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ABSTRACT 
Floating-point applications are a growing trend in the FPGA 

community. In nanoscale integrated circuits design as the 

demand for mobile computing & higher integration density is 

increasing power is becoming a very important constraint. 

Low-power is an imperative requirement for portable 

multimedia devices employing various signal processing 

algorithms and architectures. For some applications where 

error is in tolerable range an inexact circuit offers reduction in 

both static and dynamic power .In this paper, an inexact 

floating-point adder is designed by approximating exponent 

sub tractor and mantissa adder. Related operations such as 

normalization and rounding are also dealt with in terms of 

inexact computing. It is then observed that it greatly reduced 

the power consumption and hence increased the reliability. 
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1.  INTRODUCTION 
In digital integrated circuits as the technology is getting 

advanced and innovative day by day, power consumption is 

also increasing dramatically, saving power is high in demand 

as it will reduce the overall cost for mobile computing and 

higher integration density. Present designs offers fully 

accurate computing to all of its application but there are some 

error tolerant applications including human intervention (for 

example image processing) in which error can be tolerated, 

does not require full accuracy [1].  

So, in such applications we can perform the computations 

with inexact circuits, as inexact computing is the 

recommended way to save power area and hence cost of 

implementation with better results in terms of performance as 

compared to the exact computing. A processor’s core is its 

arithmetic unit and power consumed by it is the big 

percentage of the power consumed by the whole processor. 

According to a recent study on inexact adders, inexact 

processing hardware with error in the tolerable range of 

relative error of 7.58 % can be approximately 15 times more 

efficient than an exact chip in terms of speed, energy product 

& area [2]. Inexact chips are smaller, faster and consume less 

energy. For inexact computing, fixed point arithmetic circuits 

have been already studied[2],[3],[4],[5],[6],[7],[8] as 

mentioned in the literature floating-point (FP) circuits 

consumes significantly more power due to its more 

complexity they have not been recommended for inexact 

computing. In computationally intensive applications FP 

format offers a large range dynamically. In DSP systems FP 

multipliers & adders have extensive uses. However, it is not 

used in embedded system because of its limitation of high 

power consumption. A design of a low power   FP multiplier 

was investigated by Tong et al [10] this design includes 

truncation of hardware & a reduction of the bit width 

representation of the FP data. A probable FP multiplier design 

was given by Gupta et al [11]. as an energy efficient design. 

According to the authors knowledge there is very less 

research on inexact FP adders.A lightweight FP design flow 

using bit-width optimization was proposed for low power 

signal processing applications [12]. In this paper, adder 

designs are studied with this different inexact adders are also 

studied and several inexact adder designs are proposed and 

assessed. The adder is then implemented in the software and 

then dumped on FPGA the results are then analyzed.   

 2.  FIXED POINT AND FLOATING 

POINT REPRESENTATIONS  
Every real number has an integer part and a fraction part a 

radix point is used to differentiate between them the number 

of binary digits assigned to the integer part may be different 

to the number of digits assigned to the fractional part. A 

generic binary representation with decimal conversion is 

shown in Figure 1. 

 
Figure1: Binary representation and conversion to decimal 

of a numeric 

2.1 Basic Format  
There are two basic formats described in IEEE 754 format, 

double-precision using 64-bits and single-precision using 32-

bits. Table 1 shows the comparison between the important 

aspects of the two representations. 

Table 1: Single and double precision format summary 

 

To evaluate different adder algorithms, we are only interested 

in single precision format. Single-precision format uses 1-bit 

for sign bit, 8-bitsfor exponent and 23-bits to represent the 

fraction as shown in Figure 2. 

Figure 2: IEEE 754 single precision format. 

The single- precision floating-point number is calculated as             

(-1)s×(1+F) × 2(e-127). The sign bit is either 0 for non-negative 

number or 1 for negative numbers. The exponent field 

represents both positive and negative exponents. To do this, a 

bias is added to the actual exponent. For IEEE single-

precision format, this value is 127, for example, a stored value 
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of 200 indicates an exponent of (200-127), or 73. The 

mantissa or significand is composed of an implicit leading bit 

and the fraction bits, and represents the precision bits of the 

number. Exponent values (hexadecimal) of 0xFF and 0x00 are 

reserved to encode special numbers such as zero, 

denormalized numbers, infinity, and NaNs. The mapping from 

an encoding of a single-precision floating-point number to the 

number’s value is summarized in Table 2.  

Table 2: IEEE 754 single precision floating-point encoding 

 

2.2 Standard Floating Point Addition 

Algorithm  
This section will review the standard floating point algorithm 

architecture, and the hardware modules designed as part of 

this algorithm, including their function, structure, and use. 

The standard architecture is the baseline algorithm for 

floating-point addition in any kind of hardware and software 

design.  

3. BACKGROUND 
An inherent problem of binary floating-point arithmetic used 

in financial calculations is that most decimal floating point 

numbers cannot be represented exactly in binary floating-

point formats, and errors that are not acceptable may occur in 

the course of the computation. Decimal floating-point 

arithmetic addresses this problem, but a degradation in 

performance will occur compared to binary floating-point 

operations implemented in hardware. Despite its performance 

disadvantage, decimal floating-point arithmetic is required by 

certain applications that need results identical to those 

calculated by hand. 

This is true for currency conversion, banking, billing, and 

other financial applications. Sometimes, these requirements 

are mandated by law; other times, they are necessary to avoid 

large accounting discrepancies. Because of the importance of 

this problem a number of decimal solutions exist, both 

hardware and software. Software solutions include C#, 

COBOL, and XML, which provide decimal operations and 

datatypes. Also, Java and C/C++ both have packages, called 

Big Decimal and decimal Number, respectively. Hardware 

solutions were more prominent earlier in the computer age 

with the ENIAC and UNIVAC. However, more recent 

examples include the CADAC, IBM’s z900 and z9 

architectures, and numerous other proposed hardware 

implementations. More hardware examples can be found, and 

a more in-depth discussion is found in Wang’s work. 

4.  DESIGN TRADEOFF ANALYSIS OF 

FLOATING-POINT ADDER IN FPGA 
Field Programmable Gate Arrays (FPGA) are increasingly 

being used to design high end computationally intense 

microprocessors capable of handling both fixed and floating 

point mathematical operations. Addition is the most complex 

operation in a floating-point unit and offers major delay while 

taking significant area. Over the years, the VLSI community 

has developed many floating-point adder algorithms mainly 

aimed to reduce the overall latency. An efficient design of 

floating-point adder onto an FPGA offers major area and 

performance overheads. With the recent advancement in 

FPGA architecture and area density, latency has been the 

main focus of attention in order to improve performance. Our 

research was oriented towards studying and implementing 

standard, LOA adder, and far and close data-path floating-

point addition algorithms. Each algorithm has complex sub-

operations which lead significantly to overall latency of the 

design. Each of the sub-operation is researched for different 

implementations and then synthesized onto a Xilinx Virtex2p 

FPGA device to be chosen for best performance.  

This paper discusses in detail the best possible FPGA 

implementation for algorithm and will act as an important 

design resource. The performance criterion is latency in all 

the cases. The algorithms are compared for overall latency, 

area, and levels of logic and analyzed specifically for 

Virtex2p architecture, one of the latest FPGA architectures 

provided by Xilinx. According tour results standard algorithm 

is the best implementation with respect to area but has overall 

large latency of 27.059 ns while occupying 541 slices. LOP 

algorithm improves latency by 6.5% on added expense of 

38% area compared to standard algorithm. 

5. PROPOSED SYSTEM 

5.1 Design of Inexact Floating-Point 

Adders: 
The design of an inexact floating point adder originates at its 

architectural level. It includes designing of both mantissa 

adder & inexact exponent subtractor by using inexact fixed 

point adders. On the other hand, other related blocks including 

rounder and normalizer should be designed in consideration 

with inexact mantissa and exponent part. Detail design of 

inexact circuit is explained in depth in the sections below. 

 
Fig.3. The accurate FP adder architecture 

5.2 Exponent Subtractor 
The exponent subtractor is used for exponent comparison and 

can be implemented as an adder. An inexact fixed-point adder 

has been extensively studied and can be used in the exponent 

adder inexact adders such as lower-part-OR adders (LOA) [3], 

approximate mirror adders[4], approximate XOR/XNOR-

based adders, and equal segmentation adders[6], [7] can be 

found in the literature [1,2,3]. For a fast FP adder, a revised 

LOA adder is used, because it significantly reduces the critical 

path by ignoring the lower carry bits. 
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A k-bit LOA consists of two parts, i.e., an m-bit exact adder 

and an n-bit inexact adder. The m-bit adder is used for the m 

most significant bits of the sum, while then-bit adder consists 

of OR gates to compute the addition of the least significant n 

bits (i.e. the lower n-bit adder is an array of n two-input OR 

gates) [6]. In the original LOA design, an additional AND 

gate is used for generating the most significant carry bit of 

then-bit adder; in this work, all carry bits in then-bit inexact 

adder are ignored to further reduce the critical path.  

The exponent is dominant in the FP format, because it 

determines the dynamic range. The approximate design of the 

exponent subtractor must be carefully considered due to its 

importance in the number format. The results of the addition 

are significantly affected by applying an approximate design 

to only a few of the least significant bits of the exponent 

subtractor under a small data range. 

 

Fig4.The revised LOA adder structure. 

5.2 Mantissa Adder 
The revised LOA adder can also be used in the mantissa adder 

for an inexact design. Compared to an exponent subtractor, 

the mantissa adder offers a larger design space for inexact 

design, because the number of bits in the mantissa adder is 

significantly larger than the exponent subtractor. As shown in 

Table 1, the number of mantissa bits is larger than the number 

of exponent bits [7] .For the IEEE single precision format, the 

exponent subtractor is an 8-bit adder, while the mantissa adder 

is a 25-bit adder (for two24-bit significances). Furthermore, 

the inexact design in the mantissa adder has a lower impact on 

the error than its exponent counterpart in the lower data range, 

because the mantissa part is less significant than the exponent 

part. Therefore, an inexact design of a mantissa adder is more 

appropriate. A detailed analysis of errors introduced by each 

part is further discussed in the next section. 

5.3 Normalizer 
Normalization is required to ensure that the addition results 

fall in the correct range the sum or difference may be too 

small and a multi-bit left shift process may be required. A 

reduction of the exponent is also necessary. The normalization 

is performed by a leading zeros counter that determines the 

required number of left shifts. As the mantissa adder is 

already not exact for then least significant bits, the detection 

of the leading zeros can also be simplified in the inexact 

design, i.e., approximate leading zero counting logic can be 

used.  

5.4 Rounder 
A rounding mode is required to accommodate the inexact 

number that an FP format can represent. A proper rounding 

maintains three extra bits (i.e., guard bit, round bit and sticky 

bit).The adder may require a further normalization and 

exponent adjustment after the rounding step, therefore the 

hardware for rounding is significant. However, it does not 

affect the results of the inexact addition as the lower 

significant n bits are already inexact. Therefore, rounding can 

be ignored in the inexact design of an FP adder. 

5.5 Overall Inexact FP Adder Architecture 
Based on the previous discussion, an inexact FP adder can be 

designed by using approximate adders in the exponent 

subtractor and mantissa adders, an approximate leading zero 

counter in the normalizer and by ignoring the rounder. The 

inexact FP adder architecture is shown in Fig. 5. 

 

Fig5. The inexact FP adder architecture. 

6. RESULTS 
The floating point adder Verilog HDL Modules have 

successfully simulated and verified using Modelsim6.4b and 

synthesized using Xilinxise10.1. 

6.1 Simulation Result: 

 

Fig 6 simulation results of inexact floating point adder 

6.2 Synthesis Results 

6.2.1 RTL Schematic: 
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Fig 7. RTL schematic of inexact floating point adder 

6.2.2 Technology Schematic: 

 

Fig 8. Technology schematic diagram of inexact floating 

point adder 

6.3 Design Summary 
Device utilization summary is shown in the table given below: 

Logic 

utilization 

Used Available Utilization 

(%) 

Number of 

slices 

189 3584 5 

Number of 

four input 

LUTs 

331 7168 4 

Number of 

bonded IOBs 

128 221 57 

Fig 9. Design summary of inexact floating point adder 

7. CONCLUSION 
Design of inexact floating point adder has been studied in this 

paper. Approximate designs of the mantissa and exponent 

adders have been proposed and consideration has been given 

to normalization and rounding. Two extreme cases for the 

inexact design of FP adders have been studied. The first 

design uses an all-bit inexact mantissa adder, the second 

design uses an inexact LSB in the exponent subtraction. The 

results have shown that both inexact FP adders are very low 

power designs. These designs require a small area and offer 

higher performance than their equivalent exact designs. As 

such they are suitable for high dynamic image applications. It 

has been shown that the exponent part is a dominant part in 

the FP number format; however it has a smaller design space 

for an inexact design compared to the mantissa adder. 
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