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ABSTRACT
Differential Cryptanalysis is a powerful technique in cryptanalysis,
applied to symmetric-key block ciphers. It is a chosen plain-text at-
tack which means the cryptanalyst has some sets of the plain-text
and the corresponding cipher-text pairs of his choice. These pairs
of the plain-text are related by a constant difference. Basically it
is the study of how differences in input information can affect the
resultant difference at the output.
In this paper, differential cryptanalysis is applied on substitution-
permutation network and data encryption standards cipher. The sur-
vey is based on the analysis of a simple, yet realistically structured,
basic Substitution-Permutation Network cipher. Along with this,
the paper also presents our contribution in this paper as well as our
future research work.

Keywords
Differential Cryptanalysis, Symmetric Key, Substitution Permuta-
tion Network (SPN), Security, Differential Attack

1. INTRODUCTION
Cryptosystems are generally divided in two types: Symmetric Key
Cryptosystems, where same key is used by the sender and the re-
ceiver for encryption and decryption respectively. Thus key need
to be kept as private, hence the Symmetric key Cryptosystems
can also be known as private key cryptosystems. The secure dis-
tribution of key associated with symmetric key cryptosystems is
a challenging task. Data Encryption Standard (DES) and Ad-
vanced Encryption Standards (AES) are examples of symmet-
ric key cryptosystems.[1][2] Unlike symmetric key cryptosystems,
asymmetric key cryptosystems, which uses two keys, called private
key and public key. It relies on one key for encryption and the other
for decryption. These two keys are different but are related. The
RSA algorithm is an example of asymmetric key cryptosystems.
The Differential cryptanalysis was developed by Biham et al. in
1990 [6]. It is one of the seminal work in the area of cryptanaly-
sis. It is chosen plain-text attack. In Differential Cryptanalysis, the
main task is to study the propagation of differences from round to
round inside the cipher and find specific differences, which prop-
agate with relatively high probability. Such pairs of input-output
differences can be used to recover some bits of the secret key.[7]

1.1 Motivation and Contribution
Block cipher is a procedure for encrypting plaintext where key and
algorithm are applied to a data block. An example of such a sym-
metric key cryptosystem is Data Encryption Standard (DES). Orig-
inally in 1970’s it was developed by IBM. Later many researchers
have performed cryptanalysis on DES upto specific rounds.
In this paper, we have presented in depth literature review and have
performed our cryptanalysis on 3-Round DES. Further work will be
extended as the cryptanalysis on more number of rounds on DES.

1.2 Organization of the paper
Rest of the paper is organized as - section 2 discusses some required
preliminaries. Related work is presented in section 3. In section
4, we have discussed differential cryptanalysis on SPN. In section
5, we have discussed attack on 3-Round DES. Finally section 6
concludes the paper.

2. PRELIMINARIES
Substitution Permutation Network (SPN):- It is a mechanism to
used in designing a block cipher. Here substitution does confusion
and permutation does diffusion.[7][8]
Confusion is described as being the use of enciphering transfor-
mations that complicate the determination of how the statistics of
the cipher-text depend on the statistics of the plain-text. This is
achieved by using a complex substitution algorithm. While Diffu-
sion dissipates the statistical structure of the plain-text within the
cipher-text so that attacker cannot determine plain-text correspond-
ing to the cipher-text.
The principle of diffusion and confusion is achieved by applying
substitution and permutation to the plain-text over and over again.
Iterated Block Cipher is based on this principle. Thus SPN is a type
of iterated block cipher. A basic SPN structure is shown in Figure
1. It has four rounds. Each round consists of substitution, permuta-
tion and key mixing. The input size of plain-text is 16 bit and key
size is 32 bit. Firstly we convert our 32-bit key into round keys of
16-bit each with help of key scheduling algorithm. Now each of
these round key is xor-ed with the input it gets in every round. SPN
cipher takes 16-bit block of plain-text as input and divides it into
four sub-blocks of 4-bit each. Now each of these sub-block goes
into key mixing block. After key mixing, it goes to the S-box as
shown in Table 1. The fundamental property of an S-box is that it is
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Fig. 1. Basic SPN Structure1

a nonlinear mapping, that is, the output bits can not be represented
as a linear function of the input bits.

I/P 0 1 2 3 4 5 6 7 8 9 A B C D E F
O/P E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Table 1: Substitution Box

Now, output of s-box is permuted by permutation box. P-box per-
forms the permutation of the bit position. It is shown below in Table
2.

I/P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
O/P 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Table 2: Permutation Box

3. RELATED WORK
Firstly IBM has designed iterated cryptosystem called Lucifer
[11], to overcome the increasing need for the data and information
security in its products. The complete design and structure of
the Data Encryption Standard came in existence in [12]. The
procedure of Formal Coding, where formal expression of each bit
in the ciphertext is the XOR SOP form of the bits of the plaintext
and the key was presented in [13]. The manipulations in a formal
way of these expressions may reduce the key search attempt.
The prime objective of differntial cryptanalysis, which was devel-
oped by Biham et al. in 1990 [6], is to study the propagation of
differences from one round to last round inside the cipher and find
the appropriate differences, which propagate with relatively high
probability. Such pairs of input-output differences can be utilized
to recover some bits of the secret key.[7]
Schaumuller-Bichl [14] [15] explored this method and formulates
that it needs a significant amount of system memory, which makes
the idea impractical. In 1987, Davies [16] given a known plaintext
cryptanalytic attack on DES.
Over past years, several cryptosystems which are standards of
DES were presented. Schaumuller-Bichl proposed three such
types of cryptosystems [14] [17]. Another standard is the Fast
Data Encryption Algorithm (FEAL). It was designed to be more
efficiently practical and implementable on an 8-bit microprocessor.
It’s first version had four rounds.[18] Later it was broken by Den
Boer [19] using a chosen plaintext attack. The inventors of FEAL
given a new version, called FEAL-8, with 8-rounds [20] [21].

4. DIFFERENTIAL CRYPTANALYSIS ON SPN
For differential attack on SPN, we need to first find a differential
characteristic (sequence of input and output differences) for one
round that has high probability and then for the whole cipher, as
output difference from one round corresponds to the input differ-
ence for the next round [3]. After determining differential charac-
teristics, we can derive the key used in the last round of the cipher.
To construct high probability differential characteristics, we should
examine properties of nonlinear part of our cipher, i.e S-boxes.
DDT table is constructed for every different s-box. Since we are
using the same s-box in SPN, only one DDT table will be con-
structed. DDT stores the no of occurrences of output difference C ′,
for a given input difference P ′.
DDT table for SPN cipher is shown in Table 5. It is constructed in
the following manner. Let P ′ denote the input difference. Now we
will search for P and P ∗ (called plain-text pairs) whose difference
is P ′. Then each of these P and P ∗ is passed through s-box to find
corresponding C and C∗ (called cipher-text pairs). This C and C∗
is xor-ed to get output difference C ′.
Lets consider P ′ = 0100. For each pair P and P ∗ having difference
0100, we will compute C = πs(P ), C∗ = πs(P

∗) and C ′ = C ⊕
C∗, where ⊕ denotes the x-or operation. This is shown in Table 3
where P ′ = P ⊕ P ∗
From the last column of Table 3, we will count the occurrence of
each value as mentioned in Table 4. We can see that only five of
the possible 16 values occur. Now this result will be stored in DDT
table in row which is equal to input difference 0100 and each col-
umn in this row will be filled with the count of the output difference
from Table 4. This is shown in DDT Table 5.
In this manner we can construct the DDT table by taking every
possible value of P ′.
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P P ∗ C C∗ C ′

0000 0100 1110 0010 1100
0001 0101 0100 1111 1011
0010 0110 1101 1011 0110
0011 0111 0001 1000 1001
0100 0000 0010 1110 1100
0101 0001 1111 0100 1011
0110 0010 1011 1101 0110
0111 0011 1000 0001 1001
1000 1100 0011 0101 0110
1001 1101 1010 1001 0011
1010 1110 0110 0000 0110
1011 1111 1100 0111 1011
1100 1000 0101 0011 0110
1101 1001 1001 1010 0011
1110 1010 0000 0110 0110
1111 1011 0111 1100 1011

Table 3: Sample Difference Pairs of S-box

0000 0001 0010 0011 0100 0101 0110 0111
0 0 0 2 0 0 6 0

1000 1001 1010 1011 1100 1101 1110 1111
0 2 0 4 2 0 0 0

Table 4: Count of every value from Difference Pairs of S-box

P ′/C ′ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0
2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0
3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4
4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0
5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2
6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2
7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4
8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2
9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0
A 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0
B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2
C 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0
D 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2 0
E 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0
F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

Table 5: Difference Distribution Table

4.1 Constructing Differential Characteristics
The construction of differential characteristics is illustrated with an
example. Consider Figure 2, which involves S12, S23, S32 and S33

to construct differential characteristic. Note that, here we are using
Ui to denote the input to the i-th round s-boxes and Yi to denote
the output of the i-th round s-boxes.

Fig. 2. Sample Differential Characteristic2

In round 1, suppose our 16 bit input is P ′ = U ′1 = 0000 1011 0000
0000. This input passes through four s-boxes as, 0000 through
S11, 1011 through S12, 0000 through S13, 0000 through S14

respectively as given in Figure 3.1. Only S12 box is active (An
active s-box is the one whose input is non-zero.) as it has non-zero
input and input to all other s-boxes is zero. So, all s-boxes gives
output 0000 except S12 box which gives output as 0010 using
substitution box Table 1. Now, 16 bit o/p from s-boxes Y ′1 is 0000
0010 0000 0000.
This 16 bit gets permuted through permutation box as shown in
Table 2, that is, 7th bit becomes 10th bit and so on. The permuted
output is U ′2 = 0000 0000 0100 0000. At this level we have
completed round 1 where for fixed input difference P ′ = 1011, we
are getting output difference C ′ = 0010. From DDT table, when
input difference is 1011(B), output difference 0010(2) occurs eight
times with probability 8/16 as we have 16 possible combinations.
So, we get probability 8/16 from round 1 [9]. Output of round 1 is
fed as input to the round 2.

In round 2, 16 bit input is U ′2 = 0000 0000 0100 0000. This input
passes through four s-boxes as 0000 through S21, 0000 through

2Howard M.Heys, “A tutorial on Linear and Differential Cryptanalysis,”
Journal Cryptologia, Volume 26, Issue 3, 2002.
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S22, 0100 through S23, 0000 through S14 respectively. Here S23

box is active as its input is non-zero. So, S23 box gives output as
0110 using substitution box Table 1. The combined 16 bit o/p from
s-boxes Y ′2 is 0000 0000 0110 0000.
This 16 bit gets permuted through permutation box as shown in
Table 2, that is, 10th bit becomes 7th bit and 11th bit becomes
11th bit and so on. The permuted output is U ′3 = 0000 0010 0010
0000. At this level we have completed round 2 where for fixed
input difference P ′ = 0100, we are getting output difference C ′ =
0110. From DDT table, when input difference is 0100(4), output
difference 0110(6) occurs six times with probability 6/16 as we
have 16 possible combinations. So, we get probability 6/16 from
round 2. Output of round 2 is fed as input to the round 3.

In round 3, 16 bit input is U ′3 = 0000 0010 0010 0000. This in-
put passes through four s-boxes as 0000 through S31, 0010 through
S32, 0010 through S33, 0000 through S14 respectively. Here, S32

and S33 box is active as it has non-zero input. The output from S32

box is 0101 and from S33 box is 0101 using substitution box Table
1.
Now, 16 bit o/p from s-boxes Y ′3 is 0000 0101 0101 0000.
This 16 bit gets permuted through permutation box as shown in Ta-
ble 2, that is, 6th bit becomes 6th bit and 8th becomes 14th bit and
so on.The permuted output is X ′4 = 0000 0110 0000 0110. At this
level we have completed round 3 where for fixed input difference
P ′ = 0010, we are getting output difference C ′ = 0101. From DDT
table, when input difference is 0010(2), output difference 0101(5)
occurs six times with probability 6/16 as we have 16 possible com-
binations. In this case we have two active s-boxes, so we will have
two probabilities. So, we get two probabilities of 6/16 from round
3. Output of round 3 is fed as input to the round 4.
In determining the probability given plain-text difference P ′. we
have assumed that differential of first round is independent of the
differential of the second round and so on. Hence probability of all
occurring is determined by the product of the probabilities.

S12: P ′ = B→ C ′ with probability = 8/16
S23: P ′ = 4→ C ′ with probability = 6/16
S32: P ′ = 2→ C ′ with probability = 6/16
S33: P ′ = 2→ C ′ with probability = 6/16

Product of probabilities = (8/16)*(6/16)*(6/16)*(6/16)
= 27/1024

There will be many plain-text pairs whose P ′ = 0000 1011 0000
0000 and they all will be encrypted during this cryptanalysis pro-
cess. We will select those differential characteristics which will
occur with probability 27/1024. These high probability plain-text
pairs with P ′ are termed as right pairs and other plain-text pairs are
wrong pairs.

4.2 Extracting Key Bits
We will extract the subkey used in the last round of the cipher. In
last round, we will find the partial subkey corresponding to the ac-
tive s-boxes and the rest of the key bits can be determined through
exhaustive search.
Each of the plain-text pair (P1,P2) is encrypted and their corre-
sponding cipher-text pair (C1,C2) is stored. For each of the cipher-
text pair and for every possible partial subkey (last key used in
the encryption), we do partial decryption until the input of the
last round is obtained. Let the result of the partial decryption be
(C ′1, C

′
2). If the resulted (C ′1, C

′
2) is equal to our desired result then

the count of the corresponding partial subkey gets incremented.
This process will be repeated for all possible partial subkeys and

Fig. 3. Algorithm for Differential Attack on SPN.3

for all chosen plain-text cipher-text pairs. Eventually, the partial
subkey which has the maximum count is expected to be the actual
partial subkey.
This complete differential cryptanalysis algorithm is presented in
Figure 3. In this algorithm, τ represents set of all plain-text and
corresponding cipher-text pairs used in this attack. L1 and L2 take
hexadecimal values. π−1s is the inverse of the s-box, used to par-
tially decrypt the cipher-text. The (x, x∗, y, y∗) corresponds to all
plain-text and cipher-text pairs. y<1> denotes first four bits of y,
y<2> denotes next four bits of y and so on. The Count[] array here
stores the count value of each possible partial subkey. This algo-
rithm also performs a filtering operation to discard wrong plaintext-
ciphertext pairs. All plaintext-ciphertext pairs does not allow us to
find the relevant key bits. Thus, we had performed operation y<1>

= y∗<1> and y<3> = y∗<3> to filter out the pairs. The pairs for which
this condition holds are called right pairs. This filtering operation
increases the efficiency of the attack.
After getting the partial subkey with maximum count value, we will
find its probability as, prob = count/number of pairs, where number
of pairs are the generated chosen plaintext-cipher text pairs used
in the attack. In this case, we expect the probability to be 27/1024,
which confirms we have correct subkey.

5. ATTACK ON 3-ROUND DES
As we have seen DES has 16 rounds but for cryptanalysis purpose
we have reduced DES to ’n’ rounds where n = 3. For this attack
we have neglected initial permutation (IP) and its inverse as they
do not have effect on cryptanalysis [4],[6]. To attack 3-round DES,

3Douglas R. Stinson, “Cryptography Theory and Practice,” Chapman
Hall/CRC, Third Edition, 2006.
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Fig. 4. 3-Round DES Structure

suppose we have a plain-text pair L0R0 and L∗0 R∗0 and correspond-
ing cipher-text pair L3R3 and L∗3 R∗3. A 3-round DES structure is
shown in Figure 4. From this figure we can express R3 as:

R3 = L2 ⊕ f(R2,K3) (1)

Since L2 and R1 are equal,

R3 = R1 ⊕ f(R2,K3) (2)

Further R1 can be expressed as:

R3 = L0 ⊕ f(R0,K1)⊕ f(R2,K3) (3)

On giving L∗0 R∗0 as input to Figure 4.1, R∗3 can be expressed as,

R∗3 = L∗0 ⊕ f(R∗0,K1)⊕ f(R∗2,K3) (4)

R′3 is the xor-ed difference of R3 and R∗3. So, R′3 = R3 ⊕ R∗3.

R′3 = L0⊕f(R0,K1)⊕f(R2,K3)⊕L∗0⊕f(R∗0,K1)⊕f(R∗2,K3)
(5)

As L0 ⊕ L0∗ = L′0,

R′3 = L′0 ⊕ f(R0,K1)⊕ f(R∗0,K1)⊕ f(R2,K3)⊕ f(R∗2,K3)
(6)

By taking R0 = R∗0 we get,

R′3 = L′0 ⊕ f(R2,K3)⊕ f(R∗2,K3) (7)

We know R′3 and L′0 so we can rewrite above equation as,

R′3 ⊕ L′0 = f(R2,K3)⊕ f(R∗2,K3) (8)

Let H and H∗ be the two outputs of the eight s-boxes then,

f(R2,K3 ) = P(H) and f(R∗2,K3 ) = P(H∗)

where P performs the permutation function. Then,

P(H) ⊕ P(H∗) = f(R2,K3 ) ⊕ f(R∗2,K3 )

H
′
= H ⊕H∗ = P−1(R

′
3 ⊕ L

′
0) (9)

Now, R2 = L3 and R∗2 = L∗3 are also known by this we can compute,

G = E(L3) (10)

and

G∗ = E(L∗3) (11)

using the expansion function E. G and G∗ are the input to the s-
boxes in the 3rd round. We will use the triplet G, G∗ and H ′ to
attack.
Suppose we have, number of plain-text pairs and the corresponding
cipher-text pairs as:

L0R0: “37580B1359ACEE20”
L3R3:“34E9174A5A2CB621”
L∗0R∗0: “264A020E59ACEE20”
L∗3R∗3: “023E68A49B1423D6”

From these pairs, we find the s-box inputs for round 3 from Equa-
tion (10) and (11). Here L3 and L∗3 gets expanded to 48 bits that is:
G = 000110101001011101010010100010101110101001010100
G∗=000000000100000111111100001101010001010100001000
We know that input to the s-box is I = G ⊕ K where K represents
key. The exclusive or (x-or) of the inputs of the eight s-boxes is :

I ⊕ I∗ = (G⊕K)⊕ (G∗ ⊕K) (12)

Thus, I ⊕ I∗ = G ⊕ G∗. So from this we can conclude that input
x-or does not depend on the key bits K.

G′ = G ⊕ G∗

G′ = 000110101101011010101110101111111111111101011100
The output of the s-boxes H ′ is computed using Equation 9.

L′0 = L0 ⊕ L∗0
L0 = 00110111010110000000101100010011
L∗0 = 00100110010010100000001000001110
L′0 = 00010001000100100000100100011101

R′3 = R3 ⊕ R∗3
R3 = 01011010001011001011011000100001
R∗3 = 10011011000101000010001111010010
R′3 = 11000001001110001001010111110011

R′3 ⊕ L′0 = 11010000001010101001110011101110
H ′ = P−1(R′3 ⊕ L′0)

= 01011010000011010010111000100111

Here P−1 is inverse initial permutation which is shown below in
Table 6.

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 6: Inverse Initial Permutation

Now we have G, G∗ and H ′. For 1 ≤ i ≤ 8, every six bits in G′
(G′i) and four bits in H ′ (H ′i), we will find pairs whose x-or equal
is to G′i and on giving these pairs input to the s-box Si their output
x-or is equal to H ′i.
Let these pairs be denoted using Pairs(G′i, H

′
i). If we knew G and

G∗ we could say,

Gi ⊕Ki ∈ Pairs(G′i,H ′i) (13)
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From Equation 13, we can conclude that to find key value we can
x-or the Pairs(G′i, H

′
i) value with G value. Next step is to tabulate

these key values in eight counter array Ji. As each Ki is of 6 bits
which would mean 0 to 63 in decimal, the array Ji would range
from 0 to 63.
Continuing with previous example, we will find Pairs(G′i, H

′
i) us-

ing first 6 bits of the G′1 and first 4 bits of the H ′1,

Pairs(000110,0101) ={110010, 110100}
Here G1 = 000110, using Equation 13,

K1 ∈ G1 ⊕ Pairs(000110,0101) = {110100, 110010}
Thus we will increment values 52(110100) and 50(110010) in the
counter array J1.
For next pair G′2 and H ′2, the values will be incremented in the
counter array J2 and so on. We will repeat this process for all pairs
in G′ and C ′. This whole method will be performed with more
plaintext-ciphertext pairs until we get a unique value in each of the
eight counter arrays J. The position of these unique values deter-
mine the key bits.
To get the initial 64-bit key we have to perform few more compu-
tations on the result obtained from these eight counter arrays. This
is experimentally done and results are attached below.
We have taken three plaintext-ciphertext pairs and computed their
G, G∗, G′ and H ′ as explained above. Then found the Pairs(G′i,
H ′i) for 1 ≤ i ≤ 8 and finally J values to be incremented in the
eight counter arrays. These pairs are shown below denoted with
L0R0, L∗0R∗0, L3R3 and L∗3R∗3.
L0R0=748502CD38451097 , L3R3=03C70306D8A09F10
L∗0R∗0 = 3874756438451097 , L∗3R∗3= 78560A0960E6D4CB
L0R0 = 486911026ACDFF31 , L3R3=45FA285BE5ADC730
L∗0R∗0 = 375BD31F6ACDFF31 , L∗3R∗3= 134F7915AC253457
L0R0=357418DA013FEC86 , L3R3=D8A31B2F28BBC5CF
L∗0R∗0 = 12549847013FEC86 , L∗3R∗3= 0F317AC2B23CB944

For the first pair we incremented at position number as given
below in the eight counter arrays J1, J2, ..., J8.
Pairs(0,9) = 0,7,40,47 , J1 = 0,7,40,47
Pairs(7,6) = 2,53,12,59 , J2 = 5,50,11,60
Pairs(56,5)=4,54,20,38,21,39,25,43,J3=60,14,44,30,45,31,33,19
Pairs(14,13) = 50,39,14,44,18,48, J4 = 11,41,0,34,28,62
Pairs(32,5) = 25,56 , J5 = 57,24
Pairs(6,11) = 1,19 , J6 = 7,21
Pairs(32,6) = 6,39,13,44 , J7 = 28,7,45,12
Pairs(12,7) = 35,61,36,58 , J8 = 47,49,40,54

The output for the second pair is given below. In the same eight
counter arrays we incremented the values according to the output
shown below,
Pairs(40,9) = 7,13,52,62 , J1 = 47,37,28,22
Pairs(11,12) = 3,46,8,37,14,35,26,55,30,51,
J2 = 8,37,3,46,5,40,17,60,21,56
Pairs(63,9)=44,58,J3=5,19
Pairs(52,12) = 0,42,1,43,10,32,11,33,20,62,21,63,30,52,31,53,
J4 = 52,30,53,31,62,20,63,21,32,10,33,11,42,0,43,1
Pairs(5,1) = 17,59,29,55 , J5 = 20,62,24,50
Pairs(16,15) = 4,38,23,53 , J6 = 20,54,7,37
Pairs(11,5) = 0,41,9,32,12,37,14,39,
J7 = 11,34,2,43,7,46,5,44
Pairs(54,6) = 0,0 , J8 = 54,54

Finally, third pair gave the values for eight counter arrays as given
below,

Pairs(59,13) = 4,62,20,46,26,32 , J1 = 63,5,47,21,33,27
Pairs(49,5) = 2,45,11,36,27,52 , J2 = 51,28,58,21,42,5
Pairs(20,7)=7,53,16,34,J3=19,33,4,54
Pairs(6,5) = 6,34,12,40 J4 = 0,36,10,46
Pairs(35,13) = 17,29,37,41,55,59 , J5 = 50,62,6,10,20,24
Pairs(54,11) = 1,2,5,6,17,18,49,50,53,54,57,58,
J6 = 55,52,51,48,39,36,7,4,3,0,15,12
Pairs(37,2) = 3,62,7,58,9,52,26,39,27,38,31,34,
J7 = 38,27,34,31,44,17,63,2,62,3,58,7
Pairs(31,11) = 46,53 , J8 = 49,42
At last, we get our J arrays for three rounds. In these arrays we got
the unique values at:

J1: 47, J2: 5, J3: 19, J4: 0, J5: 24, J6: 7, J7: 07, J8: 49

We convert these integer values into binary to get 48 bits. We will
use key schedule for round three in DES [5][8][10] to get 48 bits of
the key as shown below in Table.

51 27 10 36 25 58 9 33 43 50 60 18
44 11 2 1 49 34 35 42 41 3 59 17
61 4 15 30 13 47 23 6 12 29 62 5
37 28 14 39 54 63 21 53 20 38 31 7

Table 7: Key Schedule for Round 3

This key schedule is for 56 bits, so the rest of the bits will be un-
known. Also, our key is of 64-bits. These extra 8 bits are parity bits
which will be added based on odd parity. Since very few bits are
unknown, we can apply exhaustive search and then calculate odd
parity over them. The complete key (in hexadecimal format) is:

“1A624C8520DEC46”

6. CONCLUSION
Our contribution in this paper and further research directions are
presented as below:-

6.1 Contribution
This paper looks into the design and cryptanalysis of symmetric
block ciphers. We briefly explained the Substitution Permutation
Network (SPN) and Data Encryption Standard (DES) with their
implementation. The well known chosen plain-text attack, Differ-
ential Cryptanalysis, is practised for extraction of key bits. Next we
have presented the construction of Difference Distribution Table
(DDT) which is used to find high probable characteristic to attack
on SPN for recovering the key.
We have applied this cryptanalysis technique to DES reduced to
3-round and 6-round where we have differentiated between wrong
and right pairs so that we can discard wrong pairs to get relevant
key bits. To our knowledge, differential cryptanalysis on DES was
discussed theoretically and we have done it practically and got cor-
rect results.

6.2 Future Research Directions
In near future, we are intended to extend this attack to DES with
more number of rounds. Another thing worth pursuing in DES is
how to generate high probable differential characteristic.
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