
International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.7, June 2017

43

Design and Implementation of Low Power Inexact

Floating Point Adder

Kamlesh Pedraj, Jayendra Kumar
Dept. of ECE, National Institute of

Technology Jamshedpur, India

ABSTRACT
Floating-point applications are a growing trend in the FPGA

community. In nanoscale integrated circuits design as the

demand for mobile computing & higher integration density is

increasing power is becoming a very important constraint.

Low-power is an imperative requirement for portable

multimedia devices employing various signal processing

algorithms and architectures. For some applications where

error is in tolerable range an inexact circuit offers reduction in

both static and dynamic power .In this paper, an inexact

floating-point adder is designed by approximating exponent

sub tractor and mantissa adder. Related operations such as

normalization and rounding are also dealt with in terms of

inexact computing. It is then observed that it greatly reduced

the power consumption and hence increased the reliability.

Keywords

Floating-point adders, low power, high dynamic range image,

inexact circuits, error analysis.

1. INTRODUCTION
In digital integrated circuits as the technology is getting

advanced and innovative day by day, power consumption is

also increasing dramatically, saving power is high in demand

as it will reduce the overall cost for mobile computing and

higher integration density. Present designs offers fully

accurate computing to all of its application but there are some

error tolerant applications including human intervention (for

example image processing) in which error can be tolerated,

does not require full accuracy [1].

So, in such applications we can perform the computations

with inexact circuits, as inexact computing is the

recommended way to save power area and hence cost of

implementation with better results in terms of performance as

compared to the exact computing. A processor’s core is its

arithmetic unit and power consumed by it is the big

percentage of the power consumed by the whole processor.

According to a recent study on inexact adders, inexact

processing hardware with error in the tolerable range of

relative error of 7.58 % can be approximately 15 times more

efficient than an exact chip in terms of speed, energy product

& area [2]. Inexact chips are smaller, faster and consume less

energy. For inexact computing, fixed point arithmetic circuits

have been already studied[2],[3],[4],[5],[6],[7],[8] as

mentioned in the literature floating-point (FP) circuits

consumes significantly more power due to its more

complexity they have not been recommended for inexact

computing. In computationally intensive applications FP

format offers a large range dynamically. In DSP systems FP

multipliers & adders have extensive uses. However, it is not

used in embedded system because of its limitation of high

power consumption. A design of a low power FP multiplier

was investigated by Tong et al [10] this design includes

truncation of hardware & a reduction of the bit width

representation of the FP data. A probable FP multiplier design

was given by Gupta et al [11]. as an energy efficient design.

According to the authors knowledge there is very less

research on inexact FP adders.A lightweight FP design flow

using bit-width optimization was proposed for low power

signal processing applications [12]. In this paper, adder

designs are studied with this different inexact adders are also

studied and several inexact adder designs are proposed and

assessed. The adder is then implemented in the software and

then dumped on FPGA the results are then analyzed.

 2. FIXED POINT AND FLOATING

POINT REPRESENTATIONS
Every real number has an integer part and a fraction part a

radix point is used to differentiate between them the number

of binary digits assigned to the integer part may be different

to the number of digits assigned to the fractional part. A

generic binary representation with decimal conversion is

shown in Figure 1.

Figure1: Binary representation and conversion to decimal

of a numeric

2.1 Basic Format
There are two basic formats described in IEEE 754 format,

double-precision using 64-bits and single-precision using 32-

bits. Table 1 shows the comparison between the important

aspects of the two representations.

Table 1: Single and double precision format summary

To evaluate different adder algorithms, we are only interested

in single precision format. Single-precision format uses 1-bit

for sign bit, 8-bitsfor exponent and 23-bits to represent the

fraction as shown in Figure 2.

Figure 2: IEEE 754 single precision format.

The single- precision floating-point number is calculated as

(-1)s×(1+F) × 2(e-127). The sign bit is either 0 for non-negative

number or 1 for negative numbers. The exponent field

represents both positive and negative exponents. To do this, a

bias is added to the actual exponent. For IEEE single-

precision format, this value is 127, for example, a stored value

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.7, June 2017

44

of 200 indicates an exponent of (200-127), or 73. The

mantissa or significand is composed of an implicit leading bit

and the fraction bits, and represents the precision bits of the

number. Exponent values (hexadecimal) of 0xFF and 0x00 are

reserved to encode special numbers such as zero,

denormalized numbers, infinity, and NaNs. The mapping from

an encoding of a single-precision floating-point number to the

number’s value is summarized in Table 2.

Table 2: IEEE 754 single precision floating-point encoding

2.2 Standard Floating Point Addition

Algorithm
This section will review the standard floating point algorithm

architecture, and the hardware modules designed as part of

this algorithm, including their function, structure, and use.

The standard architecture is the baseline algorithm for

floating-point addition in any kind of hardware and software

design.

3. BACKGROUND
An inherent problem of binary floating-point arithmetic used

in financial calculations is that most decimal floating point

numbers cannot be represented exactly in binary floating-

point formats, and errors that are not acceptable may occur in

the course of the computation. Decimal floating-point

arithmetic addresses this problem, but a degradation in

performance will occur compared to binary floating-point

operations implemented in hardware. Despite its performance

disadvantage, decimal floating-point arithmetic is required by

certain applications that need results identical to those

calculated by hand.

This is true for currency conversion, banking, billing, and

other financial applications. Sometimes, these requirements

are mandated by law; other times, they are necessary to avoid

large accounting discrepancies. Because of the importance of

this problem a number of decimal solutions exist, both

hardware and software. Software solutions include C#,

COBOL, and XML, which provide decimal operations and

datatypes. Also, Java and C/C++ both have packages, called

Big Decimal and decimal Number, respectively. Hardware

solutions were more prominent earlier in the computer age

with the ENIAC and UNIVAC. However, more recent

examples include the CADAC, IBM’s z900 and z9

architectures, and numerous other proposed hardware

implementations. More hardware examples can be found, and

a more in-depth discussion is found in Wang’s work.

4. DESIGN TRADEOFF ANALYSIS OF

FLOATING-POINT ADDER IN FPGA
Field Programmable Gate Arrays (FPGA) are increasingly

being used to design high end computationally intense

microprocessors capable of handling both fixed and floating

point mathematical operations. Addition is the most complex

operation in a floating-point unit and offers major delay while

taking significant area. Over the years, the VLSI community

has developed many floating-point adder algorithms mainly

aimed to reduce the overall latency. An efficient design of

floating-point adder onto an FPGA offers major area and

performance overheads. With the recent advancement in

FPGA architecture and area density, latency has been the

main focus of attention in order to improve performance. Our

research was oriented towards studying and implementing

standard, LOA adder, and far and close data-path floating-

point addition algorithms. Each algorithm has complex sub-

operations which lead significantly to overall latency of the

design. Each of the sub-operation is researched for different

implementations and then synthesized onto a Xilinx Virtex2p

FPGA device to be chosen for best performance.

This paper discusses in detail the best possible FPGA

implementation for algorithm and will act as an important

design resource. The performance criterion is latency in all

the cases. The algorithms are compared for overall latency,

area, and levels of logic and analyzed specifically for

Virtex2p architecture, one of the latest FPGA architectures

provided by Xilinx. According tour results standard algorithm

is the best implementation with respect to area but has overall

large latency of 27.059 ns while occupying 541 slices. LOP

algorithm improves latency by 6.5% on added expense of

38% area compared to standard algorithm.

5. PROPOSED SYSTEM

5.1 Design of Inexact Floating-Point

Adders:
The design of an inexact floating point adder originates at its

architectural level. It includes designing of both mantissa

adder & inexact exponent subtractor by using inexact fixed

point adders. On the other hand, other related blocks including

rounder and normalizer should be designed in consideration

with inexact mantissa and exponent part. Detail design of

inexact circuit is explained in depth in the sections below.

Fig.3. The accurate FP adder architecture

5.2 Exponent Subtractor
The exponent subtractor is used for exponent comparison and

can be implemented as an adder. An inexact fixed-point adder

has been extensively studied and can be used in the exponent

adder inexact adders such as lower-part-OR adders (LOA) [3],

approximate mirror adders[4], approximate XOR/XNOR-

based adders, and equal segmentation adders[6], [7] can be

found in the literature [1,2,3]. For a fast FP adder, a revised

LOA adder is used, because it significantly reduces the critical

path by ignoring the lower carry bits.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.7, June 2017

45

A k-bit LOA consists of two parts, i.e., an m-bit exact adder

and an n-bit inexact adder. The m-bit adder is used for the m

most significant bits of the sum, while then-bit adder consists

of OR gates to compute the addition of the least significant n

bits (i.e. the lower n-bit adder is an array of n two-input OR

gates) [6]. In the original LOA design, an additional AND

gate is used for generating the most significant carry bit of

then-bit adder; in this work, all carry bits in then-bit inexact

adder are ignored to further reduce the critical path.

The exponent is dominant in the FP format, because it

determines the dynamic range. The approximate design of the

exponent subtractor must be carefully considered due to its

importance in the number format. The results of the addition

are significantly affected by applying an approximate design

to only a few of the least significant bits of the exponent

subtractor under a small data range.

Fig4.The revised LOA adder structure.

5.2 Mantissa Adder
The revised LOA adder can also be used in the mantissa adder

for an inexact design. Compared to an exponent subtractor,

the mantissa adder offers a larger design space for inexact

design, because the number of bits in the mantissa adder is

significantly larger than the exponent subtractor. As shown in

Table 1, the number of mantissa bits is larger than the number

of exponent bits [7] .For the IEEE single precision format, the

exponent subtractor is an 8-bit adder, while the mantissa adder

is a 25-bit adder (for two24-bit significances). Furthermore,

the inexact design in the mantissa adder has a lower impact on

the error than its exponent counterpart in the lower data range,

because the mantissa part is less significant than the exponent

part. Therefore, an inexact design of a mantissa adder is more

appropriate. A detailed analysis of errors introduced by each

part is further discussed in the next section.

5.3 Normalizer
Normalization is required to ensure that the addition results

fall in the correct range the sum or difference may be too

small and a multi-bit left shift process may be required. A

reduction of the exponent is also necessary. The normalization

is performed by a leading zeros counter that determines the

required number of left shifts. As the mantissa adder is

already not exact for then least significant bits, the detection

of the leading zeros can also be simplified in the inexact

design, i.e., approximate leading zero counting logic can be

used.

5.4 Rounder
A rounding mode is required to accommodate the inexact

number that an FP format can represent. A proper rounding

maintains three extra bits (i.e., guard bit, round bit and sticky

bit).The adder may require a further normalization and

exponent adjustment after the rounding step, therefore the

hardware for rounding is significant. However, it does not

affect the results of the inexact addition as the lower

significant n bits are already inexact. Therefore, rounding can

be ignored in the inexact design of an FP adder.

5.5 Overall Inexact FP Adder Architecture
Based on the previous discussion, an inexact FP adder can be

designed by using approximate adders in the exponent

subtractor and mantissa adders, an approximate leading zero

counter in the normalizer and by ignoring the rounder. The

inexact FP adder architecture is shown in Fig. 5.

Fig5. The inexact FP adder architecture.

6. RESULTS
The floating point adder Verilog HDL Modules have

successfully simulated and verified using Modelsim6.4b and

synthesized using Xilinxise10.1.

6.1 Simulation Result:

Fig 6 simulation results of inexact floating point adder

6.2 Synthesis Results

6.2.1 RTL Schematic:

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.7, June 2017

46

Fig 7. RTL schematic of inexact floating point adder

6.2.2 Technology Schematic:

Fig 8. Technology schematic diagram of inexact floating

point adder

6.3 Design Summary
Device utilization summary is shown in the table given below:

Logic

utilization

Used Available Utilization

(%)

Number of

slices

189 3584 5

Number of

four input

LUTs

331 7168 4

Number of

bonded IOBs

128 221 57

Fig 9. Design summary of inexact floating point adder

7. CONCLUSION
Design of inexact floating point adder has been studied in this

paper. Approximate designs of the mantissa and exponent

adders have been proposed and consideration has been given

to normalization and rounding. Two extreme cases for the

inexact design of FP adders have been studied. The first

design uses an all-bit inexact mantissa adder, the second

design uses an inexact LSB in the exponent subtraction. The

results have shown that both inexact FP adders are very low

power designs. These designs require a small area and offer

higher performance than their equivalent exact designs. As

such they are suitable for high dynamic image applications. It

has been shown that the exponent part is a dominant part in

the FP number format; however it has a smaller design space

for an inexact design compared to the mantissa adder.

8. REFERENCES
[1] Liu, Weiqiang, et al. "Design and analysis of inexact

floating-point adders." IEEE Transactions on

Computers 65.1 (2016): 308-314.

[2] K. Palem and A. Lingamneni, “Ten years of building

broken chips: The physics and engineering of inexact

computing,”ACM Trans. Embedded Comput. Syst., vol.

12, no. 2, article 87, 2013.

[3] A. Lingamneni, K. Muntimadugu, C. Enz, R. Karp, K.

Palem, and C. Piguet,“Algorithmic methodologies for

ultra-efficient inexact architectures for sustaining

technology scaling,” inProc. ACM Int. Conf. Comput.

Frontiers, 2012,pp. 3–12.

[4] H. Mahdiani, A. Ahmadi, S. Fakhraie, and C. Lucas,

“Bio-inspired imprecise computational blocks for

efficient VLSI implementation of soft computing

applications,”IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 57,no. 4, pp. 850–862, Apr. 2010.

[5] V. Gupta, D. Mohapatra, S. Park, A. Raghunathan, and

K. Roy, “IMPACT: Imprecise adders for low-power

approximate computing,” in Proc. Int.Symp. Low Power

Electron. Des., 2011, pp. 1–3.

[6] Z. Yang, A. Jain, J. Liang, J. Han and F. Lombardi,

“Approximate XORXNOR-based adders for inexact

computing,” inProc. 13rd IEEE Conf. Nanotechnol.,

2013, pp. 690–693.

[7] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy,

“Design of voltage scalable meta-functions for

approximate computing,” inProc. Des.,Autom.Test Eur.

Conf. Exhib., 2011, pp. 1–6.

[8] C. Liu, J. Han, and F. Lombardi, “An analytical

framework for evaluating the error characteristics of

approximate adders,” IEEE Trans. Comput.,vol. 64, no.

5, pp. 1268–1281, May 2015.

[9] C. Liu, J. Han, and F. Lombardi, “A low-power, high-

performance approximate multiplier with configurable

partial error recovery,” inProc. Design,Autom. Test Eur.

Conf. Exhib., 2014, pp. 1–4.

[10] J. Y. Tong, D. Nagle, and R. Rutenbar, “Reducing power

by optimizing then necessary precision/range of floating-

point arithmetic, ”IEEE Trans. Very Large Scale Integer.

Syst., vol. 8, no. 3, pp. 273–286, Jun. 2000.

[11] A. Gupta, S. Mandavalli, V. Mooney, K. Ling, A. Basu,

H. Johan, and B.Tandianus, “Low power probabilistic

floating-point multiplier design,” in Proc. IEEE Comput.

Soc. Annu. Symp. VLSI, 2011, pp. 182–187.

[12] F. Fang, T. Chen, and R. Rutenbar, “Floating-point bit-

width optimizationfor low-power signal processing

applications,” in Proc. IEEE Int. Conf.Acoust., Speech,

Signal Process., 2002, vol. 3, pp. 3208–3211.

[13] W. Liu, L, Chen, C. Wang, M. O’Neill, and F. Lombardi,

“Inexact floatingpoint adder for dynamic image

processing,” in Proc. 14th IEEE Conf. Nanotechnol.,

2014, pp. 239–243.

[14] IEEE Standard for Floating-Point Arithmetic, IEEE Std

754-2008, Aug. 29,2008.

[15] J. Liang, J. Han, and F. Lombardi, “New metrics for the

reliability of approximate and probabilistic adders,”

IEEE Trans.Comput., vol. 62, no. 9, pp. 1760–1771, Sep.

2013.

IJCATM : www.ijcaonline.org

