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ABSTRACT 

Maximum distance separable (MDS) matrices are important 

in cryptography and particularly used  in block ciphers due to 

their properties of diffusion. Rhotrices are represented by the 

coupled matrices. Therefore, maximum distance separable 

rhotrices are of much interest in the context of cryptography. 

In this paper, we define Cauchy rhotrix and then use it to 

construct MDS rhotrices over finite fields. 
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1. INTRODUCTION 
Ajibade [1] defined a 3×3–dimensional rhotrix, which is, in 

some way, between 2×2–dimensional and 3×3–dimensional 

matrices as 

,3

e

dcb

a

R   

where edcba ,,,,  are real numbers and cRh )( 3  is 

called the heart of rhotrix   . He also defined the operations 

of addition and scalar multiplication as given below: 

Let ,3

k

jhg

f

Q 

 

be another 3-dimensional 

rhotrix, then the addition of two rhotrices is defined as 
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and for any real number  ,  the scalar multiplication of a 

rhotrix 3R  is defined as 
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Two types of multiplication of rhotrices are discussed in the 

literature of rhotrices, namely, heart oriented multiplication 

and row-column multiplication. Ajibade discussed the heart 

oriented multiplication of 3-dimensional rhotrices as given 

below: 

.33
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


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Further, it is algorithmatized for computing machines by 

Mohammed et al. [2]. The extended heart oriented method for 

rhotrix multiplication is given by Mohammed [3] and also 

generalized the heart oriented multiplication of 3-dimensional 

rhotrices to n-dimensional rhotrices. The row column 

multiplication of 3-dimensional rhotrices is defined by Sani 

[4] as follows:               
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Sani [5] also discussed the row-column multiplication of high 

dimension rhotrices as follows: 

Consider a n  -dimensional rhotrix 
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where   2/1 nt and denote it as lkijn caP ,  

with tji ...,,2,1,   and 1...,,2,1,  tkl . Then the 

multiplication of two rhotrices nP  and nQ  is defined as 

follows: 

22221111
,, kljikljinn dbcaQP    

                     .,
1

1

112 12

22112211 







t

ji

t

kl

klkljiji dcba             

Rhotrices over finite fields were discussed by Tudunkaya et 

al. [6].  Aminu [7, 8] investigated rhotrices over matrix theory 

and polynomials ring theory. Algebra and analysis of rhotrices 

is discussed in the literature, see [9, 10, 11]. Adjoint of a 

rhotrix, inner product spaces, bilinear forms and Caylay-

Hamilton theorem are discussed by Sharma and Kanwar [12, 

13, 14, 15, 16]. Different constructions of MDS rhotrices from 

companion matrices and Vandermonde matrices are given by 

Sharma et al. [17, 18, 19, 20, 21, 22, 23]. Sharma et al. [24] 

introduced circulant rhotrices in the literature of rhotrices and 

construct some MDS rhotrices using special type of circulant 

rhotrices, see [25]. 

Maximum distance separable (MDS) matrices have diffusion 

properties that are used in block ciphers and cryptographic 

hash functions, as discussed in [26, 27]. There are several 

methods to construct MDS matrices. Sajadieh et al. [28] and 

Lacan and Flimes [29] used Vandermonde matrices for the 

construction of MDS matrices. Gupta and Ray construct MDS 

rhotrices from companion matrices and circulant like matrices 

, see [30, 31] 

Cauchy matrices have applications in coding theory such as in 

Goppa codes as discussed in [32]. Nakahara and Abraho [33] 

constructed an involutory MDS matrix of 16- order by using a 

Cauchy matrix which was used in MDS-AES design.  

Definition 1.1. The matrix of the form  
nmijaA 

 
where 

njmixx
xx

a ji

ji

ij 


 1,1,0,
1

 

is called a Cauchy matrix and ji xx ,  are the elements from 

nF
2

. 

For example, a Cauchy matrix of n -order can be written as 
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In the present paper we denote the (i,j)th element of ith row and 

jth column by A[i][j]. 

Definition 1.2. A 5- dimensional Cauchy rhotrix 5C  is 

defined as 
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where  3,2,1,, jiyx ji  and  2,1,, mlts ml  

are elements from a finite field. Two coupled matrices of 5C  

are [35] 
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Definition 1.3. Let F  be a finite field, and p , q  be two 

positive integers. Let xMx   be a mapping from 
pF  

to 
qF  defined by the pq matrix M . We say that it is 

an MDS matrix if the set of all pairs  xMx ,  is an MDS 

code, that is a linear code of dimension p , length qp   

and minimum distance 1q . In other form we can say that a 

square matrix is an MDS matrix if and only if every square 

sub-matrices of A   are non-singular. This implies that all the 

entries of an MDS matrix must be nonzero. 

Definition 1.4. An m   rhotrix over a finite field K  is an 

MDS rhotrix if it is the linear transformation   Axxf    

from 
nK  to 

mK  such that that no two different    - 

tuples of the form   xfx,  coincide. The necessary and 

sufficient condition of a rhotrix to be an MDS rhotrix is that 

all its sub-rhotrices are non-singular. 

The construction of the MDS rhotrices is discussed by Sharma 

and Kumar [17]. The following Lemma 1.5 is also discussed 

in [17]. 
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Lemma 1.5. Any rhotrix    over GF     with all non zero 

entries is an MDS rhotrix iff its coupled matrices 

331 M  and 222 M  are non-singular and all 

their entries are non zero. 

Now, we construct maximum distance separable rhotrices by 

using Cauchy rhotrices.  

2. MDS RHOTRICES FROM CAUCHY 

RHOTRICES OVER 32
F  

In this section, we constructed some maximum distance 

separable rhotrices from 5- dimensional Cauchy rhotrices 

using the elements of finite field 32
F . 

Theorem 2.1. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji
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ij yx
yx

a  and 

0,
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


 ml
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b . Let ,2 j

jy 

1
1




j

j

ji yyx , 3,2,1, ji  and 

2,1,;1; 22  mlts
m

m

ll

l   , where   

is the root of irreducible polynomial 1)( 3  xxxp  in 

the extension field of GF  32 . Then A  and B  form MDS 

rhotrix 5R . 

Proof: For given 

  ;0,
1

;
33
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j
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  3

2

2

2

1 ,, yyy   

and 

 .1,0,1 2

321   xxx  

Therefore,      
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Since,   is the root of 013  xx . Therefore, 

,012   ,02   ,012 

,02  01 , .0  

Also, det 0
1

1
2

2










A . So, A  is non-singular. 

Also all the sub matrices of A  are non-singular. From (2.1), 

we have             
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This implies that A  is MDS matrix. 

Similarly, we can prove that  
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is MDS matrix. From (2.2), we have 
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 The rhotrix of the coupled matrices A  and B  is 
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Therefore, from Lemma 1.5, it is clear that 5R  is maximum 

distance separable rhotrix (MDSR).

 

 

On the similar arguments we can prove the following 

Theorems 2.2 to 2.4.  

Theorem 2.2. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji
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ij yx
yx
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
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j
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,2,1,;1;2  mlts m
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l

 where   is 

the root of irreducible polynomial 1)( 3  xxxp  in 

the extension field of GF  32 . Then A  and B  form MDS 

rhotrix 5R . 

Theorem 2.3. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx
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0,
1
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
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j

j

y    a
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
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m

m

l

l  where   is 

the root of irreducible polynomial 1)( 3  xxxp  in 

the extension field of GF  32 . Then A  and B  form MDS 

rhotrix 5R . 

Theorem 2.4. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji
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ij yx
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
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j

jy 
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,2,1,;;1 22  mlts
m

m

l

l  where 

  is the root of irreducible polynomial 

1)( 3  xxxp  in the extension field of GF  32 . 

Then A  and B  form MDS rhotrix 5R . 

3. MDS RHOTRICES FROM CAUCHY 

RHOTRICES OVER 42
F  

Theorem 3.1. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 
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1
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

 ji
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1
1
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

j

j
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2,1,;1; 22  mlts
m

m
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l  , where   

is the root of irreducible polynomial 1)( 4  xxxp  

in the extension field of GF  42 . Then A  and B  form 

MDS rhotrix 5R . 

Proof: For given 
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Therefore, 
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Since,   is the root of 014  xx . Therefore, 
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Also all the sub matrices of A  are non-singular. From (3.1), 

we have 
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Therefore, A  is MDS matrix. 

Similarly, we can prove that  
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is MDS matrix. From (3.2),we have 
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 The rhotrix of the coupled matrices A  and B is 
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Therefore, from Lemma 1.5, it is clear that 5R  is maximum 

distance separable rhotrix (MDSR).

 

 

On the similar arguments we can prove the following 

theorems. 

Theorem 3.2. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 
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


 ji
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0,
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
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

j

j

ji yyx , 
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  where   is 

the root of irreducible polynomial 1)( 4  xxxp  in 

the extension field of GF  42 . Then A  and B  form MDS 

rhotrix 5R . 

Theorem 3.3. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 



International Journal of Computer Applications (0975 – 8887) 

Volume 168 – No.9, June 2017 

13 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ;2 j

j

j

y    a

1
1


j

ji yx , 3,2,1, ji  and 

,2,1,;;1 2  mlts
m

m

l

l  where   is 

the root of irreducible polynomial 1)( 4  xxxp  in 

the extension field of GF  42 . Then A  and B  form MDS 

rhotrix 5R . 

Theorem 3.4. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ;12 
j

jy 

1 ji yx , 3,2,1, ji  and 

,2,1,;;1 22  mlts
m

m

l

l  where 

  is the root of irreducible polynomial 

1)( 4  xxxp  in the extension field of GF  42 . 

Then A  and B  form MDS rhotrix 5R . 

4. MDS RHOTRICES FROM CAUCHY 

RHOTRICES OVER 52
F  

In this section, we have construct some maximum distance 

separable rhotrices from 5- dimensional Cauchy rhotrices 

using the elements of finite field 52
F . 

Theorem 4.1. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ,2 j

jy 

1
1




j

j

ji yyx , 3,2,1, ji  and 

2,1,;1; 22  mlts
m

m

ll

l   , where   

is the root of irreducible polynomial 

1)( 25  xxxp  in the extension field of GF  52 . 

Then A  and B  form MDS rhotrix 5R  . 

Proof: For given 

  ;0,
1

;
33





 ji

ji

ijij yx
yx

aaA  

3,2,1,;1,
12 


jiyyxy j

j

jij

j

  

we have 

1,, 23

3

4

2

2

1   yyy   

and 

 

,1,1 234

2

24

1   xx

.23

3  x  

Therefore, 

                            

.

1

111

1

1

1

1

1

1

1

1

1

1

2344

42434

3424







































A

                                                                                            (4.1) 

Since,   is the root of 0125  xx . Therefore, 

,0234   ,0134  

,0124   ,034 

,04   ,014   012   and 

.01  

Also, det 0
234

4





a

A



. So, A  is non-

singular. Also all the sub matrices of A  are non-singular. 

From (4.1), we have 

,0
1

1
]1[]1[

4






A                                                            

,0
1

1
]2[]1[

2






A                                                        

,0
1

]1[]3[]3[]1[
34






AA                                                            

,0
1

1
]1[]2[

34






A                                                        

,0
1

1
]2[]2[

23






A  
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,0
1

]3[]2[
4







A    

,0
1

]1[]3[
3







A                                                      

,0
1

1
]2[]2[

23






A                                                          

.0
1

1
]3[]3[ 





A  

Therefore, A  is MDS matrix. 

Similarly, we can prove that  

                                           

)2.4(

1

1

1

1

1

1

1

1

24

24



























B                                                        

is MDS matrix. From (4.2), we have 

,0
1

1
]1[]1[ 





B  

,0
1

1
]2[]1[

24






B  

,0
1

1
]1[]2[

4






B  

.0
1

1
]2[]2[

2






B  

 The rhotrix of the coupled matrices A  and B is 

                                  

.

]3[]3[

]3[]2[]2[]2[]2[]3[

]3[]1[]2[]1[]2[]2[]1[]2[]1[]3[

]2[]1[]1[]1[]1[]2[

]1[]1[

5

A

ABA

ABABA

ABA

A

R 

                                                                                         (4.3) 

Using (4.1) and (4.2) in (4.3), we have 

.

1

1

1

1

11

1

1

1

1

1

1

11
1

1

1

1

1

1
1

1

42234

34242343

234

4

5























R

          

Therefore, from Lemma 1.5, it is clear that 5R  is maximum 

distance separable rhotrix (MDSR). 

In the similar ways we can prove the following theorems. 

Theorem 4.2. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let 

;12  j

j

j

y  1
1




j

j

ji yyx , 

3,2,1, ji  and 

,2,1,;1;2  mlts m

ml

l

 where   is 

the root of irreducible polynomial 1)( 25  xxxp  

in the extension field of GF  32 . Then A  and B  form 

MDS rhotrix 5R . 

Theorem 4.3.  Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ;2 j

j

j

y    a

1
1


j

ji yx , 3,2,1, ji  and 

,2,1,;;1 2  mlts
m

m

l

l  where   is 

the root of irreducible polynomial 1)( 25  xxxp  

in the extension field of GF  32 . Then A  and B  form 

MDS rhotrix 5R . 

Theorem 4.4. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ;12 
j

jy 

1 ji yx , 3,2,1, ji  and 

,2,1,;;1 22  mlts
m

m

l

l   where 

  is the root of irreducible polynomial 

1)( 25  xxxp  in the extension field of GF  32 . 

Then A  and B  form MDS rhotrix 5R . 
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5. MDS RHOTRICES FROM CAUCHY 

RHOTRICES OVER 62
F  

In this section, we have construct some maximum distance 

separable rhotrices from 5- dimensional Cauchy rhotrices 

using the elements of finite field 62
F . 

Theorem 5.1. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ,2 j

jy 

1
1




j

j

ji yyx , 3,2,1, ji  and 

2,1,;1; 22  mlts
m

m

ll

l   , where   

is the root of irreducible polynomial 1)( 6  xxxp  

in the extension field of GF  62 . Then A  and B  form 

MDS rhotrix 5R .  

Proof: For given 

  ;0,
1

;
33





 ji

ji

ijij yx
yx

aaA , we have 

3,2,1,;1,
12 


jiyyxy j

j

jij

j

  

23

3

4

2

2

1 ,,   yyy   

and 

 .,,1 3

3

24

2

24

1   xxx  

Therefore, 

                                            

)1.5(.

111

111

1

1

1

1

1

1

23423

3424

3424







































A

                                                                      

Since,   is the root of 016  xx . Therefore, 

,014  ,012  ,0124  

,0134   ,04   ,02   

,034     and .023    

Also, det 0
235

2







a
A




. So, A  is non-

singular. Also all the sub matrices of A  are non-singular. 

From (5.1), we have                                                

,0
1

1
]1[]1[

4






A                                                         

,0
1

1
]2[]1[

2






A                                                            

,0
1

1
]3[]1[

34






A  

,0
1

]1[]2[
4



A                                                            

,0
1

]3[]3[]2[]2[
2



AA  

,0
1

]3[]2[
34






A                                                       

,0
1

]1[]3[
23






A                                                   

.0
1

1
]2[]2[

23






A  

Therefore, A  is MDS matrix. 

Similarly, we can prove that  

                                                    

)2.5(

1

1

1

1

1

1

1

1

24

24



























B                                                        

is MDS matrix. From (5.2), we have 

,0
1

1
]1[]1[ 





B  

,0
1

1
]2[]1[

24






B  

,0
1

1
]1[]2[

4






B .0
1

1
]2[]2[

2






B  

 The rhotrix of the coupled matrices A  and B is 

                                  

)3.5(

]3[]3[

]3[]2[]2[]2[]2[]3[

]3[]1[]2[]1[]2[]2[]1[]2[]1[]3[

]2[]1[]1[]1[]1[]2[

]1[]1[

5

A

ABA

ABABA

ABA

A

R 

.                       
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Using (5.1) and (5.2) in (5.3), we have 

.

1

1

1

11

1

1

1

11

1

11
1

1

1

11
1

1

2

34234

34242423

24

4

5



















R

 

Therefore, from Lemma 1.5, it is clear that 5R  is maximum 

distance separable rhotrix (MDSR). 

Theorem 5.2. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let 

;12  j

j

j

y  1
1




j

j

ji yyx , 

3,2,1, ji  and 

,2,1,;1;2  mlts m

ml

l

 where   is 

the root of irreducible polynomial 1)( 6  xxxp  in 

the extension field of GF  62 . Then A  and B  form MDS 

rhotrix 5R . 

Theorem 5.3. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ;2 j

j

j

y    a

1
1


j

ji yx , 3,2,1, ji  and 

,2,1,;;1 2  mlts
m

m

l

l  where   is 

the root of irreducible polynomial 1)( 6  xxxp  in 

the extension field of GF  62 . Then A  and B  form MDS 

rhotrix 5R . 

Theorem 5.4. Let 5R  be a Cauchy rhotrix whose coupled 

matrices  
33

 ijaA  and  
22

 lmbB  are defined as 

0,
1




 ji

ji

ij yx
yx

a  and 

0,
1




 ml

ml

lm ts
ts

b . Let ;12 
j

jy 

1 ji yx , 3,2,1, ji  and 

,2,1,;;1 22  mlts
m

m

l

l  where 

  is the root of irreducible polynomial 

1)( 6  xxxp  in the extension field of GF  62 . 

Then A  and B  form MDS rhotrix 5R . 

6.  CONCLUSION 
In the present paper, the Cauchy rhotrix is defined. The 

maximum distance seperable rhotrices (MDS) are of much 

interest in the field of cryptography. Therefore, MDS rhotrices 

over finite fields are also constructed in this paper. 
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