binary data in hexadecimal). In this

rule hexadecimal 47 is converted to binary and then mapped

to ASCII values. The result is 47=G, 45 = E, 54=T. So every

TCP packet that is not the part of HOME_NET will be alerted

and logged.

It is to be remembered without pipes only simply string is

compared. The content part string comparison is done through

the Boyer Moore pattern matching algorithm.

An additional versatile rule is based on ICMP protocol. For

e.g. a rule type like:

alert icmp any any -> any any (msg:“Ping withTTl=100”

ttl:100;)

This is a wonderful rule in sense that the TTL is a part of IP

protocol but here ICMP protocol is used for alert. This simply

shows the richness of Snort’s rule in terms of keeping

knowledge of other protocols too [8].

Snort uses hundreds of syntaxes. In this paper so far discussed

the important and highly used syntaxes. One more parameter

that one may ask is reference syntax. The reference syntax

permits standards to incorporate references to outside third

parties that have created. At the end it is to be said that the

Snort rules are very much flexible and easy to learn. But as

complexity arises the situation goes worst. It is due to the fact

that multiple plugins are joined to filter the traffic [4].

5. TESTING OF SNORT ON DARPA

DATA SET 1999

The Cyber Systems and Technology Group (earlier the

DARPA Intrusion Detection Evaluation Group) of MIT

Lincoln Laboratory, under Defense Advanced Research

Projects Agency (DARPA ITO) and Air Force Research

Laboratory (AFRL/SNHS) sponsorship, has gathered and

circulated the primary standard for assessment of network

system to identify intrusions.

These assessments measured likelihood of discovery and

probability of false alarm for every network under test. These

assessments contributed essentially to the intrusion finding of

recorded network attack to look into field by giving guidance.

They are important to all scientists chipping away at the

general issue of workstation and system intrusion recognition

[2].

To begin first of all download the file outside.tcpdump from

MIT Lincoln Laboratory website to snort folder [14]. For the

sake of this work this file is renamed as

IDPS_darpa_dataset.tcpdump. The

IDPS_darpa_dataset.tcpdump file is nothing but the dump of

data traffic. The data traffic itself contains many attacking

scenarios. This is a standard file and provided to identify the

number of intrusions to check the working of NIDPS. Its

values can be changed as per the rules policy of the

organization [2].

Then the following is a command to run snort in an IDS mode

and to read and analyze this file also as shown in Fig. 26 [11].

snort eth0 -c /etc/snort/snort.conf -r

IDPS_darpa_dataset.tcpdump

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

22

Fig. 26: Running Snort as IDS to analyze DARPA Dataset

The Fig. 27 describes the analysis of Snort in an IDS mode

where the whole dump is reviewed and checked out as per the

rules configured in Snort.

Fig. 27: Snort analyzing the packets of Darpa Dataset

As per statistics the Snort runs for merely 55 seconds to

complete IDPS_darpa_dataset.tcpdump analysis of 57 MB.

After the snort quits itself (see Fig. 28).

Fig. 28: Snort quits after analyzing the

IDPS_darpa_dataset.tcpdump

As said earlier after quitting of snort when mouse is scrolled

up it finds the important details of this session as shown in

Fig. 29. This Fig. shows that in 55 seconds snort captured

2291319 packets in total.

Fig. 29: Result of Snort IDS analysis on Darpa Dataset

The second row in packet I/O reflects how many packets are

analyzed by snort after receiving 2291319 packets. The third

row Filtered suggests that no packets are given to snort as

they are not prepared and simply the raw packets. In precise

all the packets are given to snort for analysis.

It shows the actual operation and corresponding result. The

fourth row states that the number of packets waiting in a

buffer, for further processing by snort, is zero. Finally the fifth

row indicates the Injected packet which says the number of

packets created and sent by snort are also zero. During TCP

reset conditions such activity in general takes place.

After complete execution the output that is related to NIDPS

is depicted in Fig. 30 (a). This Fig. provides us the total action

statistics on the basis of rule sets configured. It shows that in

general after analyzing IDPS_darpa_dataset.tcpdump file by

snort, 1679 alerts are generated and logged. No packet is

bypassed with respect to rule contradiction and priority.

Fig. 30(a): Statistics of Alerts generated by Snort IDPS

analysis

One more important thing that is analyzed during this data

analysis is verdicts parameter (see Fig. 30 (b)).

Fig. 30(b): Snort IDPS micro analysis

The Table 1 provides the brief details of verdicts and other

shown keywords as displayed on the basis of file

IDPS_darpa_dataset.

Table 1

6. CONCLUSION

We have executed this project on Ubuntu 14.04 TLS (Trusty

Tahr) and if all is well the complete package takes around two

to three hours for complete installation including sendmail,

swatch and snort and all its supporting packages. We are

satisfied with the complete functioning of snort and its related

IDPS technology but silently it can be said that there are some

things that little bit hamper the task of functioning of NAs

somehow.

Starting from the very basic it is necessary for user to be have

good understanding of Linux and associated packages

configuration files. In general it has found that many user are

not find them familiar and self-comfortable in using Linux

based operating system. The said statement is not on

Verdicts: These values may updated after snort continues

to read data stream

Allow 2264836 No action is taken by snort on

theses packets after examining

them.

Block 0 No packets are dropped by rule-

set configuration.

Replace 0 No packet is altered during

normalization process

Whitelist 26483 These are the packets which

snort allows without any

examination by itself.

Blacklist 0 These are the packets which

snort seeks to examine them.

the basis of NAs but on the basis of foundations of large

networks where supporting staff is not proficient in Linux OS.

The said statement is not on the basis of NAs but on the basis

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

23

of foundations of large networks where supporting staff is not

proficient in Linux OS.

Another thing there are in general more than 23000 signatures

which we found in snort rules files provided by snort.org.

Moreover NAs also have to create many rules for the sake of

the organization policy time to time, what so ever are required

by the management. Due to the said purpose it is quite

difficult to work on the different other unknown but genuine

applications on the computers which are under snort's

umbrella. At last it can be said that in near future and with

more versatile tools the associated problems in snort will be

more easily checked.

7. REFERENCES

[1] Goel, Aaruni and Vasishtha, A.K., A Review on

Foundation of Network Intrusion Detection and

Prevention Systems (NIDPS)”, csjournals, 2017, Volume

9, Issue 1, pp.125-137.

[2] L. Emilie and E. Jonsson, “Survey of Intrusion Detection

Research”, Chalmers University of Technology, (2002)

[3] E. D. Dorothy, “An intrusion-detection model”, Software

Engineering, IEEE Transactions, vol. 2, (1987), pp. 222-

232.

[4] R. Suman and V. Singh, “SNORT: An Open Source

Network Security Tool for Intrusion Detection in

Campus Network Environment”, International Journal of

Computer Technology and Electronics Engineering, vol.

2, no. 1, (2012), pp. 137-142.

[5] R. R. Ur, “Intrusion detection systems with Snort:

advanced IDS techniques using Snort, Apache, MySQL,

PHP, and ACID”, Prentice Hall Professional, (2003).

[6] K. Vinod and O. P. Sangwan, “Signature based intrusion

detection system using snort”, International Journal of

Computer Applications & Information Technology, vol.

1, no. 3, (2012), pp. 35-41.

[7] Salah, K. and Qahtan, A.; “Boosting throughput of Snort

NIDS under Linux”, Proceedings of IEEE International

Conference on “Innovations in Information Technology”,

pp: 643 – 647, 2008.

[8] Ahmed, M.; Pal, R.; Hossain, M.; Hasan, K. and Bikas,

A.N.; “A Comparative Study on the Currently Existing

Intrusion Detection Systems”, Proceedings of IEEE

International Conference on “Computer Science and

Technology”, pp: 151 – 154, 2009.

[9] Salah, K. and Kahtani, A.; “Improving snort performance

under linux”, Proceedings of Communications, IET, vol.

3, Issue: 12, pp: 1883 – 1895, 2009.

[10] Ismail, M.N. and Ismail, M.T.; “Framework of Intrusion

Detection System via Snort Application on Campus

Network Environment”, Proceedings of IEEE

International Conference on “Future Computer and

Communication”, pp: 455 – 459, 2009.

[11] Brian Caswell and Jeremy Hewlett. Snort Users Manual

(http://www.snort.org/docs/).

[12] Chang-Su Moon and Sun-Hyung Kim. (2014). Integrated

Security System based Real-time Network Packet Deep

Inspection. International Journal of Security and Its

Applications, pp. 123– 135.

[13] S. Vikrama Teja, S. Kranthi Kumar, T.V. Rao,

G.Dayanandam. (2013, August). In-line Prevention

System using Snort. International Journal of Application

and Innovation in Engineering management.

[14] DARPA Data Set for Intrusion Detection and Prevention

(1999) (https://www.ll.mit.edu/ideval/data/)

IJCATM : www.ijcaonline.org

