
International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.8, June 2017

6

CloudSDLC: Cloud Software Development Life Cycle

Dhanamma Jagli
Assistant Professor

Vivekanand Education Society's Institute of
Technology, Chembur, Maharashtra, India

Shireesha Yeddu
Vanasthalipuram,
Hyderabad, India

ABSTRACT

In this technology era, technology is getting change very

vastly. As per the present trend in the technology cloud

computing is one of the dynamic key computing and used to

shared resourcefully pay for use concept in the cloud

computing is much attractive and adopted by many

organizational the usage of software service has been

tremendously increasing that the development of different

software or applications and keep available cloud user on the

cloud environment. So that in this paper a new software

development life cycle (SDLC) is proposed for cloud software

services and is termed as CloudSDLC.

General Terms
Risk Management, Flexible, Customer Satisfaction

Keywords

SDLC, SaaS, PaaS, IaaS, SLA

1. INTRODUCTION
 To build a high quality software product that satisfies the

client or end user needs organizations must choose best

software development life cycle (SDLC). And there are

different SDLC’s that can be practiced. The choice of SDLC

varies from organization to organization. Perhaps, each

organization has its own procedures and policies and they are

also different in terms of their needs and infrastructure.

SDLC is a software development process that describes a

theoretical and conceptual representation of the software

development. The software development is a progression

through a series of different phases such as – requirement

analysis, design specification, coding or implementation,

testing and maintenance. With the help of SDLC, companies

can break down the work efficiently, allocate different

activities to software development team, estimate budget and

deadlines or time period.

To compete in global market, from last four decades, most of

the companies and organization practiced and employed

different life cycle models like waterfall, spiral, rapid

prototype, agile and many more[1].

2. RELATED WORKS
The primary functionality of SDLC framework is to plan the

activities for software development. And none of the life cycle

is perfect that meets the client requirements. For many

companies, selecting an appropriate and best fit SDLC for

their project is a biggest challenge. This section illustrates

different SDLC’s and how they are used in software

development.

 Water-fall Model

 Incremental Model

 Spiral Model

 V Model

 RAD Model

 Agile Model

2.1 Water-fall Model:
The waterfall model is the first and earliest among all the

other life cycle models. The generic waterfall model is a

cascade model, in which output of one stage comprise the

input to the next stage. This model is relatively simple to use

and intuitive by nature. Here, all the requirements from

customer gathered at once before design, and then

requirements are transformed into designs such as High level

and low level designs. The designs are implemented into

code in implementation phase. And implemented code is

tested using test plans in testing phase. The software

development process flows incrementally downwards from

top to bottom like a waterfall shown in Figure 1, hence it is

waterfall model [2][3][5][6].

Fig 1. Waterfall Model

Advantages:

 Simple to understand and use due to cascade by nature.

 Deliverable s and milestones identified after each phase.

 Effective results with small team.

Disadvantages:

 All requirements may not be gathered or available in

initial stages of project

 Delay in delivery of software project.

 Risk Management is challenging.

 Administrative cost is more.

2.2 Incremental Model
Incremental model is an intuitive approach to overcome

drawbacks of waterfall model. Its development life cycle is

multi-water fall model with cycle iterations, contains phases

such as requirements, design, implementation and testing.

Each cyclic iteration divided into small units and each unit is

manageable [2][5][6]. After every iteration, a small

incremental release will be produced illustrated in Figure 2.

And these incremental releases of the software components

and features integrated to deliver the final software product.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.8, June 2017

7

Fig 2. Incremental Model

Advantages:
 Better utilization of scarce resources in each increment

cycle.

 In early stages of the development life cycle itself the

business value is produced.

 Customer oriented..

 Earlier detection of problem.

 Quick and earlier release of working software module.

 Flexible enough to modify the requirements as well as

scope

 Easy to test and debug in each iteration.

Disadvantages:

 As compared with other models, it more customer

oriented.

 In each cyclic iteration difficult to partition functions.

 Functional and feature dependencies arises from one

increment to another increment.

 Issues may arise with respect to joining iterations.

2.3 Spiral Model
The spiral model focuses more on minimizing the risk

involved in project by decomposing the project into smallest

units and flexible enough for modifications during the

software development process. It provides more opportunities

for risk assessment to evaluate risks at stage of spiral.The

spiral model consists of four phases - planning, risk analysis,

Engineering and Evaluation. In each iteration forms a spiral,

and in each spiral, the project life cycle goes through the

above mentioned four phases. In planning phase, business as

well as system requirement specifications are gathered. This

first spiral is known as baseline spiral. Upon the baseline

spiral, rest of the spiral will be formed. Next phase, i.e, in risk

analysis phase, the risk and its associated alternate solutions

will be identified and implemented. At the end this phase, a

prototype is produced.Third phase, i.e, Engineering phase

contains development and testing both. Here, software is

developed and testing performed at the end of the phase. In

evaluation phase, evaluation of output is performed by user.

Depending on the evaluation result project continues to next

spiral [2][3][5][6].

Advantages :
● Priority is given to Risk Analysis that avoids Risk

in early stages

● Suitable for large and critical projects.

● Documentation and Approvals are mandatory.

● Flexible enough to add additional features

● Software is produced early in the software life

cycle.

Disadvantages:
● Costly in terms of resources

● Expertise is needed for Risk analysis

● Success of the project depends on risk analysis

phase.

● Inapplicable to smaller projects.

2.4 V-Model
In software development, the V-model represents a

development process that may be considered an extension of

the waterfall model, and is an example of the more general V-

model. Instead of moving down in a linear way, the process

steps are bent upwards after the coding phase, to form the

typical V shape. The V-Model demonstrates the relationships

between each phase of the development life cycle and its

associated phase of testing. The horizontal and vertical axes

represents time or project completeness (left-to-right) and

level of abstraction (coarsest-grain abstraction uppermost),

respectively.

V-Model (Validation and Verification Model) software

development process is an extension for the waterfall model.

The V-Model life cycle is not linear as compared to Waterfall

model, rather the stages move upwards after the coding phase

is done that forms the V shape. In V-Model life cycle shown

in Figure 3, each development phase is associated with testing

phase. To proceed to the next phase in the development

process, the product from the previous phase validation and

verification is mandatory [2][3].

Fig 3. V-Model

Advantages:

 Success rate is more compared to waterfall model.

 Saves time due to testing of planning and design work

will be finished before coding.

 Bugs are found at early stage.

 Suitable for small projects

Disadvantages:

 Least flexible with respect to modifications

 Prototype of software is not available until

implementation phase

 In middle of project if any changes happens will effect

changes for test documents as well as requirement

documents.

http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.8, June 2017

8

2.5 RAD Model
The RAD model stands for Rapid prototyping or Rapid

Application Development model. It is an incremental type

model with development life cycle contains planning,

designing, implementation and integration and testing. In this

model, the software product and their features released in

parallel as small unit increments depicted in Figure 4. The

working prototype of released increments delivered and

assembled in a bounded time. Quick releases of software in

increments increases customer satisfaction. And customer

feedback is needed to find out whether requirement

specifications are met [2][4][5].

Fig 4. RAD-Model

Advantages:

 Parallel development of software components reduces

time.

 Increases software components reusability

 Frequent reviews carried out

 Customer feedback needed

 Integration issues of software components addressed

from initial stage itself

Disadvantages:

 Easy to build system that supports modulation and

object oriented approach

 Need highly skilled software engineers or developers

 Modeling skills are mandatory

 Mostly suitable for large projects with more cost

involved in modeling and auto code generation

2.6 AGILE Model
Agile Model is time-based and incremental model with rapid

iterative cycles. This model provides quick software products

delivery in small incremental releases by integrating

lightweight processes. To develop an overall software through

incremental releases the life cycle go through several

iterations shown in Figure 5. And in each of the iteration

there exists stages such as analysis, design, code and testing.

After every iteration, the released software product is

delivered to customer to take the feedback. Depending on

customer feedback, if any modifications need to be done for

the released product then that will be reflected in the life

cycle. To ensure the quality of software product that released

in each incremental stage will go through test phase. This

model focuses more on customer involvement and satisfaction

in software development process with high quality final

product [2][7].

Fig 5. AGILE-Model

Advantages:

 Flexible enough to update the life cycle depending on

changing requirements from user

 Customer satisfaction is more due to quick incremental

releases

 Customer feedback after every release produces high

quality product.

 Saves time due to brief documentation

 Less risky due to frequent customer feedback

 Quickly find and fix bugs

Disadvantages:

 Customer need to be clear about the product and its

features

 Difficult for new developers in team to understand brief

documentation

 Waste of time and resources and efforts too if release is

not up to the customer expectation

3. SDLC MODELS COMPARISONS
The following table Table 1 shows the comparisons between

different life cycle models.

Table 1. SDLC Models Comparisons

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.8, June 2017

9

4. CLOUD ENVIRONMENT
Cloud Computing is an ubiquitous computing to provide on-

demand network enabled access to shared resources for users.

With the help of virtualization, cloud users can even access

applications and exchange data. The cloud services are

classified as SaaS, PaaS and IaaS shown in Figure 6. And

these services availability to users depends on Cloud

deployment (i.e., public cloud or private cloud and hybrid

cloud) and SLA (Service Level Agreement) between service

providers and users[8].

Fig 6. Cloud Service Models

5. PROPOSED CLOUD SaaS SDLC
Cloud Software Development Life Cycle (CSDLC) Figure 7,

is different from traditional software development life cycle

due to cloud models such as public, private or hybrid cloud

and SLA (Service Level Agreement). SLA gives clear picture

about business level policies and the roles of cloud service

providers and cloud users. It provides detail description of list

of services such as SaaS, PaaS, IaaS and customizability,

security, accessibility and multi tenancy[8]. In CSDLC, each

user can customize the application and customization

information is available in SLA. Data protection and security

to tackle internal and external threats is also must in CSDLC.

Use of filters and firewalls prevents threats. Standard

encryption and authentication techniques needed at each layer

and each tenant [9]. The agreement SLA, provides access

control matrix to give access to resources, application or data.

Multi tenancy enables multiple users to access same instance

of application on different platforms[10].

The following Figure 8 shows the proposed model for Cloud

SaaS SDLC. In this proposed model, cloud service initiator

initiates the request to access SaaS services after agreeing to

business level policies specified in SLA. The could SaaS

application services may be developed any of the

conventional SDLC models such as Waterfall, Incremental,

Spiral, V-model, RAD and Agile. In the below model, if any

update issues related to service continuity or availability,

cloud user informed through SLA.

Fig 7. Proposed Cloud SaaS SDLC

6. CONCLUSION
 This paper highlighted various software development

(SDLC) process that describes a theoretical and conceptual

representation of the software development. And also, shown

the comparative approach among various software Life Cycle

Models. Furthermore, specified the importance of building a

high quality software product that satisfies the client or end

user needs, organizations must choose best software

development life cycle (SDLC). And there are different

SDLC’s that can be practiced. Further, depicted how to

choose various SDLC models as per organization’s

requirement and explained each organization procedures and

policies and which are different in terms of their needs and

infrastructure. Through this paper described the advantages

and disadvantages of most of the software process models.

However, illustrated different SDLC models that help

companies to break down the work efficiently, allocate

different activities to software development team, estimate

budget and deadlines or time period. This Paper explains the

need for developing Cloud SaaS SDLC. And even explained

about different SDLC models comparative matrix with

different parameters. Moreover, this paper described new

proposed model for Cloud Software as a Service (SaaS).

Hence, this paper concludes about importance of SDLC for

Cloud SaaS.

7. REFERENCES
[1] Roger S. Pressman, Software Engineering A

Practitioner's Approach, 7th Edition.

[2] T Bhuvaneswari, S Prabaharan, “A Survey on Software

Development Life Cycle Models”, IJCSMC, Volume 2,

Issue. 5, May 2013, pg.262 – 267, ISSN: 2320–088X.

[3] Ms.Shikha maheshwari, Prof.Dinesh Ch. Jain, “A

Comparative Analysis of Different types of Models in

Software Development Life Cycle”, IJARCSSE, Volume

2, Issue 5, May 2012, pg.285-290, ISSN: 2277 128X.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.8, June 2017

10

[4] Mr.Srinivasan, R. Agila, “Software Development Life

Cycle Model Incorporated With Clemency Brass”,

IJIRAE, Volume 1 Issue 4 ,May 2014, pg.211-214,

ISSN: 2349-2163.

[5] Rashmika K. Vaghela, “A Comparative Analysis of

Software development life cycle Models” , IJSR,

Volume 4 , Issue 6, June 2015, pg. 512-515, ISSN: 2277

- 8179.

[6] Vipul Aggarwal, Evolving a new Free-Flow Software

Development Life Cycle Model Integrating Concept of

Kaizen, IJARCSSE, Volume 3, Issue 9, September 2013,

pg.237-243, ISSN: 2277 128X.

[7] Sheetal Sharma, Darothi Sarkar, Divya Gupta, “Agile

Processes and Methodologies: A Conceptual Study”,

IJCSE, Volume 4, Number 05, May 2012, pg. 892-898,

ISSN : 0975-3397.

[8] S.B.Dash, H.S.Saini, T.C.Panda, A.Mishra, “Service

Level Agreement Assurance in Cloud Computing : A

Trust Issue”, IJCSIT, Volume 5 (3), 2014, pg. 2899-

2906, ISSN - 0975-9646.

[9] Muhammad Fahad Khan, Mirza Ahsan Ullah, Aziz-ur-

Rehman, “An Approach Towards Customized Multi

Tenancy”, IJMECS, Volume 4, Number 9, 2012, pg. 39-

44.

[10] Sunil Kumar Khatri, Himanshu Singhal, Kushbu Bahri,

“Multi tenant Engineering Architecture in SaaS”,

IJCA, 2013, pg.45-49, (0975-8887).

IJCATM : www.ijcaonline.org

