
International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.10, July 2017

31

A Comparative Study of Various Load Balancing

Algorithm in Parallel and Distributed

Multiprocessor System

Mamta Kumari
APS University

Rewa (M.P)

Rakesh Kumar Katare
HOD, APS University

Rewa (M.P)

ABSTRACT
In modern days parallel and distributed computing is one of

the greatest platform for research and innovation in the field

of computer science. Rapid growth of communication

network and need to solve large scale problem, complexity

and efficiency of the system as a whole is the key issue. Load

balancing is one of the most important problem in attaining

high performance in parallel and distributed systems which

may consist of many heterogeneous resources connected via

one or more communication networks. Load balancing is the

process of distributing or reassigning of load over the

different nodes which provide good recourse utilization and

better throughput. Although intense work has been done in the

algorithm design of load balancing and its performance

measure issues, we present a brief overview of various load

balancing conditions and its algorithmic classification for

tailor made applications. Various criteria were discussed for

the classification of load balancing helping designers to

compare and choose the most suitable algorithm for the

application.

Keywords
Load–balancing, Hetrogeneous-resourse, Resource-utilization

1. INTRODUCTION
One of the key issues in algorithm designs for paral- lel and

distributed computing is that of load balancing where n

interacting task are allocated among m pro- cessing nodes

arranged in a given topology in order to minimize or

maximize some criteria. Load balancing improves the

distribution of workloads across multiple computing resources

such as computer cluster, network link or disk drives. The

drive behind this load balancing is two fold- efficiency and

extensibility. Various issues related to load balancing are also

analysed during the classification [1,2] .

2. ISSUES WHILE DESIGNING LOAD

BALANCING ALGORITHM
In distributed system, communication link are of finite

bandwidth and the nodes are physical far apart so load

balancing algorithm need to take consideration of task

migration. There must be some constrained while task

partitioning. Also load on each processor as well as system as

a whole varies time to time and capacity of the processing

node may vary in the system. So, taking into consideration of

various issues, Load balancing can be generalized into four

basic steps:

 Monitoring processors load and its state.

 Exchanging load and state information between

processors

 Calculating the new workload

 Actual data migration between processors / nodes

2.1 Load Balancing Aims

 To improve the performance substantially

 To have a backup plan in case of system failure

 To accommodate future modification in the system

 to optimize resource use and minimise response time and

 avoid overload of any single resources

Load sharing and balancing in a locally distributed system is

the process of transparently distributing work submitted to the

interconnection network .Shifting work from an heavily

loaded nodes to the lightly loaded process performance of the

network can be improved substantially [3,4] In a

multiprocessor system each processing node exhibits different

stage depending upon load poses at that time. It varies time to

time just like process. Following are various stages of nodes .

(i) Heavy_load_node-workload more than a threshold

value.

(ii) Light_load_node-workload much less than a

threshold value.

(iii) Proper_load_node_workload approaching to

threshold value.

(iv) Busy_load_node-maximum involvement.

(v) No_load_node- no workload on the node [5,6]

Following are some Important points to be consider while

designing an algorithm for load balancing

 Estimation of workload of each node and total workload

of the system

 Nature of workload to be transferred

 Comparison of workload of each node with its

neighboring nodes

 Stability of different communication net- work system

 Performance of a local and the overall net- work system

 Interaction between various neighboring nodes

 Selecting of nodes etc.

The load considered can be in terms of CPU load, amount of

memory used, delay or Network load [7,8]

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.10, July 2017

32

Figure.1 Various stages of nodes/processors during load

balancing

3. CLASSIFICATION OF VARIOUS

LOAD BALANCING ALGORITHM
A large number of scheduling and algorithm were developed

and proposed in the area of load balancing in parallel and

distributed system.

Depending upon the current status and condition, load

balancing strategies can be classified as [1,2]

Fig. 2 Classification of Load Balancing

3.1 Static load balancing
Static load balancing is used when computation and

communication requirement of a given problem are known

prior .Assignment of task to the various processors is

performed before execution. Load balancing decisions are

made deterministically or probabilistically at compile time

according to the performance of computing node and remains

constant during runtime. Number of task are fixed in this

approach. Static load balancing scheme is non preemptive in

nature. Now, Static load balancing are further categories as

[7,8]

3.1.1 Classic Round –Robin Algorithm.
Round Robin is undoubtedly the most widely used algorithm.

This algorithm assign task sequentially and evenly to all

nodes. It’s easy to implement and easy to understand. Here’s

how it works. Let’s say you have 2 servers waiting for

requests behind your load balancer. Once the first request

arrives, the load balancer will forward that request to the 1st

server. When the 2nd request arrives (presumably from a

different client), that request will then be forwarded to the 2nd

server. Because the 2nd server is the last in this cluster, the

next request (i.e., the 3rd) will be forwarded back to the 1st

server, the 4th request back to the 2nd server, and so on, in a

cyclical fashion. In this algorithm inter-process

communication is not required. This scheme is useful for job

of equal processing time and a node of same capabilities. But

not efficient when uneven tasks and nodes having different

capacities. [5 ,7]

3.1.2. Weighted Round Robin Algorithm
For the 2nd scenario mentioned above, i.e., Server 1 having

higher specs than Server 2, you might prefer an algorithm that

assigns more requests to the server with a higher capability of

handling greater load. One such algorithm is the Weighted

Round Robin. The Weighted Round Robin is similar to the

Round Robin in a sense that the manner by which requests are

assigned to the nodes is still cyclical, albeit with a twist. The

node with the higher specs will be apportioned a greater

number of requests. Basically, when you set up the load

balancer, you assign “weights” to each node. The node with

the higher specs should of course be given the higher weight.

You usually specify weights in proportion to actual capacities.

So, for example, if Server 1’s capacity is 5x more than Server

2’s, then you can assign it a weight of 5 and Server 2 a weight

of 1. It is one of the simplest scheduling algorithms that utilize

the principle of time slices. Here time is divided into multiple

slices and each node is given a particular time interval. Each

node is given a quantum and in this given quantum node has

to perform its operations. If the user request completes within

time quantum then user should not wait otherwise user have to

wait for its next slot. It means that this algorithm selects the

load randomly, while in some case some server is heavily

loaded or someone is lightly loaded [5, 7]

3.1.3 Central Manager algorithm
The Central Manager Algorithm uses central node as a

coordinator to distribute the workload among the slave

processors. The rule that is followed to choose the slave

processor is to assign the job to the processor that have the

least load. The central processor is able to gather all slave

processors load information and take the decision of load

balancing depending on this information so we expected a

good performance when applying this algorithm. The main

disadvantage of this type is the high degree of inter-process

communication that could make a bottleneck state [16,17]

3.1.4 Threshold Algorithm
In this algorithm, the processes are assigned immediately to

the server nodes upon creation . Server nodes for new job are

selected locally without sending remote messages. Each

server node keeps a copy of the system’s current load. The

load of a processor can be characterized by one of the three

levels: under loaded, medium, and overloaded. Two threshold

parameters t-under and t-upper can be used to describe these

levels:

Underloaded: workload <t_under

Medium : t_under d<workload d<t_upper

Overloaded: workload >t_upper

At first, all processor are assumed to be under-loaded. When

the load of a processor changes, it sends a message to all other

processors that are related with the new load state, updating

them as to the actual current load state of the entire system.

Each process gets allocated locally when the processor is

under-load , otherwise, a remote under-loaded processor is

selected, and if no such host exists, the process is also

allocated locally . Thresh-olds algorithm have large number of

local process allocations so it has low inter-process

communication that decreases the overhead of the whole

system which leads to improve the performance . The main

disadvantage of the threshold algorithm is that all processes

are assigned locally when the processors are overhead. It does

not take the execution time in consideration which impacts the

performance of the entire system.[3, 8]

3.1.5 Randomized Algorithm
Randomized Algorithm (RA) uses random number i selecting

a computing node for processing having any information

about current or previous load on the node. The computing

nodes are selected randomly following random number

generated based on a statistical distribution. Basically it works

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.10, July 2017

33

for particular special purpose application .No inter-process

communication is not required. Not much efficient algorithm

as response time is poor [9 ,13]

3.1.6 Throttled Load Balancing Algorithm
This algorithm is totally based on the allocation of request to

virtual machine. Here client will first request the load balancer

to check the right virtual machine which access that load

easily and performs the operations request by client or user. In

this algorithm the load balancer maintains an index table of

virtual machines as well as their states (Available or Busy).

Therefore the client first requests the load balancer to find a

suitable Virtual Machine to perform the required operations.

These dynamic algorithms are being experimentally

performed using the cloud analyst tool which gives the output

with respect to virtual machine.

[10]

3.2 Hybrid Load balancing:- In hybrid load

balancing both static and dynamic are merged together exploit

the benefit of both algorithm.

3.3 Dynamic load balancing
Dynamic load balancing method is applied in situation where

no prior estimation of load distribution are possible .At the

time of parallel program execution it is decided that how

much work is being assigned to each processor, in many cases

static load balancing is either impossible to implement or lead

to load imbalance. Dynamic load balancing works well on

heterogeneous system. Task can be redistributed to any

processor while runtime hence overloading and underloading

problem becomes minimum. But high communication

overhead occurs. Also, system overhead increases because it

is preemptive in nature. [4,7]

3.3.1 Policies or Strategies in dynamic Load

balancing
In order to define a Load-Balancing Algorithm completely,

the main four sub-strategies have to be defined. This will

provide as a framework for describing and classifying

different existing load balancing algorithm facilitating the task

of identifying a suitable load balancing strategies.

 Initialization policy:- The initialization approach

specifies the system, which invokes the load

balancing behaviour. This may be episodic or event-

driven initiation. Episodic initiation is a time based

initiation in which load information is exchanged

every preset time interval. Event-driven is usually a

load dependent policy based on the observation of

local load.

 Location policy:-This policy specifies the

location at which the algorithm itself is executed.

Location policy may be central or distributed.

Distributed algorithm are further classified as-

Synchronous and asynchronous. A synchronous

load balancing algorithm must be executed by all

nodes present in the system simultaneously and in

asynchronous algorithm, it can be executed at any

moment in a given node, with no dependency on

what is being executed at other nodes.

 Information exchange policy:-This specifies the

information and load flow thought the network. The

information used by the dynamic load balancing

algorithm for decision making can be local

information or gathered from the surrounding

processors.

 Load selection policy:-This policy is the most

important part of the whole system in which the

processing node decide from which node to

exchange load [13, 15]

In a distributed system, dynamic load balancing can be done

in two different ways: distributed and non-distributed. In the

distributed one, the dynamic load balancing algorithm can be

further classified as cooperative and non-cooperative. In the

first, the nodes work side-by-side to achieve a common

objective like to improve the overall response time. In the

second form, each node works independently toward a goal

local to it, that is to improve the response time of a local task.

Dynamic load balancing algorithms of distributed nature

usually generate more messages than the non-distributed ones

because, each of the nodes in the system needs to interact with

every other node. A benefit of this is that even if one or more

nodes in the system fails, it will not cause the total load

balancing process to halt, it instead would effect the system

performance to some extent. Distributed dynamic load

balancing can introduce immense stress on a system in which

each node needs to interchange status information with every

other node in the system. It is more advantageous when most

of the nodes act individually with very few interactions with

others. In non-distributed type, either one node or a group of

nodes do the task of load balancing [9, 11] Non-distributed

dynamic load balancing algorithms can take two forms:

centralized and semi-distributed.

Fig.3:Grouping of dynamic load balancing

In the centralized scheme, the load balancing algorithm is

executed only by a single node in the whole system: the

central node. This node is solely responsible for load

balancing of the whole system. The other nodes interact only

with the central node. In semi-distributed form, nodes of the

system are partitioned into clusters, where the load balancing

in each cluster is of centralized form. A central node is elected

in each cluster by appropriate election technique which takes

care of load balancing within that cluster. Hence, the load

balancing of the whole system is done via the central nodes of

each cluster. Centralized dynamic load balancing takes fewer

messages to reach a decision, as the number of overall

interactions in the system decreases drastically as compared to

the semi-distributed case. However, centralized algorithms

can cause a bottleneck in the system at the central node and

also the load balancing process is rendered useless once the

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.10, July 2017

34

central node crashes. Therefore, this algorithm is most suited

for networks with small size [17 ,18]

3.3.2 Central Queue Algorithm
Central Queue Algorithm [4] stores new activities an

unfulfilled requests on a cyclic FIFO queue on the main host.

Each new activity arriving at the queue manager is inserted

into the queue. Then, whenever a request for an activity is

received by the queue manage, it removes the first activity

from the queue and sends it to the requestor. If there are no

ready activities in the queue, the request is buffered, until a

new activity is available. When a processor load falls under

the threshold, the local load manager sends a request for a

new activity found in the process-request queue, or queues the

request until a new activity arrives. This is a centralize

initiated algorithm and need high communication among

nodes.

3.3.3 Local Queue Algorithm
This algorithm supports inter-process migration. The main

concept in local queue algorithm is static allocation of all new

process with process migration initiated by the host when its

load falls under the predefine minimum number or ready

processes (threshold limit). Initially, new processes created on

the main host are allocated on all under loaded hosts. From

then on, all the processes created on the main host and all

other hosts are allocated locally. When the local host gets

under load it request for the activities from the remote host.

The remote hosts that look up its local list for ready activities

and compares the local number of ready activities with the

received number. If the former is greater than the later, then

some of the activities are passed on to the requestor host and

get the acknowledgement form the host. This is a distributed

co-operative algorithms and required inter-process but lesser

as compared to central queue algorithm [7, 9]

There are some other basic dynamic load balancing parallel

algorithmic paradigm conditions prevails in parallel and

distributed computing which is follows as:

 Sender initiated Diffusion method (SID)
The SID strategy is a, local, nearest-neighbor dif-fusion

approach which employs overlapping balancing domains to

achieve global balancing. For an N processor system with a

total system load L, a diffusion approach, such as the SID

strategy, will cause each processor’s load to converge to L/N.

Balancing is performed by each processor whenever it

receives a load update message from a neighbor indicating

that the neighbors load, i<Ideal Load, where Ideal Load is a

preset threshold. Each processor is limited to load information

from within its own domain, which consists of itself and its

immediate neighbors [9,12]

 Receiver initiated Diffusion method (RID)
The RID strategy is converse of SID in that it is a receiver

initiated approach as opposed to sender initiated approaches

.However, besides the fact that in the RID strategy under

loaded neighbor request from overloaded nodes, certain subtle

difference exit between them. Firstly balancing process

initiated by any node whose load drops below threshold value.

Secondly, upon receipt of a load request, a processor will

fulfill the request only up to an amount equal to half of its

current load. [19]

 Symmetric
This algorithm is combination of both sender initiated

diffusion and receiver initiated diffusion method.

 Hierarchical load balancing Method (HBM)
The HBM strategies organizes the multicomputer system into

hierarchy of balancing domains, thereby decentralizing the

balancing process. Specific processors are designated to

control the balancing operations at different levels of

hierarchy [19, 20]

 Tree-Based Parallel Load Balancing Method
Here we present three tree based parallel load balancing

methods to efficiently deal with load unbalance problem on

distributed memory interconnection network.

 The maximum Cost spanning Tree Parallel

Load Balancing Method (MCSTPLB)
The main idea of MCSTPLB method is to find a maximum

cost spanning tree from processors graph ob-tainted from

initial partitioning of graph and it tries to balance the load of

processor.

 The Binary Tree Parallel Load Balancing

(BTPLB) Method
The BTPLB method is similar to the MCSTPLB method .The

only difference between these two method is that the

MCSTPLB method is based on maximum cost spanning tree

to balance the computational load of the processors while the

BTPLB method is based on binary tree .

 The Condensed Binary Tree Parallel Load-

Balancing (CBTPLB) Method
The main idea of the CBTPLB method is based on to group

processor graph into meta-processors. Each meta-processor is

a hypercube this group processor graph is called as condensed

processor graph [19, 20]

 Gradient method:- The gradient model is a demand

driven method .Basic concept is that underloaded

processors inform other processors in the system of

their state, and overloaded processors respond by

sending a portion of their load to the nearest lightly

loaded processor in the system.[10,11]

 Dimension Exchange Method(DEM) A DEM is

similar to the HBM method in which small domain

are balanced first and these are combined to form

large domains until the entire system is balanced.

This is a synchronized scheme designed for

hypercube system but may be applied to other

topologies with some modification. In case of N-

processor hypercube, balancing is performed

iteratively in each of the log N dimensions, it

facilitates debugging and performance analysis.

 Divide and Conquer (DAC):- In this approach a big

problem is divided into small problems and then we

start solving it (i.e conquer). In this way dynamic

load balancing a parent process divides its workload

into several smaller pieces and assigns them to a

number of child processes. The child process

compute their workload in a parallel fashion and the

result are mergers by parent.

 Pipeline: In this algorithm the output of one stage

works as an input for the next stage, hence a pipe is

created called virtual pipe. A number of processor

creates a virtual pipe. A continuous data stream is

fed into the pipeline and the processes execute at

different pipeline stages simultaneously in an

overlapping fashion.

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.10, July 2017

35

4. CONCLUSION AND FUTURE WORK
This paper focuses on the various load balancing algorithm

which help developer to compare and design a new

application paradigm. Dynamic load balancing techniques

give better performance than static load balancing technique.

Good load balancing algorithms depended on good task

scheduling techniques. There are many parameters to measure

the efficiency of load balancing techniques such as response

time, resource utilization, overhead associated, fault tolerant,

centralized or decentralized, reliability, stability, adaptability,

cooperative, process migration, scalability and throughput.

This classification compare and analyze different algorithm

and design a new tailor for needs. In future, we intend to

develop a framework for application with load balancing

that utilizes this classification and help to design and tailor his

own algorithm.

5. REFERENCES
[1] M. Willebeek-LeMair and A. P. Reeves, ‘‘A general

dynamic load balancing model for parallel computers,’’

Tech: Rep. EE-CEG-89-1) Comell School of Electrical

Engineering. 1989.

[2] Y. T. Wang and R.I. T. Morris, ‘‘Load sharing in

distributed systems,’’ IEEE Trans. Comput., Vol. C-34,

pp. 204-211, Mar. 1985. M. J. Berger and S.H. Bokhari,

‘‘A partitioning strategy for non-uniform problems on

multiprocessors,’’ IEEE Trans. Corput., vol. C-36, pp.

570-580, May 1987.

[3] Fonlupt, C., Marquet P. and Dekeyser, J.: Dataparallel

load-balancing strategies. Parallel Computing 24 (1998)

1665-1684.

[4] Dekeyser, J. L., Fonlupt, C. and Marquet, P. : Anal-ysis of

Synchronous Dynamic Load Balancing algo-rithms’’,

Parallel Computing: State-of the Art Per-spective

(ParGo95), Volume 11 of Advances in Parallel

Computing, pages-455-462, Gent, Belgium (September

1995).

[5] Y. Wang and R. Morris, ‘‘Load balancing in distributed

systems.’’ IEEE Trans. Computing. C 34, no.3, pp. 204-

217, Mar. 1985.

[6] Mr. Gaurav Sharma and Jagjit Kaur Bhatia, ‘‘A review on

different approaches for load balancing in computational

grid’’, Journal of Global Research in Computer Science,

Volume 4, No. 4, April 2013.

[7] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,

‘‘Performance Analysis of Load Balancing Algorithms’’,

World Academy of Science, Engineering and

Technology, 2008.

[8] S. F. EI-Zoghdy and S. Ghoniemy, ‘‘A Survey of Load

Balancing In High-Performance Distributed Computing

Systems,’’ International Journal of Advanced Computing

Research, Volume 1, 2014

[9] G. Cybenko, ‘‘Dynamic load balancing for distributed

memory multiprocessors.’’ J. Parallel and Distributed

Comput., Vol. 7279-301, October, 1989.

[10] Hamidzadeh, B., Lilja, D. J. and Atif, Y. : Dynamic

scheduling. techniques for heterogeneous computing

systems. Concurrency : Practice and Experience, vol. 7

(1995) 633-652.

[11] Saletore, V. A : A distributive and adaptive dynamic load

balancing scheme for parallel processing of medium

grain tasks. Proceedings of the 5th Distributed Memory

Conference (April 1990) 995-999

[12] K. G. Shin and Y.C. Chang. ‘‘Load sharing in distributed

real time systems with state-change broad-casts,’’ IEEE

Trans. Comput., pp. 1124-1142, Aug. 1989. V. A.

Saletore, ‘‘A distr

[13] F. C. H. Lin and R. M. Keller, ‘‘The gradient model load

balancing method,’’ IEEE Tran. Software Engineering

13, 1987, pp. 32-38.

[14] Zaki, M. J., Li, W. and Parthasarathy, S. : Customized

dynamic load balancing for a network of workstations.

Proceedings of the 5th IEEE Int. Symp., HPDC (1996)

282-291.

[15] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and

Distributed Computation: Numerical Methods.

Englewood Cliffs, NJ: Prentice-Hall.

[16] K.M. Baumgarther, R. M. Kling, and B.W. Wah,

“Implementation of GAMMON: An efficient load

balancing strategy for a local computer system,” in Proc.

1989 Int. Conf Parallel Processing, Vol. 2, Aug. 1989,

pp. 77-80.

[17] William Leinberger, George Karypis, Vipin Kumar,

“Load Balancing Across Near-Homogeneous Multi-

Resource Servers”, 0-7695-0556-2/00, 2000 IEEE.

[18] H.S. Stone, “Critical Load Factors in Two-Processor

Distributed Systems,” IEEE Trans. Software Engg., Vol.

4, No. 3, May, 1978.

[19] C.H. Lin and R.M. Keller, ‘‘The gradient model load

balancing method,’’ IEEE Tran. Software Eng., vol. 13,

no. 1, pp.32-38, Jan. 1987.

[20] G.C. Fox, ‘‘A review of automatic load balancing and

decomposition methods for the hypercube,’’ California

Institute of Technology, C3P-385, Nov. 1986.

IJCATM : www.ijcaonline.org

