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ABSTRACT

Maximum distance separable (MDS) matrices are important
in cryptography and particularly used in block ciphers due to
their properties of diffusion. Rhotrices are represented by the
coupled matrices. Therefore, maximum distance separable
rhotrices are of much interest in the context of cryptography.
In this paper, we define Cauchy rhotrix and then use it to
construct MDS rhotrices over finite fields.
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1. INTRODUCTION

Ajibade [1] defined a 3x3-dimensional rhotrix, which is, in
some way, between 2x2-dimensional and 3x3-dimensional
matrices as

where @,b,c,d,e are real numbers and h(R;)=C is

called the heart of rhotrix R3. He also defined the operations
of addition and scalar multiplication as given below:

f
Let Q;=(g h j) be another 3-dimensional
k
rhotrix, then the addition of two rhotrices is defined as
a f
R, +Q;=(b ¢ d)+(g h |
e K
a+f
=(b+g c+h d+]),
e+k

and for any real number ¢, the scalar multiplication of a
rhotrix R3 is defined as
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Two types of multiplication of rhotrices are discussed in the
literature of rhotrices, namely, heart oriented multiplication
and row-column multiplication. Ajibade discussed the heart
oriented multiplication of 3-dimensional rhotrices as given
below:

ah + fc
ch
eh +kc

R,0 Q, =( bh+gc dh+ jc

Further, it is algorithmatized for computing machines by
Mohammed et al. [2]. The extended heart oriented method for
rhotrix multiplication is given by Mohammed [3] and also
generalized the heart oriented multiplication of 3-dimensional
rhotrices to n-dimensional rhotrices. The row column
multiplication of 3-dimensional rhotrices is defined by Sani
[4] as follows:

a f
R,0Q;=(b ¢ d){g h |
e k
af +dg
=( bf +eg ch aj +dk
bj + ek

Sani [5] also discussed the row-column multiplication of high
dimension rhotrices as follows:

Consider a N -dimensional rhotrix

a;
a,; Ci a,
as; Cy a,, Cy, a;;
P, = ay ay
Ar o Cigyr Qg Crpn Ay
Qe Gy @iy
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n

where t = (n +l)/2and denote it as P, = <aij ,C|k>
with I, j=1,2,...,t and |,k =12,...,t =1. Then the
multiplication of two rhotrices P, and Q, is defined as

n
follows:

P,oQ, = <ai1j1 ’Cllk1>0<bi2j2 ’d|2k2>

t t-1

=2 (aiu'l bizjz)’ Z:(Cllkl dlzkz) -

ipj=1 Ik =

Rhotrices over finite fields were discussed by Tudunkaya et
al. [6]. Aminu [7, 8] investigated rhotrices over matrix theory
and polynomials ring theory. Algebra and analysis of rhotrices
is discussed in the literature, see [9, 10, 11]. Adjoint of a
rhotrix, inner product spaces, bilinear forms and Caylay-
Hamilton theorem are discussed by Sharma and Kanwar [12,
13, 14, 15, 16]. Different constructions of MDS rhotrices from
companion matrices and Vandermonde matrices are given by
Sharma et al. [17, 18, 19, 20, 21, 22, 23]. Sharma et al. [24]
introduced circulant rhotrices in the literature of rhotrices and
construct some MDS rhotrices using special type of circulant
rhotrices, see [25].

Maximum distance separable (MDS) matrices have diffusion
properties that are used in block ciphers and cryptographic
hash functions, as discussed in [26, 27]. There are several
methods to construct MDS matrices. Sajadieh et al. [28] and
Lacan and Flimes [29] used Vandermonde matrices for the
construction of MDS matrices. Gupta and Ray construct MDS
rhotrices from companion matrices and circulant like matrices
, see [30, 31]

Cauchy matrices have applications in coding theory such as in
Goppa codes as discussed in [32]. Nakahara and Abraho [33]
constructed an involutory MDS matrix of 16- order by using a
Cauchy matrix which was used in MDS-AES design.

Definition 1.1. The matrix of the form A = (aij )mn where

a:L,xi—xj #0,1<i<m,1<j<n

X —X;

is called a Cauchy matrix and X;, Xj are the elements from

F...

2

For example, a Cauchy matrix of N -order can be written as

1 1 1
X1 Y1 Xl_yZ X1 yn

1 1 1
A X =Y XY, X, = Vi
1 R
X =Y X =Y, Xo = Yn |

In the present paper we denote the (i,j)™ element of i row and
i™column by A[i][j].
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Definition 1.2. A 5- dimensional Cauchy rhotrix C5 is

defined as
1
Xl_yl
1 1 1
K=Y Sl_tl X =Y,
1 1 1 1 1
C, =
3= S—bL XY, S-tL X -V,
1 1 1
X =Y, Sz_tz XY,
1
X— Y

where X, Y (i,j:l,2,3) and S,,tm(l,mzLZ)

are elements from a finite field. Two coupled matrices of C,
are [35]

1 1 1

Xl_yl Xl_yz Xl_y3
U= 1 ! L and

X,=Y1 X=Y, X;—Y;

1 1 1

_X3_y1 X3 =Y, Xa_ys_
1 1

S _tl S tz

V= 1 1

Definition 1.3. Let F be a finite field, and P, g betwo

positive integers. Let X —> M X X be a mapping from F°
to F 9 definedbythe x P matrix M . We say that it is

an MDS matrix if the set of all pairs (X, M x X) is an MDS
code, that is a linear code of dimension P, length P+
and minimum distance g + 1. In other form we can say that a
square matrix is an MDS matrix if and only if every square
sub-matrices of A are non-singular. This implies that all the
entries of an MDS matrix must be nonzero.

Definition 1.4. An mx n rhotrix over a finite field K is an
MDS rhotrix if it is the linear transformation f(X)= AX

from K" to K™ such that that no two different m + n-

tuples of the form (X, f(X)) coincide. The necessary and

sufficient condition of a rhotrix to be an MDS rhotrix is that
all its sub-rhotrices are non-singular.

The construction of the MDS rhotrices is discussed by Sharma
and Kumar [17]. The following Lemma 1.5 is also discussed
in [17].



Lemma 1.5. Any rhotrix Rs over GF(2™) with all non zero
entries is an MDS rhotrix iff its coupled matrices

M, =3x3 and M, =2x2 are non-singular and all
their entries are non zero.

Now, we construct maximum distance separable rhotrices by
using Cauchy rhotrices.

2. MDS RHOTRICES FROM CAUCHY
RHOTRICES OVER F,

In this section, we constructed some maximum distance
separable rhotrices from 5- dimensional Cauchy rhotrices

using the elements of finite field F23 .

Theorem 2.1. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )M and B = (blm )2X2 are defined as

:#,xi+yj # 0 and

X +Y,;
1 5
\m :m, S +t, #0.Lety, =a”
x=y;" +y;+1.i,j=123and

S, =a? +a' - —a? +1;1,m=12 , where &
is the root of irreducible polynomial P(X) = X* +X +1 in
the extension field of GF (23 ) Then A and B form MDS

rhotrix Ry

Proof: For given

A=(aij)3x3; a;; =;, X +Y; #0;

Xi+yj

Y, —a? x =y, 4y, +150,)=123

we have
yl=a2,y2=a2+a,y3=a
and
X,=a+1,X,=0, X, =a’+1.
Therefore,
_ 1 L _
2 2 1
a“+a+l a° +1
1 1 1
A=| = @ = (2
a a +a a
1 1 : 1
i a+l o' +a+1]
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Since, @ is the root of X° + X +1=0. Therefore,
ad’+a+120,0°+a#0,a’+ 10,
a?#0,a+120,a=0.

a’+1

a’+a+1

Also all the sub matrices of A are non-singular. From (2.1),
we have

Also, det A = # 0.So0, A isnon-singular.

A = ARIB] =~ %0,
a‘“+a+1
A2 = — =0,
a‘+1

A[3] = Al3J[1] =1#0,

A2 = # 0
a
1
A2][2] = —— #0,
a +a

A2][3] =§¢ 0,

1
a+1

# 0.

ALB][2] =

This implies that A is MDS matrix.

Similarly, we can prove that

1
_ a+1
B= 1 1 (2.2)

a’+a+1 a’+1

is MDS matrix. From (2.2), we have

B[] =~ %0,
a+1

B[][2] =10,

B2 =~ =0,
a"+a+1

B[2][2] =~ 0.
a-+1

The rhotrix of the coupled matrices A and B is

10



Al
Al2I[ Bl  AfM[2]
Ro=( ARIA B2l A[l2][2] B[I[2] A[]L3]
ARRI[2] B[2[2] Al2][3]
AL3][3]
(2.3)
that is,

a+1 a?+1
1

a’+a+1

Therefore, from Lemma 1.5, it is clear that R5 is maximum
distance separable rhotrix (MDSR).

On the similar arguments we can prove the following
Theorems 2.2 to 2.4.

Theorem 2.2. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )3X3 and B = (b,m )2><2 are defined as

—L,x&yj # 0 and

aij =
XitY;

, S+t #0. Let

Im

S, +t,

y;=a® +a’ +1; x=y,"" + y, +1,
i,j=12,3 and

S, - to=a” +a+1;1,m=12, where & is
the root of irreducible polynomial P(X) = X* + X +1in
the extension field of GF (23). Then A and B form MDS

rhotrix R .
Theorem 2.3. Let R5 be a Cauchy rhotrix whose coupled
matrices A = (aij )3X3 and B = (b,m )2><2 are defined as

:#,xi+yj # 0 and

XitY;

l 21 i
_ _ j-
m=—""">5+1, #0.Lety; =a” +a';a

_S|+tm
=y, +1,i,j=12,3 and

International Journal of Computer Applications (0975 — 8887)
Volume 168 — No.9, June 2017

S, =q' +1;t, —a? +a;l,m=12,where a is
the root of irreducible polynomial P(X) = X* + X +1in
the extension field of GF (23). Then A and B form MDS
rhotrix R .

Theorem 2.4. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )% and B = (blm )2><2 are defined as

a; =——— X+, # 0 and
X+,

1 j
=—— 5+t #0.Let y, =a® +1;
s, +t " i

Im
m

X;i=y; +1,i,j=123and

S, = a? +a+1it, = a? +a;1,m=12,where
« is the root of irreducible polynomial

P(X) = x® + X +1 in the extension field of GF (23 )

Then A and B form MDS rhotrix R; .

3. MDS RHOTRICES FROM CAUCHY
RHOTRICES OVER F24

Theorem 3.1. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )M and B = (blm )M are defined as

:#,x&yj # 0 and

Xi+Y;

1 i
=———, 5 +t, #0.Let y, =a” ;
S +1,

Im
x=y,"" +y, +1,i,j=12,3 and
S, =a? +a' - —a? +1;1,m=12, where &
is the root of irreducible polynomial P(X) = X* + X +1
in the extension field of GF (24). Then A and B form
MDS rhotrix R .

Proof: For given

A=), 0 = Xty
i j

X +y; 20y, =a”,
X, :yjj+1+yj +1:i,j=12.3,
we have

y,=a’,y,=a+1l,y,=a’ +1
and

X, =a’+a, X, =a’+a’+1, x, =0.

11



Therefore,
~ 1 . B
a a’ +1 a+1
1 1 1
A= — 3.1
a’+l a*+a’+a ot @D
EE
| a? a+1 a’ +1]

Since, & is the root of X*+ X +1=0. Therefore,

a+a’+a#0,a’+ 120, a®+ 10,
a’#0,a*#0, a +1#0,a #0.

a+1

3

A|SO, dEtA=—
a’ +a+1

Also all the sub matrices of A are non-singular. From (3.1),

we have
Al == ¢ 0,

=0,

All][2] = A3][3] =

A[3] = AL3][2] = #0,

#0,

A2][] =

A[2][2]=3;2¢o

+a +«a
Al2][3] = —;to

A[3][1] = i 0.

Therefore, A is MDS matrix.

Similarly, we can prove that

|la+l «
B= 1 1 (3.2)

a a’+1

is MDS matrix. From (3.2),we have

B[] = #0,

B[L][2] = i #0,

#0.So, A is non-singular.
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B[2][1] = — #0,

# 0.

B[2][2] =
The rhotrix of the coupled matrices A and B is

AlL[]
A2 B  A[[2]

Ry =( ABIA B[2][1] A[2][2] B[2] A[I3] ),
A[BI[2] B[2][2] A[2][3]
AR
33)
that is,
1
1 Ol! 1
o +1 a+l o’ +1
1 1 1 1 1
Re = a2 a FSrat+a o &
1 1 1
a+l  a’+1 o
1
a’+1

Therefore, from Lemma 1.5, it is clear that R5 is maximum
distance separable rhotrix (MDSR).

On the similar arguments we can prove the following
theorems.

Theorem 3.2. Let R5 be a Cauchy rhotrix whose coupled
matrices A = (aij )st and B = (blm )M are defined as

= ! » % +Y; #0 and

Xi+Y;

:L, S, +t, #0. Let
s,+tm

Im

j+1

Y =a? +a' +1; Xi=y; +Yy;+1
i,]=12,3 and

S, - to=a™ +a+1;1,m=12, where « is
the root of irreducible polynomial P(X) = X* + X + 1 in
the extension field of GF (24). Then A and B form MDS

rhotrix R .

Theorem 3.3. Let R5 be a Cauchy rhotrix whose coupled
matrices A = (aij )3X3 and B = (b,m )2X2 are defined as

12



1
; =——— X+, # 0 and
X + Y,
1 21 j.
m=—"—"">S +t, #0.Lety, =a” +a’;a
S, +t,,

x=y;"+1,i,j=12,3 and
S, =q' +1;t =a +a;l,m=12,where & is
the root of irreducible polynomial P(X) = X* + X + 1 in

the extension field of GF (24 ) Then A and B form MDS
rhotrix R .

Theorem 3.4. Let R5 be a Cauchy rhotrix whose coupled
matrices A = (aij )3><3 and B = (blm )2><2 are defined as

1
8 =———, X Y # 0 and
Xi+yj

1 i
=———, 5 +t, #0.Let y, =a® +1;
S, +t,

X;=Yy; +1, i,]=212,3and

Im

S, = a? +a+1it, = a? +a;1,m=12,where
« is the root of irreducible polynomial
P(X) = X* + X + 1 in the extension field 0fGF(24).

Then A and B form MDS rhotrix R;.

4. MDS RHOTRICES FROM CAUCHY
RHOTRICES OVER F,;

In this section, we have construct some maximum distance
separable rhotrices from 5- dimensional Cauchy rhotrices

using the elements of finite field F25 .

Theorem 4.1. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )3X3 and B = (b|m)

oo are defined as

1
& =—— X+, # 0 and
Xi+yj

1 i
=~ s+t #0.Lety. =a?,
s, +t " i

Im
m

X = yjj+l+y1 +1,1,j=12,3 and

S, =a? +a' it =a® +1:1,m=12, where &
is the root of irreducible polynomial
P(X) = X° + X + 1 in the extension field of GF (25).

Then A and B form MDS rhotrix R .
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Proof: For given

A:(aij)3x3;a'ij: ’Xi+yj #0;

X+

Yi =a?, x, ZYJM“LVJ +1;1,j=123
we have
y,=a’,y,=a',y,=a’ +a’ +1

and

X,=a' +a’+1, X, =a*+a’ +a’® +a+1,

X, =a’+a’ +a.

Therefore,

I 1 1 1]
at +1 a’+1 at+a

1 1 1

A= 4 3 4 2 4
a " +a’+a+l a'+a+a+l a’ +a

1 1 1
AR at+a’+a’+a  a+l |
(4.1)

Since, & is the root of X°+ X2+ 1=0. Therefore,
a' v+ +a’t+a#20,a* +a* +a+120,
a’+a*+a+1#0,a" +a® #0,

a’+a#0, a*+1#£0, a@*+1#0 and
a+1+#0.
at _
Also, det A= Z 3 5 #0. So, A is non-
o +a +a

singular. Also all the sub matrices of A are non-singular.
From (4.1), we have

A = -#0,

a’ +

AL[2] = #0,

a’ +
ALLI[3] = ABI[L] = ——— #0,
a +a
A2IM] = —————— %0,
a +a’+a+1
A2][2] = ! 40,

a+a’+a+l

13



AZJ[3)=—— =0,

Nﬂm=;§%;¢Q

A2[2] = 40,
a’+a° +a+1
ALBI[3] = —— =0.
a+1

Therefore, A is MDS matrix.

Similarly, we can prove that

1 1
4 2
B— a+1l o' +a"+a+1 (4.2)
1 1
a® +1 a’+1

is MDS matrix. From (4.2), we have

B[1][1] = a1+1¢0,
1
Bltll21= a4+a2+a+1¢0’
mam=ai4¢a
1
B[2)[2]= —— %0

The rhotrix of the coupled matrices A and B is

AR
AR2I[AT BHIAT  Af[(2]
Ro=( ARIl B[2J[] A[2][2] B[[2] A[][3] )
A[3][2] BI2][2] A[2][3]
A[3IE]
(4.3)
Using (4.1) and (4.2) in (4.3), we have
1

4

a"+1
1 1 1
4 3 2
a' +a’+a+l a+1 a”+1
R - 1 1 1 1 1
s =
a*+a a'+1 ad+at+a+l at+at+a+l o' +d’
1 1 1
a'+a’+at+a a’+1 a'+a

a+l
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Therefore, from Lemma 1.5, it is clear that R5 is maximum
distance separable rhotrix (MDSR).

In the similar ways we can prove the following theorems.

Theorem 4.2. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )3><3 and B = (b,m )2><2 are defined as

1
a;=—,%+Y; #0and
Xi+yj
1
m=———,S +t, #0. Let
S, +t,

y,=a? vl +1; x =y, 4y, + 1
1,]=12,3 and

S, —a? b, =a" +a+1;1,m=12, where & is
the root of irreducible polynomial P(X) = X° + X* +1
in the extension field of GF (23). Then A and B form
MDS rhotrix R .

Theorem 4.3. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )M and B = (blm )M are defined as

1
=—, % +Y;#0and
X+,
1 Y i
=——, 5 +t, #0.Lety, =a” +a’;a
s, +t

a;

Im
m

=y, +1,i,j=12,3 and
S, =qa +1;t, —a? +a;l,m=12,where & is
the root of irreducible polynomial P(X) = X° + X* +1

in the extension field of GF (23 ) Then A and B form
MDS rhotrix R .

Theorem 4.4. Let R5 be a Cauchy rhotrix whose coupled
matrices A = (aij )3X3 and B = (b,m )2X2 are defined as

:—1 y X% +Y; #0 and

Xi+yj

1 i
=——— 5 +t, #0.Let y, =a® +1;
S, +t,

X;i=Yy;+1, i,]=212,3and

Im

s, =a” +a+Lt =a® +a;l,m=12, where
« is the root of irreducible polynomial

P(X) = X° + X* + 1 in the extension field of GF (23).
Then A and B form MDS rhotrix R .

14



5. MDS RHOTRICES FROM CAUCHY
RHOTRICES OVER F,

In this section, we have construct some maximum distance
separable rhotrices from 5- dimensional Cauchy rhotrices

using the elements of finite field F26 .

Theorem 5.1. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij ) and B = (b|m)

are defined as
3x3 2x2

a; = y % +Y; #0 and
X+,

= s+t #0.Lety, =a?
S +1,

x =y, +y,+1,i,j=123 and

S, =a” +a' - =a? +1;1,m=12  where
is the root of irreducible polynomial P(X) = X° + X + 1
in the extension field of GF (26 ) Then A and B form
MDS rhotrix R .

Proof: For given

A= (aij )3X3 y Q5 =

X Y # 0; , we have

X+

21 i+

y,=a”, %=y, +y,+1i,j=123

2 4 3 2
ylza,yzza,ysza + o
and

X, =a'+a’* +1, X, =a*+a’, x,=a’.

Therefore,
1 1 1 ]
a’+1 a’+1 o'+ a®+1
1 1 1
A= — — 51
at a? at+ o S
1 1 i
a’+a’? at+a’ a? |

Since, o is the root of X° + X + 1= 0. Therefore,
a*+1#20,a’°+120,a* +a’+ a +1#0,
at+a*+1#0,a* 20, a? =0,
a’+a®#0, and &® + a® #0.

a’l+a

a®+a’+ a’

singular. Also all the sub matrices of A are non-singular.

Also, det A = # 0.0, A isnon-
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From (5.1), we have

AlL[1] = 41 #0,
o’ +

All][2] = 21 =0,
a‘+1

A[l][3]:—4 13 #0,
a’ +a’+1

A2l = #0.

A2][2] = A[3][3]=%¢0,

1

A2][3]=——— =0,

a +a
ABIM = — %0,

a +a
A2][2] = ! £0.

a+at+a+l

Therefore, A is MDS matrix.

Similarly, we can prove that

1 1
4 2
B— a+l a"+a”+a+l (5.2)
1 1
a’ +1 a’+1

is MDS matrix. From (5.2), we have

B[] = a1+ 40,
Bltll21= ot +a3-+a+ 1 #0

1 1
B[ = —— # 0, B2][2] = —— #0.

The rhotrix of the coupled matrices A and B is

AR
A[2I[  BRI[]  A[I[2]
Ro={ ABIM BI2I[1] Af2][2] B[I[2] AM3]
ABI2] B[2[2] Al2][3]
AR

15



Using (5.1) and (5.2) in (5.3), we have

1
a*+1
1 1 1
? a+l a?+1
R - 1 1 1 1 1
> adva?  at+l a? a*+at+a+l at+a’+l
1 1 1
at+ab a21+1 at+ab
o

Therefore, from Lemma 1.5, it is clear that R5 is maximum
distance separable rhotrix (MDSR).

Theorem 5.2. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )3><3 and B = (blm)

oo A€ defined as

=L,xi+yj # 0 and

Xi+yj

1
=——, 8§ +t, #0. Let
S, +t

Im
m

y,=a? vl +1; x =y, 4y, + 1
i,j=12,3 and

S, - 't =a” +a+1;1,m=12, where & is
the root of irreducible polynomial P(X) = X® + X + 1 in
the extension field of GF (26 ) Then A and B form MDS

rhotrix R .

Theorem 5.3. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )3X3 and B = (b|m)

oo are defined as

:#,xi+yj # 0 and

Xi +Y;

1 j i
=———,5+t, #0.Lety, =a” +a';a
S +t

m

X =y, +1,i,j=123 and

s,=a' +1;t_ =a® +a;l,m=12,where o is
the root of irreducible polynomial P(X) = X® + X + 1 in

the extension field of GF (26 ) Then A and B form MDS
rhotrix R .

Theorem 5.4. Let R5 be a Cauchy rhotrix whose coupled

matrices A = (aij )3X3 and B = (blm)

oo are defined as

:#,xi+yj # 0 and

:;, S, +t, #0.Let y, =a? +1;
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Xi=y;+1,1,j=12,3 and

s, =a® +a+1it, =a? +a;1,m=12,where
« is the root of irreducible polynomial
P(X) = X® + X + 1 in the extension field of GF (26).

Then A and B form MDS rhotrix R .

6. CONCLUSION

In the present paper, the Cauchy rhotrix is defined. The
maximum distance seperable rhotrices (MDS) are of much
interest in the field of cryptography. Therefore, MDS rhotrices
over finite fields are also constructed in this paper.
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