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ABSTRACT 

Denoising is still a challenging area of research due to its 

commercial and technical applications. We present a novel 

approach to image denoising using edge profile detection and 

edge preservation in spatial domain in presence of zero mean 

additive Gaussian noise. A Noisy image is initially 

preprocessed using the proposed local edge profile detection 

and subsequent edge preserving filtering in spatial domain 

followed further by the modified threshold bivariate shrinkage 

algorithm. The proposed technique does not require any 

estimate of standard deviation of noise (σ) present in the 

image. Performance of the proposed algorithm is presented in 

terms of PSNR and SSIM on a variety of test images 

containing a wide range of σ starting from 15 to 100. The 

performance of the proposed algorithm is better than NL 

means and Bivariate Shrinkage while it’s comparable with 

BM3D. 
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1. INTRODUCTION 
Image and video communication form a major portion of data 

acquired, interpreted, stored and transferred. Obviously all the 

information transmitted in the form of digital image or video 

need to have the best possible quality to represent the 

maximum possible information. But right from acquisition to 

transmission, the image or video information is often 

corrupted with noise of unknown characteristics and 

magnitude. The noise spectrum many times overlaps that of 

images or videos leading to loss of fine information during 

denoising. Thus removal of noise while preserving maximum 

possible details of image information without any knowledge 

of signal(image) or noise characteristics is a challenging 

problem faced by researchers. This challenge is accepted by 

many researchers and various good denoising algorithms have 

been proposed like NL means, Bivariate Shrinkage, BM3D 

etc. [1],[2],[3],[4],[5]. This paper reports a novel attempt to 

improve the performance of Bivariate Shrinkage in presence 

of a wide range of standard deviation of noise on a wide 

variety of images. If an image is I(x,y) and noise is N(x,y) then 

a noisy image Y(x,y)  is modeled as; 

Y (x, y) =I (x, y) +N(x, y)                                                  (1) 

where, I and N are considered highly uncorrelated. As 

characteristics of I(x,y) and N(x,y) are unknown,Image 

denoising takes shape of an inverse problem that aims to 

minimize the noise N(x,y), so that Y(x,y) is denoised.  

Complete removal of noise is not possible, but it can be 

minimized using some techniques on noisy images. Many 

Denoising algorithms have been proposed for different types 

of noise, each has its own advantages and limitations. Here we 

present a new image denoising algorithm that uses spatial 

domain edge preservation and Discrete Wavelet Transform 

based Bivariate shrinkage algorithm for denoising [3]. At a 

high noise density, detail information like edges in the 

original image is distorted by noise. Thus, it is required to 

recover the closest approximation of the original image by 

minimizing noise and preserving the fine and detail 

information content.  

Preserving the edges and reconstructing image objects with 

smooth surfaces have been a challenge for a long time [4]. 

Wavelet transform preserves both, the time domain and 

frequency domain information and also the relation between 

them. Wavelet theory has so far been widely used for edge 

detection [2], denoising [5], signal processing using hidden 

Markov models[8], image enhancement [6], pattern 

classification [9], pattern recognition [10]. The success of 

Wavelet transform was mainly due to its good performance in 

both the dimensions at varying resolutions; but one at a time 

[8] due to its orthogonality. Since Wavelet transform in two 

dimensions are obtained by a tensor product of one 

dimensional wavelets, it is good at isolating discontinuities 

across horizontal or vertical edges.  

Wavelet Local Denoise Reconstruction Algorithm based on 

non-separable Multi Resolution Analysis (MRA) was 

presented by Jin Guoying and Chen Hongye [3]. In this work, 

the projected data of a noisy image is decomposed by two 

level wavelet decomposition and approximated & detailed 

coefficients are obtained. The coefficients are then denoised 

using soft thresholding technique and then the denoised image 

was reconstructed using inverse wavelet transform. In non-

separable MRA, whole image is processed simultaneously and 

not along rows and columns. It simultaneously yields a 

multidirectional sensitive decomposition. However the non-

separable MRA techniques are computationally complex. 

V.NagaPrudhvi Raj and T Venkateswarlu proposed denoising 

of medical Images using Undecimated Wavelet Transform 

[4]. Many of the wavelet based denoising algorithms use 

DWT (Discrete Wavelet Transform) in the decomposition 

stage which suffers from shift variance and boundary 

discontinuity[24],[29-31]. This problem is eliminated to a 

large extent using Undecimated Wavelet Transform[34-38]. 

The problems of resolution were satisfactorily addressed by 

multi-resolution and multi-scale capabilities of Wavelet 

transform [5],[6] to large extent.  

G.Y. Chen and B. Kegl [11-12],[32] incorporated dual tree 

complex Wavelet into Ridgelet transform and enhanced its 

directional sensitivity to improve its denoising performance 
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using thresholding of Ridgelet coefficients. Since noise 

usually consists of high frequency content, thresholding or 

partial truncating of details coefficients, followed by 

reconstruction, leads to suppression of overall noise, at the 

cost of some distortion. Many techniques using wavelet-based 

thresholding have been reported in literature [6-7],[9], 

[13],[17],[21].  

Edge Detection of SAR Images have been implemented using 

Shift-Invariant DWT and Binarization Method proposed by 

WangCan et al. [22-23]. This yields a fast unsupervised noise-

robustness edge detection method in synthetic aperture radar 

(SAR) images. Input image is first decomposed with shift-

invariant discrete wavelet transform (DWT) and edge 

enhancement is achieved using the subbands of the SAR 

images. A fast unsupervised hybrid method of the binarization 

and edge detection is used for edge detection in SAR images. 

This incorporates speckle reduction and edge detection as a 

single process so that complex operations are avoided.  

P.R. Hill et al. presented an image denoising method based on 

dual tree statistical models for complex wavelet transform  

[7]. The Dual-Tree Complex Wavelet Transform (DT-CWT) 

along with bivariate analysis techniques that condition the 

shrinkages on spatially related coefficients across 

neighbouring scales (DWT levels). These comparatively 

recent techniques have denoised the real and imaginary 

components of the DT-CWT coefficients separately, followed 

by the inverse transform. Transform domain denoising 

techniques have achieved good results over the last few 

decades, preservation of fine spatial domain information is 

also utmost importance. Thus hybrid techniques, which 

process noisy images in both; spatial as well as transform 

domain are very important. Hard thresholding of transform 

coefficients is used along with the multiscale decompositions. 

Wavelet shrinkage denoising can be achieved using “soft 

thresholding” and many algorithms have been developed 

based on this approach. Another important method has been 

presented by A. Buades and et al. [14-16] for image 

denoising. This method named NL means, computes a 

normalized and weighted mean of Gaussians to represent 

contribution of neighboring pixels for each pixel of a noisy 

image. It uses an exponential kernel and Euclidean distances 

of all the neighboring pixels from the pixel to converge to a 

weight matrix for each pixel.  

Noise is usually removed by thresholding transform 

coefficients in transform domain or by some type of weighted 

averaging (filtering) in spatial domain. Wavelet transform or 

its derivatives are so far most popular for denoising 

applications. But wavelet transform doesn’t capture all the 

properties of images though is computationally simple. So in 

this paper, a new technique that first reconstructs the distorted 

edges and smoothens regions in spatial domain as a part of 

preprocessing is proposed. Further wavelet transform based 

bivariate shrinkage algorithm with the proposed and modified 

threshold is used for denoising.  The proposed algorithm 

yields good denoising performance while preserving the fine 

details and sharp edges at low computational overhead. The 

results endorse edge preserving and smoothening capabilities 

of the proposed approach and denoising abilities of Discrete 

Wavelet Transform using improved threshold  Bivariate 

Shrinkage. 

Section 1 has introduced the denoising state of the art and the 

proposed work. We present Bivariate Shrinkage algorithm 

using Discrete wavelet transform in section 2. Section 3 

presents the proposed edge profile detection and preservation 

preprocessing along with the modified threshold bivariate 

shrinkage. Section IV presents performance, benchmarking  

and discussions on the proposed algorithm. Section V 

concludes on the work. 

2. TRANSFORM BASED TECHNIQUES 
In this section, we initially present noise variance estimation 

from the available noisy image itself using the Dohono and 

Johnstone [18]. In the proposed work, we use this variance for 

further denoising using bivariate shrinkage algorithm. 

2.1 Noise Variance Estimation using 

Robust Median Estimator 
The thresholding technique used here requires an estimate of 

the noise level  that is locally computed using the finest 

level detail DWT coefficients. The usual standard deviation of 

the local noisy pixel values is not a good estimator, unless the 

function is reasonably flat which is a most unlikely situation 

in practical images [18]. Thus estimation of  in wavelet 

domain using wavelet coefficients at the finest resolution level 

is an empirical solution. The reason for considering only the 

finest level is that the corresponding empirical wavelet 

coefficients tend to consist mostly noise. Since there is some 

signal present even at this level, a proposed a robust estimate 

of the noise level using the nth level DWT coefficients Wj 

based on the median absolute deviation given by, 

    
                         

      
                                       (2) 

Here   ,   ……. etc are the detail coefficients at the finest 

level. 

2.2 Bivariate Shrinkage 
Neighbouring DWT coefficients are strongly dependent on 

each other. There is also a strong dependency between a 

coefficient, its parent (adjacent coarser scale locations), and 

their siblings (adjacent spatial locations). In the proposed 

work, we considering the dependencies only between a 

coefficient and its parent and sibling are expected to contain 

more noise components than its children. In [19], it is 

suggested that the pdf of a DWT coefficient band is Gaussian. 

A linear Bayesian estimator is proposed for  the estimation of 

neighbouring coefficients as in [20],[25-28]. The Bayesian 

estimation problem is modified so as to take into account the 

statistical dependency between a coefficient and its parent 

[33].  

A bivariate shrinkage rule is described using a DWT 

coefficient and its parent. Bayes rule allows us to write the 

estimation in terms of the probability densities of noise and 

the prior density of the wavelet coefficients. In order to use 

this equation to estimate the original signal, we must know 

both pdfs i.e. a coefficient and its parent. We assume the noise 

is Gaussian, and the separable 2D noise probability density 

function pn(n)defined on the two successive DWT levels' 

coefficients ( 1 and 2) of DWT is given as, 

      
 

     
       

  
    

 

    
                                         (3) 

where,    and    are noise samples at the successive DWT 

levels. 

Sunder and Selesnick [20] proposed four empirical models on 

the non-non noisy DWT coefficients and their standard 
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deviation, each with its own advantages and disadvantages. 
From those four models the first model is given by:  

      
 

     
      

  

 
   

    
                          (4) 

With this pdf,   and    are uncorrelated but not independent. 

The standard deviation   is computed over a 3x3 

neighborhood. Let    represents the parent of  , where   is 

the wavelet coefficient at the same level as   , but at the next 

coarser scale.   and   are noisy observations of     and    

respectively which are given by 

                                                                                (5) 

                                                                                (6) 

The standard MAP estimator for w given the corrupted 
observation y is  

                                                                          (7)  

From above equation, according to Bayes rules we can obtain 

probability densities of noise and the prior density of the 

wavelet coefficients as shown in equation (3) and (4) . 

MAP estimator is found corresponding to the  model given in 

equation (4) and              can be defined as 

 

         
 

     
  

  

 
   

    
                                (8) 

From [20], the derivatives of f(w) w.r.t. w1 and w2 are given 

respectively computed as f1 and f2 in equation (9) and (10). 

       
    

    
    

 
                                                           (9) 

       
    

    
    

 
                                                         (10) 

 

Solving (3), (4), (7)  and (8) using (9) and (10), the MAP 

estimator (or “the joint shrinkage function”) is written as in 

(11), 

    
    

    
  

   
  

 
 
 

   
    

 
                                                 (11) 

where, the threshold T for estimating the wavelet coefficients 
is given as,  

  
    

 

  
                                                                            (12) 

3. PROPOSED EDGE STRENGTHENING 

BIVARIATE SHRINKAGE 
In this section, we present a preprocessing and post processing 

edge strengthening algorithm using Local Profile Edge 

detection along with the modified bivariate shrinkage 

algorithm based on the modified probability model and the 

threshold. It may be noted that the proposed algorithm does 

not require any noise standard deviation value as an input. 

Rather, it is estimated based on the local DWT coefficient 

values across the levels unlike Non-local means, Bivariate 

Shrinkage and BM3D algorithm.  Here we presented the 

modified model, by changing the 2D noise model presented in 

(4) as below in equation (13), 

      
 

    
      

  

 
   

    
                           (13) 

Based on (13), we propose a MAP modified estimator of    as 

discussed in section 2. Here we have modified the equation  

for   by considering the calculation over 5x5 neighborhood 

as in  (13)  and the proposed denoising algorithm uses this 

model and the modified threshold.  
So the modified Wavelet Coefficient for implementing a 

Bivariate shrinkage for estimating     is given by; 

 

    
    

    
  

   
  

 
 
 

   
    

 
                                           (14) 

Here '+' indicates only positive values of the (.) in (14); the 

negative values of (.) will be considered 0 and accordingly the 

estimate of      is also 0. In scalar soft thresholding, for all 

coefficients, the threshold value is fixed and independent on 

other coefficients, if the coefficient is below the threshold 

value, we make it zero. It is clear that the estimated value 

depends on the parent value.The smaller the parent value, the 

greater the shrinkage and better is the denoising. Thus, the 

estimated value of      with the new threshold for estimating 

the wavelet coefficients is as in (14) and the modified 

threshold is given by (15). However, further increase in the 

shrinkage i.e. T due to the increased neighbourhood sizes 

results in blurring. 

  
    

 

  
                                                                           (15)                            

Thus, in the proposed work, the Bivariate Shrinkage is 

implemented with the wavelet coefficients using the modified 

threshold. 

Wavelet Denoising using Bivariate Shrinkage improves the 

denoising performance of an image. But while denoising 

using DWT bivariate shrinkage the sharp edge details of an 

image are not preserved. Edges are significant local changes 

in the image intensities and are important features for 

preserving visual quality of images. Edges typically occur on 

boundaries between two different regions in an image. Edge 

detection is frequently the first step in recovering information 

from images. Due to its importance, edge detection still 

continues to be an active research area. 

3.1 Spatial Local Profile Edge Detection 
The proposed local profile edge detection algorithm is 

presented in this section. A local neighbourhood 3x3 tile is 

used to detect an edge at its center position in spatial domain. 

This helps in reconstructing the edges, distorted due to the 

effect of noise before application of the modified threshold 

bivariate shrinkage and also after it. It has been observed that 

a denoising algorithm like Bivariate Shrinkage blurs edges in 

noisy images. Here we hypothesize that if there are already 

blurred edges in the original image then they are slightly 

blurred further in the process of denoising but the effect may 

not be noted very easily. However if sharp edges are blurred, 

it may considerably affect the visual quality of the original 

images. Thus if a local edge and its gradient direction in 

spatial domain are precisely detected before applying the 

denoising technique, the edge can be protected using a 

customized denoising process for the specific edge type. Thus, 

the proposed local profile edge detection precisely achieves 

the preliminary denoising while protecting image edges. 

There are many classical edge detection methods available. 

The edges of an image can be detected directly by processing 



International Journal of Computer Applications (0975 – 8887) 

Volume 168 – No.10, June 2017 

27 

in the spatial domain or in transform domain. In spatial 

domain also, many edge detecting techniques like Sobel edge 

detector, Prewitt edge detector and so on already exist but are 

computationally complex. Moreover they require some type 

of threshold. In this section, we propose a simple and novel 

local edge and its direction detection algorithm to detect edges 

of an image in the spatial domain.   

We propose that total 24 types of edges pass through a 3x3 

local neighbourhood tile center. We classify the image edges 

in the 3x3 tiles in the 24 types in addition to non-edge 

(smooth) tile. Each edge type is assigned a number. This 

vector together is called local edge profile. Using this Local 

edge Profile detection algorithm we detect vertical, horizontal, 

rising and falling (oblique) edges of total 24 different types 

and a smooth tile. The local edge profile is detected all over 

the image. Thus we can have local edge profile of each noisy 

image in terms of mean and edge number. The edge profile at 

each position is used to find the similar or dissimilar tiles. 

And according to the detected edge number and its direction 

we process the tile by averaging parallel to the edge direction 

so as to preserve the local edge and minimize the noise. 

Algorithm for the Local Profile Edge Detection is given as 

below; 

Algorithm 1: 

1. For each overlapping 3x3 tile of noise corrupted 

image check for the edge type present i.e. horizontal, 

vertical, diagonal rising or falling edge as below. 

2. Calculate the potential sum of the shaded area as 

summation of the intensities parallel to the shown 

edge. 

         If the difference of shaded area is greater than the 

threshold computed below from the tile itself, then 

an edge is present. Calculate the threshold t by the 

given formula: 

                                                      (16) 

where   is the difference vector of every pixel in the 

3x3 tile from the center pixel. 

3. Calculate the difference between the edge potentials. 

If it is more than 3x standard deviation of the tile in 

the specific direction, the edge direction is available in 

the tile. Replace the respective pixel intensities 

parallel to the edge  by the potential divided by three. 

4. Average all such nine estimates of the overlapping 

tile.  

5. Replace each pixel of     tile by the mean of that 

tile if there is no edge is detected.  

6. Thus, we obtain the denoised image using local profile 

edge detection algorithm.  

Table 1 presents the detailed description of the no edge and 

possible different edges in a3x3 tile, in figure 1 that shows 

light edges on dark background represented by edge number 2 

to 13. Similarly there can be twelve dark edges on light 

background represented by edge no 13 to 26. 

           

           

           

 (a)    (b)    (c)  

           

           

           

 (d)    (e)    (f)  

           

           

           

 (g)    (h)    (i)  

           

           

           

 (j)    (k)    (l)  
Fig 1: Different types of edges (a)-(c) Horizontal(0ᴼ edges 

,(d)-(f) Vertical edges(90ᴼ edges), (g)-(l)Rising (+45ᴼ) and 

Falling (-45ᴼ) edges. 

 

Thus total twenty four types of edges can be identified most 

probably in each 3x3 tile. Also there can be smooth or no 

edge tiles represented by edge number 1 and 14. The labels 

'above' and 'below' indicate the position of the edge with 

respect to center of the tile. The label 'center' indicates an edge 

passing through center of the tile. 'Light' indicates light edge 

on dark back ground and 'Dark' indicates dark edge on light 

background. More number of dark pixels in a tile indicate 

dark back ground while more number of the light pixels 

indicate light background. An edge is supposed to have 

intensity opposite to the background. It should be noted that 

the 3x3 tile is converted into a binary representation for such 

edge classification. This can be easily done by finding the 

mean of a 3x3 tile (μ) and bi-thresholding the tile intensities 

using the mean. Every tile provides its edge number available 

w.r.t. the center of the tile. 

Once the edge number available at the center pixel of the tile 

is detected the tile is processes by averaging the dark and light 

original image intensities parallel to the edge orientations and 

substituting the respective dark and light pixel means at the 

respective pixel positions. Thus for the non-boundary pixels 

for 3x3 size overlapping tiles, each pixel will have nine 

estimates due to the nine overlapping tile at each pixel 

position. Average of these nine at each pixel position provides 

the final pixel intensity for edge consolidation.   

3.2 Modified Threshold Bivariate shrinkage 
Using the local edge profile detection, processing and the 

modified bivariate shrinkage function, an effective and low 

complexity locally adaptive image denoising algorithm is 

developed. This shrinkage function requires the prior 

knowledge of the noise variance and the signal variance for 

each wavelet coefficient as mentioned in section 2.  Therefore 

the bivariate shrinkage algorithm requires computation of the 

following: 

1. DWT coefficients till 6th level. 

2. The local noise variance using robust median 

estimator on the detailed 6th level coefficients. 

3. Modified DWT coefficients using the threshold in 

(15). 

4.     Compute inverse DWT of the sixth level DWT.  
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Table 1:  Edge types in a 3x3 tile 

Eg. 

No. 

Fig.

1 

Edge description 

Dark background 

Eg. 

No. 

Edge Description 

Light background 

1  Dark, no edge tile 14 Light no edge tile 

2 a 
Light, single pixel 

thick, center, at 0ᴼ 
15 

Dark single pixel thick at 0ᴼ 

i.e. complement of Fig 1(a) 

3 b 
Light, single pixel 
thick, below, at 0ᴼ 

16 
Dark single pixel thick below at 
0ᴼ i.e. complement of Fig.1(b) 

4 c 
Light, single pixel 

thick, above, at 0ᴼ 
17 

Dark, single pixel thick above at   

0ᴼ i.e. complement of Fig.1(c) 

5 d 
Light, single pixel 

thick, center, at 90ᴼ 
18 

Dark, single pixel thick, center, 
at 90ᴼ i.e. complement of 

Fig.1(d) 

6 e 
Light, single pixel 
thick, right, at 90ᴼ 

19 
Dark, single pixel thick, right, at 
90ᴼ, i.e. complement of Fig.1(e) 

7 f 
Light, single pixel 

thick, left, at 90ᴼ 
20 

Dark, single pixel thick, left, at 

90ᴼ, i.e. complement of Fig.1(f) 

8 g 
Light, single pixel 

thick,center,at135ᴼ 
21 

Dark, single pixel thick, center, 
at 135ᴼ, i.e. complement of 

Fig.1(g) 

9 h 
Light, 2 pixel  thick, 

above, at 135ᴼ 
22 

Dark, 2 pixel  thick, above, at 

135ᴼ, i.e. complement of Fig.1(h) 

10 i 
Light, 2 pixel thick,    

below, at 135ᴼ 
23 

Dark, 2 pixel thick,    below, at 

135ᴼ, i.e. complement of Fig.1(i) 

11 j 
Light, single pixel 

thick, center, at 45ᴼ 
24 

Dark, single pixel thick, center, 

at 45ᴼ, i.e. complement of 
Fig.1(j) 

12 k 
Light, 2 pixel thick, 

below, at 45ᴼ 
25 

Dark, 2 pixel thick, below, at 45ᴼ 

i.e. complement of Fig.1(k) 

13 l 
Light, 2 pixel thick, 

above, 45ᴼ 
26 

Dark, 2pixel thick, above, at 45ᴼ 
i.e. complement of Fig.1(l) 

 

 

3.3 Proposed Algorithm 

This section presents the proposed Edge preserving bivariate 

shrinkage denoising algorithm. As already said the proposed 

algorithm is a cascade of local profile edge detection and 

processing as a preprocessing technique followed by the 

modified bivariate shrinkage and again local profile edge 

detection and processing as a post-processing technique. 

Thus, the proposed algorithm sandwiches the modified 

bivariate shrinkage between the pre and post processing using 

local edge profile detection. 

It is clear that, using 3x3 neighbourhood, we obtain 9 

estimates of each pixel value of a noisy image during pre and 

post processing. These 9 estimates are obtained  by shifting a 

3x3 tile of an image along the columns and then along the 

rows by one pixel resulting in overlapped tiles. The final 

estimate at each pixel is achieved by averaging these nine 

estimates if the tile edge profile matches all over the image. 

This results in consolidation of the edges in the noisy image. 

As already described the noise distorts edges; this pre-

processing consolidates the edge. Also a denoising algorithm 

smoothens the fine image details; so the post processing step 

again consolidates the edges to provide the final denoised 

image.  Here the steps of proposed algorithm are presented 

below as Algorithm 2. 

Algorithm 2: 

1. On the given noisy image a preprocessing edge 

strengthening algorithm Algorithm 1 is applied as a 

pre-proscessing step.  

2. Compute Modified Bivariate Shrinkage on noisy 

image   using the following process. 

 Select window size 5x5 for signal variance 

computation and 6 numbers of levels for DWT 

computations. 

 Compute DWT. 

 Compute noise variance using (2) for each 

subband. 

 Process each subband using (3) to yield denoised 

wavelet coefficient estimates at all the scales. 

 Estimate the signal variance and threshold using    

(14) for each band for the selected window size. 

 Estimate the denoised wavelet coefficients at all 

the levels using (14) and the threshold using (15). 

 Compute inverse DWT to yield original image.  

3.   Also apply the Denoising algorithm using the local     

profile edge detection algorithm as explained in 

Section 3.2 to the output image of step 2.  

Thus, we obtain the resultant image after computing post-

processing edge strengthening algorithm alongwith the 

modified bivariate shrinkage algorithm. 

4. EXPERIMENTAL RESULT 
Experiments have been carried out on many natural images 

along with test images. The standard images are considered 

zero noise or reference images.  Zero mean Gaussian noise of 

standard deviation from 15 to 100 has been added with all the 

images to yield the respective denoised images. The proposed 

algorithm was applied on the noisy images one by one and the 

respective denoised images and the corresponding PSNR and 

SSIM values have been computed for benchmarking. Though 

the experimentation has been performed on many images, a 

few representative results on the standard images have been 

presented in this section. It has been observed that the 

proposed technique yields the denoising performance 

comparable to the state of the art published denoising 

algorithms visually and quantitatively both.  However, this 

performance can be considered better because, the other 

algorithms like BM3D and NL means require the noise 

standard deviation value as input to the algorithm. In the 

absence of this input or inaccurate input their performance 

considerably reduces. However, the proposed algorithm does 

not require any such noise parameter as input and thus it is 

completely automatic or blind. Even in the absence of this  

noise input parameter, the proposed algorithm yield matching 

performance with BM3D and much better performance 

compared to NL means. Thus the proposed algorithm can be 

considered fully automatic. The proposed algorithm also 

clearly outperforms the original Bivariate shrinkage 

algorithm. As already said, performance of the proposed 

algorithm is compared visually using denoised images and 

quantitatively using PSNR and SSIM. However it should be 

noted that, in the absence of the noise standard deviation 

estimate input, the denoising performance of the proposed 

algorithm falls considerably. As far as visual performance is 

considered, the edge preservation of the proposed algorithm is 

slightly better than BM3D while its much better than NL 

means. 

Experiments for selecting the best neighbourhood have been 

carried out on tile sizes 3x3, 5x5, 7x7 and 9x9 on five 

standard images and the PSNR of denoising has been plotted 

against the noisy image tile size as in fig 2. It has can be 

observed in figure 2 that we got consistently better PSNR 

results on all the images with the 5x5 tile size. Further 

increased tile size results in blurring of the images leading to 

reduction in PSNR. Thus for further experiments we use the 

fixed tile size of 5x5 on all the images. This is also consistent 

with our newly selected Bivariate shrinkage model in Eq. 

(13). It should be noted here that we have experimented with 

only even square tile sizes. It is possible to locate centre. of 

the tile if the tile size is odd; resulting in equal effect of the 

surrounding pixels on the centre pixel during processing. 
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Fig 2: PSNR against the tile size for calculating noise σ 

Results on five standard test gray images namely; cameraman, 

peppers, lena, boat and man, all of spatial resolution 512x512 

pixels have been presented in Fig.2. This algorithm was tested 

at noise levels 15, 25, 35, 50, 80 and 100. It is compared with 

NL means, BM3D and Bivariate Shrinkage. Performance 

analysis is done using the PSNR and SSIM measures in fig.4. 

Each PSNR value in the table is averaged.   In this graph, the 

highest PSNR value among all is seen and yielded 

consistently. From this graph it is evident that using our 

modified bivariate shrinkage function with proposed 

algorithm provides better performance than using it with 
original empirical bivariate shrinkage.  

Figure 3(a) and (b) show the PSNR against Standard deviation 

of input noise in Peppers and Lena images respectively. It 

also shows the results of the proposed algorithm on the Lena 

images corrupted by the Gaussian noise of 15 and 35 standard 

deviation. The result on the test images is shown in table 1. It 

can be seen that the results of proposed algorithm are 

comparable to other denoising techniques.  Also it gives 

improved denoising in terms of PSNR and SSIM while 

preserving image edges.  It has been verified that denoising 

performance of the proposed technique drops below NL-

means for a tile size of 3x3 but it is much improved for a tile 

size 5x5 for computation of the estimate of local standard 

deviation. Thus the proposed denoising techniques offers 

better performance for moderate Gaussian noise with standard 

deviation 15 to 35 at much lower computational cost 

compared to BM3D as shown in table2. 

It is observed from results that on an average we are getting 

12 dB PSNR improvement compared to noisy images. Fig. 4 

presents the performance of the published algorithms along 

with the proposed algorithm in terms of PSNR on the two test 

images Lena and Peppers.  

In fig. 5 visual results of the other algorithms along with the 

proposed algorithms are also presented. It can be seen that the 

noisy images' quality is degraded due to Gaussian noise of 15 

and 35 standard deviation. 

After applying denoising algorithm, denoising has been 

achieved to a large extent by all the algorithms. We can see 

that the denoising has been achieved by the proposed 

algorithm much better compared to NLmeans. The Nl-means 

algorithm introduces a lot of blurring due to the excessive 

averaging implemented as part of the algorithm. If we 

compare the results in terms of SSIM, it also shows huge 

improvement compared to the noisy images. The performance 

of the proposed algorithm is again comparable to the BM3D 

algorithm and much better than NL-means algorithm.  

As the standard deviation of the noise increased, the 

performance of the proposed algorithm  had an edge over that 

of NL means. The proposed algorithm the edges are protected 

to a large extent compared to even Baudes NL means and 

BM3D.  As a result, even we are getting higher SSIM value as 

compared to Baudes NL means and closest to BM3D 

algorithm.  

Table 3 presents the de-noising performance of the proposed 

algorithm  along with Baudes NL means, Bivariate Shrinkage 

and BM3D methods on color images of Lena and Peppers. 

Zero mean Gaussian noise with standard deviation values of 

15,25, 35 and 50 have been introduced in the original  color 

images of Peppers and Lena of size 512x512. Here also we 

observe  that there is an improvement in the PSNR and SSIM 

values of proposed algorithm compared to PSNR and SSIM 

values obtained by Baudes NL means. From table 2 and table 

3, it can be observed that the results of the proposed algorithm 

are comparable to the results of BM3D and are much better 

than the Baudes NL means algorithm and the conventional 

Bivariate shrinkage algorithm. It should also be noted that the 

proposed algorithm outperforms all other algorithms in terms 

of SSIM at high noise standard deviation. 

Table 2: Benchmarking of the results obtained by 

Proposed Algorithm (Gray Images) 

Image SD 
Noisy 

Image 

Buades NL 

Means 

Bivariate 

Shrinkage 
BM3D 

Proposed 

Algorithm 

 σ PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Camera

man 

15 24.6 0.72 32.99 0.91 34.4 0.93 35.76 0.95 35.32 0.93 

25 20.2 0.54 30.52 0.86 31.5 0.88 33.18 0.92 32.45 0.90 

35 17.2 0.43 28.8 0.83 29.6 0.83 31.52 0.90 30.69 0.86 

50 14.7 0.34 26.63 0.78 27.10 0.73 29.94 0.86 28.63 0.79 

80 11.4 0.20 23.82 0.66 24.51 0.65 27.74 0.81 26.21 0.70 

100 10.1 0.15 22.67 0.60 23.21 0.61 26.62 0.78 25.01 0.65 

Peppers 

15 24.6 0.76 34.34 0.93 34.8 0.94 36.42 0.95 36.25 0.96 

25 20.2 0.58 31.57 0.90 32.0 0.90 33.91 0.92 33.66 0.92 

35 17.2 0.46 29.44 0.87 30.2 0.87 32.16 0.90 31.68 0.89 

50 14.7 0.34 27.17 0.83 27.32 0.78 30.47 0.87 28.94 0.82 

80 11.4 0.20 24.28 0.74 24.67 0.69 27.98 0.82 26.38 0.74 

100 10.1 0.15 23.26 0.69 23.12 0.64 26.77 0.78 25.10 0.69 

Lena 

15 24.6 0.77 32.51 0.92 32.5 0.93 34.3 0.95 33.74 0.94 

25 20.2 0.59 29.84 0.88 30.2 0.89 32.07 0.92 31.59 0.90 

35 17.2 0.47 28.20 0.84 28.7 0.85 30.6 0.89 29.84 0.87 

50 14.6 0.35 26.45 0.79 26.41 0.77 29.03 0.86 28.02 0.81 

80 11.4 0.22 24.38 0.69 24.32 0.66 26.94 0.80 25.86 0.72 

100 10.1 0.16 23.46 0.64 23.11 0.61 25.94 0.76 24.80 0.67 

 

 

Fig 3(a):  PSNR Vs Standard deviation of noise of Peppers 

Image 
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Fig 3(b):  PSNR Vs Standard deviation of noise of Lena 

Image 

Table 3: Benchmarking of the results obtained by 

Proposed Algorithm (Color Images) 

Image SD 
Noisy 

Image 

Buades NL 

Means 

Bivariate 

Shrinkage 
BM3D 

Proposed 

Algorithm 

 σ PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Lena 

15 24.6 0.76 32.30 0.92 31.58 0.90 33.92 0.95 33.47 0.93 

25 20.48 0.59 29.84 0.88 29.59 0.88 32.27 0.93 31.60 0.91 

35 17.2 0.43 28.20 0.84 28.27 0.87 30.89 0.90 29.94 0.89 

50 15.02 0.34 26.45 0.77 26.81 0.86 29.81 0.89 28.76 0.87 

Peppe

rs 

15 24.68 0.76 31.92 0.93 31.55 0.91 32.67 0.94 32.18 0.92 

25 20.37 0.58 29.90 0.89 29.88 0.89 31.13 0.92 30.61 0.91 

35 17.60 0.46 28.33 0.85 28.72 0.86 29.94 0.89 29.39 0.87 

50 14.81 0.34 26.52 0.80 27.68 0.82 28.92 0.87 28.12 0.83 

 

 

Fig 4(a):  PSNR Vs Standard deviation of noise of color 

Lena Image 

 

Fig 4(b):  PSNR Vs Standard deviation of noise of color 

Peppers Image 

5. CONCLUSION 
Most available techniques yields good results in terms of 

PSNR but fail to preserves the edges and fine details of an 

image. The proposed algorithm addresses this problem to a 

large extent. The proposed algorithm yields better PSNR for 

low and moderate standard deviation of zero mean Gaussian 

noise. 

The recursive application of the algorithm is time consuming 

like any other denoising algorithm however it does not 

improve PSNR considerably. The proposed edge preservation 

technique yield good continuity of edges and preservation of 

fine details along with yielding good PSNR nd SSIM. The 

proposed algorithm out performs all at very high noise levels 

in terms of SSIM on all the images.  So the spatial domain 

edge detection and the edge type based conditional mean 

filtering yields improved edge preservation. The modified 

Bivariate shrinkage model with the improved threshold also 

offers improved denoised results in terms of PSNR and SSIM. 

It should be noted here that, the proposed algorithm does not 

require any prior knowledge about the noise properties like 

standard deviation and is computationally efficient. The 

numerical results in terms of PSNR and SSIM are much better 

compared to NL means and the published Bivariate shrinkage 

for moderate magnitudes (σ=15 to 35) of noise. For high 

levels of noise the proposed algorithm does not perform better 

than BM3D in terms of PSNR. However, it outperforms 

BM3D  in terms of SSIM at high noise magnitudes (σ= 

80,100 etc). Due to its single pass execution and no 

requirement of weighted Gaussian averaging, it is 

computationally efficient compared to BM3D and NL means. 

NL means introduces too much of blurring at higher noise 

levels while BM3D introduces contours in the smoothly 

varying image regions. The proposed algorithm neither blurrs 

the image nor introduces contours in the smooth regions.  

  
(a) (b) 

Fig 5: Noise free Images (a) Lena grey (b) Lena color  
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(a) (b) (c) (d) (e) 

Fig 6: Noisy Image of Lena (std_dev=15,35) (b) BM3D (c) NL-means d)Bivariate (e) Proposed Algorithm 

 

     

     

(a) (b) (c) (d) (e) 

Fig 7: Noisy Image (std_dev=15,35) (b) BM3D (c) NL-means (d)Bivariate (e) Proposed Algorithm 
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