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ABSTRACT
We propose a type-2 based clustering algorithm to capture data
points and attributes relationship embedded in fuzzy subspaces. It
is a modification of Gustafson Kessel clustering algorithm through
deployment of type-2 fuzzy sets for high dimensional data. The
experimental results have shown that type-2 projected GK algo-
rithm perform considerably better than the comparative techniques.
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1. INTRODUCTION
Clustering aims at grouping data objects into classes so that the ob-
jects within a class are similar while the objects in different classes
are dissimilar. Conventional clustering algorithms compute the dis-
tances between objects in the entire space of dimensions. However,
as the number of dimensions increases, the data objects become
sparse. Indeed any two points may become nearly equidistant. In
such scenarios, clusters are often hidden in specific subspaces of the
original feature space rather than in the original feature space. To
cope with the problem of high dimensional feature spaces, feature
reduction and feature selection techniques have hitherto been used
in literature. Feature reduction techniques such as principal com-
ponent analysis (PCA) suffer from usability problem as it becomes
hard to interpret the results intuitively. Feature selection techniques
project the whole feature space to a lower dimensional subspace
so that cluster structures become apparent. However, these tech-
niques do not deal effectively with clusters in varying subspaces.
Hence, there is a need for more generalized techniques that can
be used to obtain meaningful clusters in varying subspaces. Sub-
space clustering finds clusters on the subsets of dimensions of a
data set. However, different dimensions may be relevant to differ-
ent clusters to varying degree. A refinement of subspace cluster-
ing called soft subspace clustering attempts to cluster data objects
in the entire data space with continuous feature weighting. Even
though, traditional fuzzy logic has numerous applications it lacks
in modeling high levels of uncertainty because the memberships
are imprecise in nature [17][27]. In order to enhance the modeling
capability of high level of imprecision, Zadeh [22]extended fuzzy
sets to type-2 fuzzy sets by fuzzifying membership in type 1 fuzzy
sets. The characteristic feature of type-2 fuzzy sets is that it uses
the notion that type-1 fuzzy sets can be thought of as first order
approximation to uncertainty and, therefore type-2 fuzzy sets pro-

vide a second order approximation. The membership function of
type-2 fuzzy sets model the imprecise nature of fuzzy membership
grades. The two main categories of type-2 fuzzy sets are interval
and generalized type-2 fuzzy sets. Type-2 interval fuzzy sets have
a secondary membership function as a crisp interval in [0, 1] and
generalized type-2 fuzzy sets have secondary membership function
as a fuzzy number between zero and one. Due to the addition of
third dimension in the concept of type-2 fuzzy sets, literature is
largely focused on interval type-2 fuzzy logic as the various tech-
niques have been proposed to reduce the computational complexity
of the logical operators. Theoretical work describing the terminol-
ogy, a new representation theorem and new derivation of union,
intersection and complement of type-2 fuzzy sets is introduced in
[19]. Recently, Mendel and John[17] proposed a new representation
theorem that could be used in union, intersection and complement
for type-2 fuzzy sets without using the extension principle. Type-2
fuzzy sets have found applications in those areas where it is difficult
to determine an exact membership function for a fuzzy set like lin-
guistic uncertainties. Type-2 fuzzy sets have been applied in trans-
port scheduling, forecasting of time series, signal processing, pat-
tern recognition, decision making, speech recognition[7],[13] etc.
Mizumoto and Tanaka[24],[25] and Duboid and Prade[6] explored
the logical operation on type-2 fuzzy sets. John[27] stated that ”
Type-2 fuzzy sets allow for linguistic grades of membership, thus
assisting in knowledge representation, they also offer improvement
on inferencing with type-1 fuzzy sets”. Mendel[17] stated that ”
type-2 fuzzy sets provide more degrees of freedom, so using type-
2 fuzzy sets has the potential to outperform type-1 fuzzy sets. In
[11] Klir and Floger, explained that representation of fuzziness by
using membership grades that are themselves precise real numbers
is problematic hence, the concept of Type-1 fuzzy sets should be
extended to type-2 fuzzy sets and its higher degrees. We propose
a new objective function for type-2 projected clustering which au-
tomatically detects the relevant cluster dimensions. Experimental
results indicate that it enhances the efficiency of clustering solution
by simultaneously pruning away the irrelevant subspaces.

2. PROBLEM FORMULATION
In this section, we introduce all necessary notations. Given a data
set X = {x1, x2, ..., xn} in the d-dimensional space the ob-
jective is to partition the data set X into k cluster prototypes
Z = {z1, z2, ..., zk} based on identification of subspaces. The
main idea is to impose weights on the dimensions corresponding to
each cluster. Fuzzy partition of the data set X can be represented
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by a k × n matrix U = [µij ], where µij denotes the degree of
membership with which jth pattern belongs to the ith cluster, for
1 ≤ j ≤ n, 1 ≤ i ≤ k. The matrix U is called the fuzzy partition
matrix which satisfies the following conditions:

µij ∈ [0, 1], 1 ≤ j ≤ n, 1 ≤ i ≤ k, (1)

k∑
i=1

µij = 1, 1 ≤ j ≤ n, (2)

The above constraint express the fact that the sum of memberships
of pattern over the set of clusters must be equal to 1. The fact that
there are at least two number of clusters is expressed by the follow-
ing constraint:

0 <

n∑
j=1

µij < n, 1 ≤ i ≤ k. (3)

The fuzzy partition space for (X, k), is the set:

Mfk = {U ∈ <k×n|µij ∈ [0, 1] , ∀i, j;
∑k
i=1 µij =

1,∀j; 0 <
∑n
j=1 µij < n,∀i}

The fuzzy c-means objective function is formulated as:

Jm =
∑n
j=1

∑k
i=1 µ

m
ijd

2 (xj , zi)

The coefficient m ∈ (1,∞) is a fuzzification parameter.
However this objective function is constrained to find the clusters
in the the entire feature space and therefore cannot determine the
respective natural subspaces of each cluster in high dimensional
data set.
Now, we associate with each cluster a weight vector in order to
capture the subspace information of each cluster. Let W = [ωir]
be a k × d matrix expressing the memberships of each protoype
along different dimensions. In this matrix ωir denotes the contribu-
tion of ith cluster to the rth dimension. The sum of contributions
from all dimensions adds to 1 for any cluster. This expressed by
the constraint, where

d∑
r=1

ωir = 1, 1 ≤ i ≤ k, (4)

ωir ∈ [0, 1] , 1 ≤ i ≤ k, 1 ≤ r ≤ d, (5)

Also as there are at least two dimensions, we get the constraint:
0 <

∑k
i=1 ωir < k, ∀r

Thus, fuzzy partitioning subspace for (X,d) is the set

Mfd = {W ∈ <k×d|ωir ∈ [0, 1]∀i, r;
∑d
r=1 ωir =

1,∀i; 0 <
∑k
i=1 ωir < k, ∀r}

The objective function Jm of GK algorithm is defined as fol-
lows[14]:

Jm =

n∑
j=1

k∑
i=1

µmijd
2
ij , (6)

where

d2ij = (xj − zi)Ai(xj − zi)T (7)

where, fuzzy partitioning subspace for (X, k) and (X, d) together
forms the new partition space for high dimensional data set X.

Parametersα ∈ (1,∞) , β ∈ (1,∞) are weighting components.
These parameters control the fuzzification of µij(ωir). Larger the
value ofα(β) the more equal the distribution ofµij andωir giving
each pattern an equal chance to impact all clusters and dimensions.
Value of α(β) closer to 1 indicates good clustering behaviour as
µij(ωir) assigns higher values to clusters(subspaces.Ai is a sym-
metric, positive definite matrix that induces for each cluster a norm
of its own[9][14]. In order to avoid singularity problem, Ai is
constrained in such a way that det(Ai) = ρi > 0, ρi being
fixed for each i permitting different sizes of cluster. The exponent
m ∈ (1,∞) is a fuzzification parameter, that controls the extent
by which clusters may overlap. The objective function Jm is min-
imized using an alternating optimization (AO) technique. The AO
optimization technique leads to the local optimum as it proceeds by
fixing a set of parameters and optimizing the rest of parameters in
an alternating manner. Iteratively updating in such a fashion yields
the optimum value of Jm. However, such techniques do not ensure
the global optimum and the algorithm may get stuck in the local op-
timum. In order to counter the possibility of getting stuck at local
optimum, one often performs several runs of the algorithm.
The minimization of this objective function is carried out with re-
spect to µij , ωir, zir .
The final update equations are given below:

µij = 1/

k∑
l=1

[∑d
r=1 ω

β
ird

2
ijr∑d

r=1 ω
β
lrd

2
ljr

]1/(α−1)
(8)

ωir = 1/

d∑
l′=1

[∑n
j=1 µ

α
ijd

2
ijr∑n

j=1 µ
α
ijd

2
ijl′

]1/(β−1)
(9)

zir =

n∑
j=1

ωβirµ
α
ijxjr/

n∑
j=1

ωβirµ
α
ij (10)

Ai = ((det(Fi)ρi))
1/dF−1i (11)

2.1 Type-2 Projected GK
In this section we present the proposed a new objective function
based type-2 projected clustering which automatically detects the
relevant cluster dimensions.
Membership functions of type-1 fuzzy sets are two dimensional.
Type-2 fuzzy sets can be considered as fuzzification of membership
in type-1 fuzzy set. We give below the formal definition of type-2
fuzzy set. A type-2 fuzzy set is characterized by a type-2 member-
ship function µÃ (x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1]:
Ã = { ( (x, u), µÃ(x, u) ) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1] }
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where, 0 ≤ µÃ (x, u) ≤ 1. Jx is known as the pri-
mary memberships. So, a type-2 fuzzy set has membership
grades that are type-1 fuzzy sets, which are referred to as
secondary membership functions. At each value x , µÃ (x, u)

is a secondary membership function of Ã. Let us consider taking a
picture of an object with a camera. For simplicity, we consider grey
scale picture. The gray scale image may be thought of type-1 fuzzy
sets. However, whenever we take picture using a camera, there is
an element of uncertainty introduced by environmental conditions
apart from skills of photography. This introduces another level of
uncertainty, in the imaging process. Thus, for a given pixel, gray
scale value may be thought of as distributed (possibly normally) in
a range about the measured gray scale value.
Rhee and Hwang[8] extended the conventional FCM to type-2
FCM. They have argued that when the prototype is computed, it
may be uncertain whether each pattern properly contributes in up-
dating the location of prototype. Patterns with high membership
contribute more in prototype determination as they are considered
to have less uncertainty as opposed to patterns with low member-
ship. Also, memberships generated are based on relative distance,
as they are relative numbers which lacked typicality. Since, type-2
fuzzy sets have more degrees of freedom therefore, they have the
potential to outperform type-1 fuzzy sets.
They have extended FCM by designing type-2 membership func-
tions. Type-2 membership functions are assigned as the base length
of each triangular function as 1 minus the corresponding type-
1 membership value and by taking the difference of each type-2
membership function triangular area with the corresponding type-1
membership grade. The type-2 membership grades of ith pattern
corresponding to jth cluster can be obtained by the equation:

aij = µij − (1− µij) /2 (12)

We have extended it to determine the membership grades of ith

cluster corresponding to rth dimension which can be obtained by
the equation:

bir = ωir − (1− ωir) /2 (13)

where aij(bir) are type-2 membership grades for type-1 member-
ship grades µij(ωir) .
Substituting −aij(−bir) for µij(ωir) in the objective function,
updated equations have been computed.

Since,
∑k
i=1 µij = 1,

aij = (1− 3µij)/2,

⇒
∑k
i=1 aij = (k − 3)/2.

Also,
∑d
r=1 ωir = 1,

bir = (1− 3ωir)/2,

⇒
∑d
r=1 bir = (d− 3)/2.

2.2 Type-2 Projected GK Clustering Algorithm
We present type-2 projected GK algorithm. Given the high dimen-
sional data set X , choose the number of clusters 1 < k < n,

the weighting exponent α > 1, β > 1, the termination tolerance
∈> 0. Initialize the partition matrix U,W randomly.
Based on the update equations obtained above, we describe below
the Type-2 Projected GK algorithm.

[H] Type-2 Projected GK Clustering Algorithm Inputs
n: size of data set X
k: number of clusters, 1 < k < n
α: the weight exponent of matrix U, α > 1
β: the weight exponent of matrix W, β > 1
ε: the termination tolerance, ε > 0
A: the norm-inducing matrix
Outputs
U: membership matrix of objects in clusters
W: matrix indicating relevance of dimensions for clusters
Z: cluster centers
Initialize the partition matrices U, W randomly
t=0
‖U t − U t−1‖ >∈

Step 1. Compute the cluster prototypes

ztir =

∑n

j=1
(ωt−1
ir

)β(µt−1
ij

)αxjr∑n

j=1
(ωt−1
ir

)βµα
ij

Step 2. Compute the cluster covariance matrices

F ti =
∑n

j=1
(ωt−1ir )β(µt−1ij )α (xjr − ztir) (xjs − ztis) 1 ≤

r ≤ d, 1 ≤ s ≤ d.

Step 3. Compute the distances

d2ijr = [(xj1 − zti1) ... (xjd − ztid)]Ai[(xj1 − zti1) ... (xjd − ztid)]T

Step 4. Update the partition matrices

µhij = 1/3 + (k/3 −

1)/
∑k

l=1

[∑d

r=1
[(1−3ωh−1

ir
)/2]βd2

ijr∑d

r=1
[(1−3ωh−1

lr
)/2]βd2

ljr

]1/(α−1)
ωhir = 1/3 + (d/3 −

1)/
∑d

t=1

[∑n

j=1
[(1−3µh−1

ij
)/2]αd2

ijr∑n

j=1
[(1−3µh−1

ij
)/2]αd2

ijt

]1/(β−1)
Step 5. t = t+1

3. THEORETICAL ANALYSIS

In this section, we discuss the necessary condition for minimization
of the proposed algorithm along with its proof. The necessary
condition for minimization of the type-2 projected GK objective
function yields the following update equations:

µij = 1/3+(k/3−1)/
k∑
l=1

[∑d

r=1
[(1− 3ωir)/2]

βd2ijr∑d

r=1
[(1− 3ωlr)/2]βd2ljr

]1/(α−1)

(14)
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ωir = 1/3+(d/3−1)/
d∑
t=1

[∑n

j=1
[(1− 3µij)/2]

αd2ijr∑n

j=1
[(1− 3µij)/2]αd2ijt

]1/(β−1)
(15)

zir =

∑n

j=1
[(1− 3ωir)/2]

β [(1− 3µij)/2]
αxjr∑n

j=1
[(1− 3ωir)/2]β [(1− 3µij)/2]α

(16)

PROOF. We have to minimize Jα,β with respect to U,W,
subject to the respective constraints α ∈ (1,∞), and β ∈ (1,∞).
Then the constraints have been adjoined to Jα,β with a set of
Lagrange multipliers {λj} 1 ≤ j ≤ n and {φi} 1 ≤ i ≤ k to
formulate:

Jα,β =
∑n

j=1

∑k

i=1

∑d

r=1
[(1− 3µij)/2]

α[(1− 3ωir)/2]
βd2ijr

+
∑n

j=1
λj

(∑k

i=1
[(1− 3µij)/2]− (k − 3)/2

)
+
∑k

i=1
φi

(∑d

r=1
[1− 3ωir)/2]− (d− 3)/2

)
Now, we compute the first order derivative of Jα,β with re-
spect to µij , which is a necessary condition for optimality.

∂Jα,β
∂µij

= α

d∑
r=1

[(1− 3µij)/2]
α−1[(1− 3ωor)/2]

βd2ijr + λj = 0

(17)

[(1− 3µij)/2]
α−1 =

−λj
α
∑d

r=1
[(1− 3ωir)/2]βd2ijr + λj

= 0

(18)

µij = 1/3 + 2/3

[
λj

α
∑d

r=1
[(1− 3ωir)/2]βd2ijr

]1/(α−1)

(19)

k∑
i=1

µij = k/3+2/3

k∑
i=1

[
λj

α
∑d

r=1
[(1− 3ωir)/2]βd2ijr

]1/(α−1)

(20)
Substituting the value of λj in 19 we obtain:

µij = 1/3+(k/3−1)/
k∑
l=1

[∑d

r=1
[(1− 3ωir)/2]

βd2ijr∑d

r=1
[(1− 3ωlr)/2]βd2ljr

]1/(α−1)

(21)
Now, we compute the first order derivative of J with respect to
ωir , which is again a necessary condition for optimality.

Table 1. Data Sets
Data Sets Instances Attributes Classes
Forest Fire 517 13 3
Alzheimr 45 8 3
Parkinson 197 23 2
Breast Cancer 569 32 2

Table 2. Accuracy
Data Sets GKS PROCLUS GK
Forest Fire 0.8588 0.8696 0.8337
Alzheimr 0.7556 0.6667 0.6000
Parkinson 0.7538 0.7641 0.7538
Breast Cancer 0.8875 0.7907 0.8401

∂Jα,β
∂ωir

= 2

n∑
j=1

[(1− 3µij)/2]
α[(1− 3ωir)/2]

β−1d2ijr + φi = 0

(22)
Computing in the similar fashion as above we obtain:

[(1− 3ωir)/2]
β−1 =

[
−φi

β
∑n

j=1
[(1− µij)/2]αd2ijr

] 1
(β−1)

(23)

d∑
r=1

ωir = d/3 + 2/3

d∑
r=1

[
−φi

β
∑n

j=1
[(1− µij)/2]αd2ijr

] 1
(β−1)

(24)

Substituting the value of φi in 23 we obtain:

ωir = 1/3+(d/3−1)/
d∑
t=1

[∑n

j=1
[(1− 3µij)/2]

αd2ijr∑n

j=1
[(1− 3µij)/2]αdijt

]1/(β−1)
(25)

To minimize Jα,β with respect to prototypes, we fix U and V . We
obtain

∂Jα,β
∂zir

= 2

n∑
j=1

[(1− 3µij)/2]
α[(1− 3ωir)/2]

β(xjr − zir) = 0

(26)
Solving it for zir we obtain:

zir =

∑n

j=1
[(1−3ωir)/2]β [(1−3µij)/2]αxjr∑n

j=1
[(1−3ωir)/2]β [(1−3µij)/2]α

4. EXPERIMENTS

In this section we discuss the experiments.
For evaluating the efficiency of the Type-2 Projected GK clustering
algorithm, we have compared its performance with PROCLUS and
GK algorithms using real and synthetic data sets. The parameters
of each algorithm were fine tuned and multiple runs of the experi-
ments were conducted to minimize the effect of initialization.
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Table 3. F1-Measure
Data Sets GKS PROCLUS GK
Forest Fire 0.2695 0.1004 0.3443
Alzheimr 0.1301 0.0851 0.5497
Parkinson 0.2958 0.5631 0.6489
Breast Cancer 0.5921 0.8330 0.8332

Table 4. Recall
Data Sets GKS PROCLUS GK
Forest Fire 0.2992 0.2731 0.3230
Alzheimr 0.1667 0.0953 0.5375
Parkinson 0.2757 0.6914 0.6703
Breast Cancer 0.5710 0.8906 0.7911

Table 5. Precision
Data Sets GKS PROCLUS GK
Forest Fire 0.2451 0.0615 0.3686
Alzheimr 0.1067 0.0769 0.5587
Parkinson 0.3191 0.7101 0.6289
Breast Cancer 0.6289 0.7825 0.8800

4.1 Data Sets

Forest Fire, Breast Cancer, Parkinson and Alzheimer data sets from
the UCI data repository were used for experimentation [29]. These
data sets have no missing values. Table 1 describes these data sets.

4.2 Cluster Validity

Cluster validity measures have been used to asses the quality of
the output produced by clustering algorithms [14] [9]. We have
used the validity measures accuracy, recall, precision, specificity,
F1-measure in our experiments. These are described below:

(1) Accuracy: We use clustering accuracy measure defined in [12].
Accuracy may not be an effective measure of evaluation in
several situations such as fraud detection in banking transac-
tions or intrusion detection as in such situations it is important
to label the exception cases correctly. Alternative measures of
evaluation such as recall, precision, specificity, F1-measure are
used in such situations.

(2) Recall: ratio between the number of correct positive predic-
tions and the number of positive examples.

(3) Precision: ratio between the number of correct positive predic-
tions and the number of positive predictions.

(4) Specificity: ratio of number of true negatives and sum of num-
ber of true negatives and false positives.

(5) F1-measure: is the harmonic mean of precision and recall. 1

Table 2 shows, while the Type-2 Projected GK algorithm achieves
highest accuracy for Alzheimer and Breast Cancer data sets, the
performance of the Type-2 Projected GK algorithm is compara-
ble to PROCLUS and GK algorithm for the other two data sets.
In Table 4, 6, 5, and 3, we present the results of applying re-
call, specificity, precision and F1-measure to the outcomes of
clustering schemes produced by different algorithms. GK algo-
rithm achieves highest F1-measure and Precision for Breast Cancer,

1 In order to compare the cluster accuracy results of PROCLUS, GK, with
Type-2 Projected GK algorithm, we defuzzified the fuzzy assignments.

Table 6. Specificity
Data Sets GKS PROCLUS GK
Forest Fire 0.6321 0.6481 0.8325
Alzheimr 0.5849 0.5155 0.7679
Parkinson 0.2757 0.6943 0.6703
Breast Cancer 0.5170 0.8906 0.7911

Alzheimer, Parkinson and Forest data sets. PROCLUS algorithm
achieves highest recall and specificity Alzheimer for Breast Cancer
and Parkisnon data sets, GK algorithm achieves highest recall and
specificity for and Forest data sets and GK algorithm achieves com-
parable F1-measure, recall, precision and specificity for Alzheimer
and Forest data sets as compared to PROCLUS.

5. CONCLUSION

The contribution in this paper is adaptation of GK algorithm for
type-2 projected clustering algorithm. It captures higher degree of
uncertainties along with the typicality in the data set. We have
done the theoretical analysis of the type-2 projected GK algorithm.
Experiments show improvement in results over other comparative
techniques.
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