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ABSTRACT
The test suite optimization during test case generation can save time
and cost. The paper presents an information theory based metric to
filter the redundant test cases and reduce the test suite size while,
maintaining the coverage of the requirements and with minimum
loss to mutant coverage. The paper propose two versions, RR and
RR2. RR filters test cases for each requirement, where as, RR2 fil-
ters till the target coverage is achieved. The paper suggests the time
and phase for the implementation of the algorithms, based on re-
sults. The results show that the proposed algorithms are effective at
optimizing the testing process by saving time and resource.
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1. INTRODUCTION
Software systems go through a number of changes in during their
evolution phase (deletion, addition, debugging,modifications or
change in requirements) [1], [2]. The initial versions of the software
are tested with test suite (TS) and stored along with the respective
version for the future. As the software evolves, new versions are
released and test cases are generated to execute these modifications
[1]. Testing is an expensive process consuming a lot of time, space
and resource. As the new test cases are added, the test suite size
increases, putting addition burden on costs (time, human efforts,
resource allocation, data storage). The cost of testing is directly
proportional to the size of a TS [3]. To save time and cost, one
option is to optimize the test suite by identifying and eliminating
redundant or irrelevant (like losing coverage, fault detecting capa-
bility) test cases. Optimization of TS is a continuous process. The
TS optimization is the process of removal of test cases to reduce test
suite size, without losing the coverage of requirements or reduction
in fault detecting capability.
The requirements of coverage are a set of rules, known as adequacy
criteria or testing criteria, to be covered by test cases [3] [4]. Test
suites are quantified based on their code coverage. The require-
ments can be based on the coverage of structural elements of the
program (e.g. statement coverage, branch coverage, decision cov-
erage) or the flow of information or fault detection capability(e.g.

killing mutants in mutation testing)or a combined technique two
or more criteria. The proposed heuristic is independent of the ade-
quacy criteria and syntactically independent.
The objective of the proposed algorithms and techniques is to iden-
tify and remove redundant test cases to save time during the mainte-
nance of software [5]. The number of test cases may be huge when
generated automatically as compared to manual [3]. In that case,
the TS optimization becomes a critical part of maintenance. This
paper frames the test suite size and execution minimization as an
optimization problem.
Generally the optimization of test suite is associated with regres-
sion testing. Test suite generation along with proposed algorithms,
can bring efficiency to testing and bringing down the maintenance
cost.In our paper we propose to move the optimization to the initial
stage of testing, when the test cases are generated, saving time and
space from the very beginning. The test suite is divided into two
sub suites,the reduced and the redundant. Whenever the new test
cases are generated, they are checked for redundancy in both the
sub set, and if they exist in any of the sets, they are ignores, else they
are added. Testing has many stages, however, traditionally a testing
phase consists of a) test case generation b) execution c) selection d)
maintenance. With the implementation of the proposed algorithm,
first phase (test data generation) will have following stages a) test
data search b) test data execution c) analysis of output d) analysis
of execution profile e) optimization.
A number of test suite reduction algorithms and techniques have
been proposed [2],[3], [6], [7]. This paper presents a TS size re-
duction technique that efficiently generates a reduced TS with full
coverage. The heuristic designed is based on Information theory
metrics [8], [9] to identify and eliminate the redundant test data.

Summary of steps. a) Generate a random pool of test data b)
record the execution profile c) calculate the redundancy for each
test case by implementing the proposed algorithms d) add the se-
lected to the reduced TS e) analyze the coverage.
The paper is organized as follows. Section II covers the basics of
unit testing, evolution of test cases with version and generation of
diagnostic matrix from execution profile, a brief introduction to the
basic concepts of information theory, measurements, and finally as-
sumptions. Section III shows the proposed algorithms along with
description. Section IV covers the related work. Section V is the
details of the experimental set up. Section VI shows the results of
the experiments and their discussion. Section VII concludes the pa-
per.

1



International Journal of Computer Applications (0975 - 8887)
Volume 168 - No.4, June 2017

2. BACKGROUND
Testing is a process in which a program, is executed with some real
environment like data, to know the run-time behavior of program
by analyzing the output. If the output differs from the expectations,
it is marked as fault in system. The aim of testing is to ensure that
the program is behaving as expected and reveal unidentified errors.
Testing is performed at all the stages of development (requirements,
specification, code, integration, packing, acceptance). The testing
performed at the basic level, the smallest unit of code is known as
Unit testing. It is important for the building blocks to be error free
to deliver a quality product to the customers. The code under test-
ing is first analyzed for its structure and test cases are derived. The
entities of the code can be expression statements, decision state-
ments, loops, variable or data structures. Testing a program with
all the possible inputs is not feasible. To select a representative set
of important test cases, we quantify them against some criteria for
selection. The test cases covering the most of these are criteria are
included into the test suite [4]. A test suite is adequate to a criteria
if the coverage is 100%. Common adequacy criterion are branch
coverage, statement coverage, and line coverage. Generating a test
case that adds to the coverage of the test suite is an important phase
of testing [3]. To get the run details of the entities or the path cov-
ered by the test case, the program is first instrumented. The code is
analyzed as per the adequacy criteria and probes or traces are in-
serted at appropriate places to collect the desired information. The
details of run time data is a set of entities visited by test case, and
known as execution profile, or coverage information. The run time

Fig. 1. Evolution of Software. Two different Control flow Graphs present-
ing same logic

details of all the test cases are compiled as a diagnostic matrix. In
this paper, we have two sets of diagnostic matrix, first, a collection
of vectors, where for each trace the respective test cases are stored
as a vector. Second, for each test case, where each trace is marked
as visited or not visited. Test suite generation, testing and retest-
ing is a repetitive ask in software development cycle. The initial
test suite is small, however, as existing are modified or new com-
ponents are added to the software, it grows in size and complexity.
To test the modifications and capture new entities, new test cases
are generated. Removal of duplicate and less relevant test cases can
reduce the test suite size. In this paper a test case is redundant if
it reaches a redundant threshold. The redundant threshold is calcu-
lated by mutual information of information theory.
A software can have a number of versions and the execution pro-
file of each test case of one version can be different from another.
This brings uncertainty in test case execution profile. To capture
the ambiguity, this paper presents an information theory derived,
probabilistic measure, mutual information [8], [9]. Test cases are
measured for mutual information gain. If there is none, then the
test cases are declared as redundant and any one of them is se-
lected for the reduced TS, marking the other as redundant. Figure
1 illustrates the various versions of a software. Figure 1 (1) is the
initial program. The small code is shown as Control flow graph.
The program in Figure 1 (1) shows one branch statement with two

Table 1. Test cases and code coverage for three versions of code.

TS
V1 V2(a) V2(b)

1 a b 1 a b 2 c d 1 a b 2 c d
t1 1 1 1 1 1 1 1 1
t2 1 1 1 1 1 1 1 1 1
t3 1 1 1 1 1 1 1 1
t4 1 1 1 1 1 1 1 1
t5 1 1 1 1 1 1 1 1
t6 1 1 1 1 1 1 1 1

Table 2. Traces and respective test
cases

Version Traces Test Cases

V1
1 t1, t2, t3, t4, t5, t6
a t1, t5, t6
b t2, t3, t4
1 t1, t2, t5, t6
a t1, t5, t6
b t2

V2(a) 2 t1, t2, t3, t4, t5, t6
c t1, t5, t6
d t4, t5
1 t1, t2, t5, t6
a t1, t2, t5, t6
b t3, t4

V2(b) 2 t2, t3, t4
c t2
d t4, t5

branches. Figure 1(2) and Figure 1 (3)shows the two possible ver-
sions of the new logic added to the existing logic of Figure1(1).
The test case can also be quantified with its ability to find faults.
The fault detection capabilities of TS, can highly affected by test
suite reduction [23]. Table 1 illustrates the code coverage of TS
. The table is a sample to showing differences in execution pro-
file the change in versions. The values of test cases are t1(2,1),
t2(1,2), t3(1,1), t4(0,0), t5(45,5), t6(68,-3). The traces are shown as
1,a,b,2,c,d. The first version V1 had only (1,a,b), while, later ver-
sion has (1,2,a,b,c,d). The existing test cases are re-run on the new
versions. Test case t1 has coverage of (1,a) in version V1, while a
coverage of (1,a,2,c) for V2(a) and (1,a) for version V2(b). There
are six test cases in the test suite. From the table 1 it is clear that
t4, t5, and t6 are redundant. However, for large and complex source
doe with test cases in thousands, the task of identifying redundancy
is very laborious. A heuristic is designed to check the redundant
test cases. To address this question, we have designed an algorithm
RedundancyReduction(RR). The algorithm, RR is based on the
concepts of information theory, which is covered in details in sec-
tion 2.1. Table 2 shows the requirement’s matrix.

2.1 Entropy, Joint Entropy, Conditional Entropy and
Mutual Information Gain

This section define Entropy, Joint Entropy , conditional Entropy,
Information Gain and Mutual Information Gain, briefly.

2.1.0.1 Entropy H . The measurement of uncertainty in a vari-
able is Entropy. Given a random variable (rmv) X, with a set of
possible discrete values x1, x2, ... xn , and pi > 1 then, Shannon’s
Entropy (H) [9] can be defined as by following equation.

H = −
∑

pi ∗ log(pi) (1)
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In this paper the probability is the frequency of the occurrence of
a value in a given data set, divided by the total number of transac-
tions or occurrences. Example 1: Given X, with probability set as
(1/2, 1/4, 1/4), then the entropy is H(X) as shown in following
equation:
H(X) = −1/2 log 1/2 − 1/4 log 1/4 − 1/4 log 1/4 = 1.5
Given X = 1, 0, with probability of p(1) = p and p(0) = 1 − p,
then, H(X) is given by equation 2.

H(X) = −p log p− (1− p) log (1− p) (2)

Joint Entropy H(X,Y ) Entropy measures uncertainty for one
variable. When there are two variables, suppose X and Y, then the
H(X,Y ) is given by equation (3) [9].

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log(x, y) (3)

In equation (3), p(x) is the probability of x in the rmv X and p(y) is
the probability of y in the rmv Y . Conditional Entropy H(X|Y )
When there are two rmv, X and Y , and the entropy of one variable
is conditional on the value of the other variable, then the H(X|Y )
as in equation 4 and 5 [9] with given probabilities p(x), and p(y).

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x) (4)

H(X|Y ) = −
∑
x∈X

p(y)H(X|Y = x) (5)

Mutual Information I It is the measure of information that one
rmv contains about rmv. It is the reduction of uncertainty of one
rmv due to the knowledge of the other [9]. Suppose there is a rmv
X and Y . The mutual information X;Y is the reduction in X due
to Y [9].

I(X;Y ) = H(Y )−H(Y |X) (6)

I(X;Y ) = H(X)−H(X|Y ) (7)

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (8)

Given marginal probabilities function p(x), p(y) and joint proba-
bility mass function p(x, y) MI can be rewritten as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) ∗ log p(x, y)

p(x) ∗ p(y)
(9)

Example 2. Suppose there are two vectors, VC1 and VC2. The val-
ues of these vectors are: VC1 = [00110011] and VC2 = [10110110]
The mutual information gain of these is =0.905. Suppose the val-
ues of VC3 and VC4 are given as: VC3 = [00110010] and VC3 =
[00110010] The mutual information gain is =0.0.

2.2 Measurement
The test suite is measured for the coverage of traces and the ability
of detecting faults FDE (Fault Detection Effectiveness). The orig-
inal source code is altered, creating multiple versions, with each
version called mutant having an artificial fault induced through mu-
tant operators [10, 11, 12, 13, 14, 15, 16]. The each test case in the
test suite is executed with P . The result is analyzed with the oracle
, if there is difference, the mutant is said to be killed, else it is alive
[17]. Live mutants that cannot be killed are known as equivalent

mutants. The number of mutants killed by a test case is the mutant
score for the test case. Test cases that have good mutant score are
said to be good at detecting faults and kept in test suite. A test suite
is said to be test adequate if it able to kill all the non-equivalent
mutants.
Let Mn be a set of mutants Mn = {m1,m2, ...mn}, EMn be
Equivalent mutants, KMn be the number of mutants killed, then
the Mutant Score (MS) for a test suit is given by the following
equation.

MS =
KMn

Mn−EMn
∗ 100, whereFDE = MS (10)

To check the FDE for the reduced test suite is given by equation
11.

RMS =
RKMn

Mn−EMn
∗ 100 (11)

FDE might not be effected due to the reduction, as the test cases
not contributing to the code coverage, may not be eliminating any
unique faults[24]. Loss of FDE (LFDE) is given by equation 12.

LFDE =
MS −RMS

MS
∗ 100 (12)

The loss of coverage (LCOV ) is defined by the difference between
the coverage of original test suite (FCOV ) and the reduced test
suite (RCOV ).

LCOV =
FCOV −RCOV

FCOV
∗ 100 (13)

The reduction in size is the main measure for the RR and RR2
algorithm. The aim of the algorithms is to reduce the test suite and
bring it minimal. The reduction in sizeRsize is given by equation
14. The test suite size of the test suite TS is TSsize while the
reduced suite is RTSsize.

Rsize =
TSsize−RTSsize

TSsize
∗ 100 (14)

Table 3. Details of variable of Algorithm
Variable Details

P Source code of Program under testing
S Population of Test case inputs for program P
TS Test suite to be optimized
Testcase Test case of TS
TClog Test case log
EClog Execution profile as an array of 0’s and 1’s
RMlog Log of requirements
Selected Reduced Test suite
Redundant Set of redundant test cases
RL List of requirements
Tnext Test case of TS
MI mutual information gain of two test cases
H() Entropy of an array
H(|) Condition Entropy of two array
RedundancyLevel Cutoff point to declare a test case redundant
TCovReq Requirements covered by test cases
TTrace Traces covered by test T
FST Full set of test cases
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3. REDUNDANCY REDUCTION
This section covers the Redundancy Reduction algorithm RR and
RR2. The algorithm are explained followed by analysis of reduced
test suits.

3.1 Algorithm RedundancyReduction RR and RR2
Given : A program P with latest version of test suite TS to be
optimized. A set of requirements RS that have been covered by
TS.
Problem : Design a minimal test suite Selected, form the ex-
isting suite TS, such that Size(Selected) < Size(TS) and
Coverage(Selected) = Coverage(TS).
Suppose a test suite TS of size N is given with good coverage
of the given criteria. The reduced or minimal set is a subset of
size NM , is derived from the TS such NM < N , will the same
coverage for the same criteria[3]. A requirement which is executed
by a single test case only, should be present in the TS [2], hence
generating a minimal test suite. The important point in executing
a test suite size reduction is the analysis of the criteria coverage of
the reduced test suite. However, good test suite reduction should
reduce the size, while keeping the coverage intact. This condition
is the motivation to include the greedy algorithm of Harnold et
al. [2], to the RR2. The algorithm RR is verified for the above
minimal constraint by comparing its results with RR2. The steps
of RR are common to both the algorithms. However, RR2 has
one additional step. Primary inputs to the algorithm are the log
details of the test suite and the traces derived from the structure of
P . The test log contains the details like test number, and execution
profile (the annotations of the traces covered). The requirements’
log stores the details of the traces and the test cases that executed
them (annotations of the test ids) , showing the cardinality of each
trace . The table 3 shows the details of the variable of algorithms
proposed.

The first step is the initialization of inputs. Generate a test suite TS.
TS has test sets T1, T2, ...TN , which may contain redundant test
cases. Each test case is executed with the program P . Log EClog
indexes the test cases of TS, with the traces covered as the execu-
tion profile. The execution path of the test cases is then converted
into an array of 0s and 1s to for MI calculation. Initially test set
Selected and Redundant are empty. Second step is the creation
of reduced test set Selected. Read a trace Rfrom the log of require-
ments. For each R, generate a subset of test cases that include R
in their execution profile. Select the first test case T1 from the list,
and successive test case Tnext. Compute the MI between these test
cases. If the MI is equal to the RedundancyLevel, then the test
cases are similar (for a particular coverage criteria). Any one the
them (algorithm selects T1), can be added to the Selected test set
and the other one added to the Redundant set. Before adding to
the Selected set, it is verified that T1 is not present in any of these
test sets. Tnext, is added to Redundant if it is does not exists in
the set. The process is iterative in nature and all the test cases are
analyzed for MI . Finally the Selected test set is returned as the
reduced set.
The algorithm 1 RR2 has an additional step at step 2. The
RR2 creates an additional empty set TCovReq. The set stores
the traces covered by the set Selected. Initially both are empty.
As the algorithm is executed, the first test case is selected and
added to the Selected and its execution profile is added to the
TCovReq. For the next iteration, the algorithm RR2 has an ad-
ditional step. It checks if the next trace, to be analyzed does not

Algorithm 1: RedundancyReduction RR2
Input: TS, TClog, EClog, RMlog, TL, Selected,Redundant , RL,
P , Testcase, RedundancyLevel, TCovReq = φ
Output: Selected, reduced Test suite
for Testcase ε TS do

P (Testcase) (// execute test case with program)
Update TClog
Update EClog
Update RMlog

for R ε RMlog do
TL = SelectTestList(R) (// select test case array for R)
if R ∃ TCovReq then

continue (// skip to next R)

for T ε TL do
Read Tnext ε TL
MI = Mutualinfogain (T ,Tnext )
RedundancyLevel = getRedundancyLevel()
Update TTrace
if MI == RedundancyLevel then

if T @ Selected then
if T @ Redundant then

Selected = Selected ∪ T
for R ε TTrace do

if T @ TCovReq then
TCovReq =TCovReq ∪ R

if Tnext @ Redundant then
if Tnext @ Selected then

Redundant = Redundant ∪ Tnext

else
if T @ Selected then

Selected = Selected ∪ T
for R ε TTrace do

if T @ TCovReq then
TCovReq = TCovReq ∪ R

if Tnext @ Selected then
Selected = Selected ∪ Tnext
for R ε TTrace do

if T @ TCovReq then
TCovReq =TCovReq ∪ R

return Selected

Algorithm 2: Functions for RedundancyReduction RR and RR2
RequirementsCovered(TestList) RequirementsCoveredSet =φ for
T ε TestList do
Read EC from EClog
for R in EC do

if R @ RequirementsCoveredSet then
RequirementsCoveredSet = R ∪
RequirementsCoveredSet

return RequirementsCoveredSet
MutualinfoGain (TestList1, TestList2) Entropy = H(TestList1)
CondEntropy = CH(TestList1, TestList2)
return (Entropy - CondEntropy )
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exists in TCovReq. The traces present in the set TCovReq are
the ones that are covered by test cases of the Selected, and hence
skipped from the redundancy analysis. The other difference in the
two algorithms RR and RR2 is the addition of traces to the set
TCovReq once a test selected is selected. The additional overhead
of TCovReq can reduce the execution process by skipping the MI
analysis.

Algorithm 3: RedundancyReduction RR
Input: TS, TClog, EClog, RMlog, TL, Selected,Redundant , RL,
P , Testcase, RedundancyLevel
Output: Selected, reduced Test suite
for Testcase ε TS do

P (Testcase) (// execute test case with program)
Update TClog
Update EClog
Update RMlog

for R ε RMlog do
TL = SelectTestList(R) (// select test case array for R)
for T ε TL do

Read Tnext ε TL
MI = Mutualinfogain (T ,Tnext )
RedundancyLevel = getRedundancyLevel()
if MI == RedundancyLevel then

if T @ Selected then
if T @ Redundant then

Selected = Selected ∪ T

if Tnext @ Redundant then
if Tnext @ Selected then

Redundant = Redundant ∪ Tnext

else
if T @ Selected then

Selected = Selected ∪ T
if Tnext @ Selected then

Selected = Selected ∪ Tnext

return Selected

4. EXPERIMENTAL STUDY
The subject programs we considered for our study are benchmark
classes from the experimental work of Polo [18] and triangle class
by Sthamer [19] . The repository is quite popular with research
community. The classes were analyzed for their structure and in-
strumented with etoc [20]. The second level of instrumentation was
done manually to obtain additional information. Mutants were cre-
ated with eclipse [21]. The experiments were conducted with Net-
Beans [22]. The classes differ in complexity and size. The class
triangle classifier, takes three inputs and based on the values gives
output if a triangle can be formed or not, and if a triangle can
be formed, then which type(obtuse, right angle). The program has
many level hierarchy and the test suite size is huge compared to
others. The classes are comparatively less complex, but differ from
each other. We implement the RR and RR2 algorithms on all the
classes with test suites of different sizes, generated from a random
pool of test data. The execution profile obtained is converted to
the diagnostic matrix and then for each trace, the test cases are fil-
tered. The selected test data are added to the test suite ”Selected”,

and the redundant ones are added to the ”Redundant”. The re-
sults of the experiments are discussed below in section 5. The al-
gorithms are compared by executing first set of test suites with RR
and recording the data. The same set of test suites is executed with
RR2 and the results are recorded, for coverage, time and test suite
size, percent reduction in TS, and loss of mutant coverage.

Fig. 2. Reduction of size in test suite after the implementation of the al-
gorithms RR and RR2 as compared to the original with test suite. The plot
depicts the two algorithms with RR as

5. RESULTS AND DISCUSSION
In this section we present the results of the experiments along with
the discussion.

Test suite size reduction. The statistical data for the all the
classes is shown together in figure 2. The results of the algorithm
RR2 are shown as orange box-plots and RR in brown for the series
of test suits of various size. Test suite size reduction for the both
the algorithm RR and RR2 calculated by equation 14. The figure
shows the Rsize for each class for both the algorithms. It can be
seen that for all the classes, algorithm RR2 performed consistently
better than RR, with same coverage of requirements, other than few
outliers. Figure 4 shows the class level comparison of test suite size.
For each class the size of original test suite and the ”Selected ” test
suite of RR and RR2 are shown as box plotters. It can be seen that
for each class the there is a significant reduction in size of the resul-
tant test suites. The size of the test suite of algorithm RR2 is either
same or less than the test suite of RR2, not bigger.

Test suite Coverage. The table shows that their is no major loss
of coverage after implementing the algorithms RR and RR2. How-
ever, it can be seen that with same coverage, the test suites of RR2
are smaller than the test suites of RR.

Execution Time. To get complete picture of the efficiency and
effectiveness, the execution time for both the algorithms were
recorded. It can be seen that there is no significant time consump-
tion by RR2 as compared to RR. Figure 3 shows that graphs for all
the classes, individually. The data is shown as lines, along with the
size of the original test suite. However no pattern can be drawn as
many factors can influence the execution time(complexity of pro-
gram, quality of test data).
Table 4 shows details of the statistical data for all the classes.
Here TS is the size of the original test suite which has to be
optimized. For each class we conducted experiments on test suites
of different sizes (t1, t2,t3...). For each test suite, we implemented
the algorithms RR and RR2. The execution time for each execution
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Table 4. Class level Comparative Analysis
Class TS Algorithm Time Reduced Redundant Rcov Rsize MutantLoss

MID

t1
RR2 50 3 2 16 40 13.3
RR 80 5 0 16 0 13.3

t2
RR2 235 13 2 16 13.3333333333 13.3
RR 93 14 1 16 6.6666666667 13.3

t3
RR2 891 20 5 16 20 13.3
RR 322 22 3 16 12 13.3

t4
RR2 1922 25 10 16 28.5714285714 13.3
RR 250 27 8 16 22.8571428571 13.3

FOUR

t1
RR2 1 3 2 6 40 6.6
RR 15 4 1 6 20 6.6

t2
RR2 16 5 5 8 50 6.6
RR 15 6 4 8 40 6.6

t3
RR2 47 1 14 0 93.3333333333 6.6
RR 16 1 14 0 93.3333333333 6.6

FIND

t1
RR2 125 3 2 16 40 40
RR 15 5 0 16 0 40

t2
RR2 110 8 2 16 20 40
RR 47 9 1 16 10 40

t3
RR2 203 8 7 16 46.6666666667 40
RR 63 9 6 16 40 40

t4
RR2 422 9 11 16 55 40
RR 125 10 10 16 50 40

t5
RR2 609 13 12 16 48 40
RR 140 14 11 16 44

t6
RR2 1032 16 14 16 46.6666666667 40
RR 172 17 13 16 43.3333333333 40

Bubble Sort

t1
RR2 38 3 2 9 40 60
RR 49 3 2 9 40 60

t2
RR2 5 3 7 9 70 60
RR 34 3 7 9 70 60

t3
RR2 9 3 12 9 80 60
RR 96 3 12 9 80 60

t4
RR2 22 3 17 9 85 60
RR 34 3 17 9 85 60

t5
RR2 21 3 22 9 88 60
RR 48 3 22 9 88

t6
RR2 11 3 27 9 90 60
RR 82 3 27 9 90 60

t7
RR2 23 3 32 9 91.4285714286 60
RR 103 3 32 9 0 60

BISECT

t1
RR2 6 1 4 5 80 30
RR 8 1 4 5 80 30

t2
RR2 8 2 8 5 80 30
RR 18 2 8 5 80 30

t3
RR2 15 3 12 5 80 30
RR 29 3 12 5 80 30

t4
RR2 16 5 15 5 75 30
RR 19 5 15 5 75 30

Triangle

t1
RR 109 14 36 34 72 3 0
RR2 47 5 45 29 90 38

t2
RR 93 14 86 34 86 30
RR2 47 8 92 34 92 30

t3
RR 167 20 130 36 86.6666666667 28
RR2 90 9 141 35 94 30

t4
RR 520 22 178 37 89 28
RR 94 11 189 36 94.5 30

t5
RR2 618 31 219 39 87.6 20
RR 187 17 233 38 93.2 20

t6
RR2 619 33 267 39 89 18
RR 156 21 279 39 93 18 6
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(a) Bisect (b) Bubble sort

(c) Find (d) Four Balls

(e) Mid (f) Triangle

Fig. 3. Time of RR and RR2 algorithms with Test Suites

(a) Bisect (b) Bubble sort

(c) Find (d) Four Balls

(e) Mid (f) Triangle

Fig. 4. Test suite size for Original, RR and RR2
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is shown as column Time. The reduced, optimized test suite
size is shown in the column Reduced, while the redundant test
suite size is shown under heading Redundant. The Rcov is
the coverage for each and every test suite executed and Rsize
is the percent of reduction in test suite. The MutantLoss =
numberofmutantsnotcovered/totalnumberofmutants.
Compared to the mutation score of the original test suite, there is
no significant loss of mutant coverage. The table shows for a given
a test suite, comparing the two algorithms, there is no loss of cov-
erage. However, there is no trend in the execution time. The results
show that RR2 generates smaller test suites. Here we elaborate
our discussion to other topics. The most important concern is the
overhead of the set up for redundancy reduction. The question of
”what are the overheads and how are they helpful?”. The inputs of
the algorithms are very basic and one time investment. The set up
need to be generated once, and can be used with every test data
generation with every version of the software. The return is in the
form of saving of time, resources and human efforts required to
analyze the outputs.

Implementation phase. The most important thing is the time or
phase of the development cycle, where the algorithms are imple-
mented. The implementation in the first phase of test data genera-
tion will save more time, resource and cost in each and every run
as compared to the implementation at the later phases (regression
testing). The table 4 show that the number of test cases, that are
redundant is huge. This shows the amount of time and human ef-
forts saved (execution cycle, storage, analysis of outputs and main-
tenance). From the results it is clear that the algorithm RR2 is good
at eliminating more test cases, which is due to the fact that some
times, the test size of reduced is less once the coverage is complete,
the rest are treated as redundant. However, for RR, the test suite size
is more as it included that test cases which cover the same require-
ment, but they are far distant. The algorithm RR, checks redundant
test for each and requirement. This can be one reason that in many
cases, the execution time is more. The algorithm RR implemented
at the test data generation phase may add more test cases, but filters
the redundant ones efficiently. This may help the tester and devel-
opers to have a good diversity with good coverage and minimal
size. The implementation of RR2 at the later stages can help the
testers and developers to a smaller test suite, as the test suite grows
significantly in later stages.

Criticality of testing time and resources. The algorithms can
be implemented depending on the criticality of testing time. If the
time allows, the algorithm RR can give a good filtering of the re-
dundant test cases. If the testing time or resources are constraint,
then RR2 can be implemented to obtain a smaller test suite. In
RR2,objective of the filtering process to obtain the desired cover-
age. Once the objective is fulfilled, the filtering stops. RR2 can be
a savior at the time of crisis.

6. RELATED WORK
The work by Jones[2] presents a test suite reduction algorithm, de-
signed for MC/DC coverage criteria. The test cases that are weak,
are identified and removed, creating a test suite of strong test cases
[2]. Based on re-ordering of test sequence, Pan [3] propose a num-
ber of strategies to reduce test suite. Test suites reduction tech-
niques based on coverage are better than random reduction [23].
The on-demand reduction technique allows the test suite to be re-
duce to achieve a predefined level of coverage and fault detection
ability[7]. The test cases that do not cover any unique requirement,
may not add to the fault finding capability [24].The fault detection

capability can be maintained after test reduction by adding addi-
tional test cases, which may increase the size and redundancy of
test suite [1]. Yang [25] in his work has defined testing as bring-
ing down the uncertainty in software. Entropy can be a syntactic
independent criteria for coverage for any testing artifact[25]. Infor-
mation theory techniques can be successfully applied in test data
generation [26]. Yang [27], suggested the application of entropy for
the comparison of test cases covering different criteria. Miranskyy
[28] applied entropy to compare traces.

7. CONCLUSION
The paper presents an empirical study of two proposed algorithms
for filtering the redundant test suites. The initial results show that
the proposed algorithms RR and RR2, are efficient at reducing the
test suites and maintaining the required coverage. There is marginal
difference in the mutant loss between the RR and RR2. The algo-
rithms suggested are based on information theory based metrics
to compare the test cases and can be easily embedded with other
heuristics or can be implemented as stand alone. The overhead of
the setup is a one time investment, which is low as compared to
amount of saving due to elimination of redundant test cases. The
limit of the study is that the test suites were executed on the same
version. The future work includes the execution of all the test cases
on various versions for analysis for efficiency. The algorithms need
to be implemented for the black box testing and other testing strate-
gies, along with the implementations on the different phases of de-
velopment cycle.
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