
International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

34

Adaptive Hybrid Methods for Cooperative Caching

Consistency in Mobile Ad-Hoc Networks

Ahmed A. A. Gad-Elrab
Department of Mathematics, Faculty of Science

Al-Azhar University, Cairo, Egypt

ABSTRACT

In mobile environment, enhancing data consistency among

data caches by mobile clients and data residing in a server

is a big problem due to the mobility of nodes. Many

updating schemes have been proposed to solve this

problem. However, these updating schemes produce a high

updating cost which consumes most of the limited

resources of mobile clients as battery power. In this paper,

to solve this problem, an adaptive hybrid data-based cache

consistency scheme is proposed. The proposed scheme

classifies the data items into push data items and pull data

items. Push data items need to be updated periodically by

their owners while pull data items are updated based on the

request of their cache nodes. Also, the new scheme

proposes two updating methods which are called separate

path method and k-path tree method. In the first method, the

updating mechanism uses separate paths to send update

data to cache nodes of a certain data item. While the second

method constructs a k path tree among cache nodes, then it

sends the updating data through this tree, level by level. In

addition, the proposed scheme does not only give the

ability of sending update data to the owner of data, but also

it gives this ability to any cache node that has the data

items. Therefore, the proposed scheme can maintain the

data consistency, decrease unnecessary communication

overhead, and reduce access latency. The results of

conducted simulations have shown that the proposed

consistency scheme is much better than existing methods.

General Terms

Data management, Mobile Ad-Hoc

Keywords

MANETs, caching, cache management, communication

overhead, cache consistency.

1. INTRODUCTION
Recently, mobile ad hoc networks (MANETs) have a great

attention from researchers due to their importance in many

applications and situations as data gathering, disaster

scenarios, and data dissemination. MANETs are

infrastructure-less wireless networks that depend on

multiple hops for communication and they use access

points (APs) only for connecting to outside distributed

networks as the Internet. MANETs are different from

Infrastructure-dependent networks which are confined with

single-hop wireless communication and rely on base

stations or APs to forward messages that are sent or

received by the mobile nodes.

All mobile devices in MANETs are distributed over an area

in which access to external data is achieved by being

directly connected to APs through one or more mobile

nodes. These nodes known as router nodes to other mobile

nodes for accessing the APs. In MANETs, the query delay

for receiving responses to queries may be is very high, if

there is a large number of mobile nodes that access APs

which produces a heavy traffic in the network. In addition,

MANETs have less stable wireless links and high

bandwidth utilization to deal with its dynamic topology.

Also, the energy utilization and mobility of users are the

most important challenges in deciding the access latency

and network overhead. Thus, in such dynamic networks, the

cooperation among all mobile nodes is very important to

perform their tasks in efficient and effective ways.

The biggest problem in MANETs is data query

management which aims to find an efficient policy for

responding to each data request initiated by mobile nodes

such that the energy consumption and the query delay are

minimized. The most efficient solution to this problem is

data caching. Data caching is a policy to store and

distribute data items at different mobile nodes in the

networks to improve the overall network performance by

minimizing heavy traffic occurring on the data owner and

reducing the access latency that are existed by user queries.

These nodes are called cache nodes. In addition, the cached

data may be shared among multiple mobile users through

the network. Hence, cooperative caching is needed for

minimizing the load on the data owner which replies alone

for all possible user requests. Moreover, the query delay

can be minimized by eliminating traversing multiple hops

to reach the data owner and it can be directed to any nearby

cache node that has a data item.

The information retrieval process in such dynamic network

is very difficult. In addition, the cached information in any

cache node must be identical to the same information

present in the data owner. This identicalness represents the

consistency degree of data items in the network. Therefore,

maintaining the consistency degree among all cache nodes

for any data item is difficult to be guaranteed. Thus,

effective and efficient data consistency methods are needed

to improve the data consistency in such mobile networks by

considering user requirements, energy consumption, query

delay, and network traffic.

In this paper, new cache consistency scheme called an

adaptive push-pull data-based cache consistency scheme is

proposed. The proposed scheme classifies the data items

into push data items and pull data items based on their

owner’s decision. This classification is known as data level

classification because it depends on the data itself while

some of existing schemes depend on a node level

classification which classifies the mobile nodes into push

and pull node. In the proposed scheme, push data items

need to be updated randomly or periodically by their

owners while pull data items are updated based on the

request of their cache nodes. Also, the new scheme

proposes two updating methods which are called separate

path method and k-path tree method. In the first method,

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

35

the updating mechanism uses separate paths for sending

update data to all cache nodes of a certain data item. While

the second method constructs a k paths tree among all

cache nodes, then it sends the updating data through this

tree, level by level. In addition, the proposed scheme does

not only give the ability of sending update data to the

owner of data, but also it gives this ability to any cache

node that has the data items. With this authority, the

proposed scheme can maintain the data consistency,

decrease unnecessary communication overhead, and reduce

access latency.

2. RELATED WORK
A lot of caching schemes have been proposed to improve

the information retrieval, deliver higher data availability

[1], [2], [3] and increase the data consistency [4], [5], [6] in

mobile environments. There are three main categories of

cache consistency schemes: push-based schemes which rely

on the data owner or the server for cache updates, pull-

based schemes which are client-based and attain cache

updates on requests to the data owner or the server, and

hybrid schemes which use push and pull policies based on a

client decision where a client can select to receive the

updating periodically from the server as push-based scheme

or when the client ask the server for new update as pull-

based scheme. Many of the cache consistency schemes

either adopt push-based or pull-based techniques. For

instance, [5] and [7] rely on pull-based cache-initiated

consistency management schemes while [4] and [8] use

push-based server update mechanisms.

In push-based schemes, the owner of data or server uses the

update activities of each data item to send a report to its

cache nodes. Yin et al. [6] proposed a generalized cache

replacement policy for mobile environment called IR

method. In IR method, the server creates an IR entry list

which carries the updated IDs of data items and the time

stamps of the updated history. Then the server broadcasts

these IRs periodically in the network. If a client node wants

to generate a new query for requesting a certain data item,

first it waits for the periodic IR to validate its cache. If its

cache is valid, then the query is transmitted. If it is invalid

or modified, it usually waits for the next periodic IR. Also,

Cao et al. [9] proposed an IR-based algorithm to reduce

network traffic. Krishnamurthy et al. [4] proposed a

piggyback invalidation scheme called PSI mechanism to

maintain a cache coherency in Web proxy caches to reduce

overall costs. In PSI mechanism, servers are piggybacking

the list of resources that have changed since the last access

by a client on a reply to the proxy client. Then, the proxy

client invalidates cache entries on the list and it can extend

the lifetime of entries not on the list.

In pull-based schemes, the updating process is based on the

requests that issued by cache nodes. There are two common

categories of pull-based algorithms, time to live (TTL)

algorithms and client validation algorithms. In TTL

algorithms, each cache node stores a TTL value which is

assigned by the server in its cache. Several TTL-based

algorithms have been proposed. In [10], Cao et al. proposed

an adaptive TTL-based cache consistency scheme. In [11],

an adaptive algorithm was discussed to maintain

consistency within a client server-based mobile network.

Tang et al. [12] described a TTL-based consistency scheme

for unstructured peer-to-peer networks which have millions

of nodes that share data through searching and replication.

However, replication can improve the data sharing but in

turn it complicates data consistency. In [13], Jung et al.

proposed a fixed TTL algorithm.

 While in client validation algorithms, a client sends

validation requests to the server based on certain criteria,

then the server use a validation process. In this validation

process, if the data are not an identical copy of the same

data on the server, then the server responds with an invalid

data message or a valid data message. An invalid message

means that the data were modified and changed while a

valid message means that the data were not modified or

changed. It is very much like piggyback cache validation

[5]. In [14], an invalidation report (IR)-based cache

invalidation algorithm, which can significantly reduce the

query latency and efficiently utilize the broadcast

bandwidth, was proposed. The IR-based cache invalidation

leads to two major drawbacks. First, when the server

updates a hot data item, all clients must query the server

and get the data from the server separately, which wastes a

large amount of bandwidth. Second, there is a long query

latency associated with this solution since a client cannot

answer the query until the next IR interval.

In hybrid schemes, a client decides to receive periodically

updates from the server as push policy or receive an update

data when a client requests new update from the server as

pull policy. In [15], Selvin et al. proposed push-pull cache

consistency mechanism for cooperative caching in mobile

ad hoc environments called 2P2C mechanism. In 2P2C,

client nodes are classified into push and pull nodes as a

node level classification by using a registration process.

This registration process is performed by each client in the

network. In this registration process, each client decides to

be a push or pull client. Based on this registration process,

2P2C mechanism follows both a server-based consistency

scheme and a client-based consistency scheme. In addition,

both the server and the cache nodes can accept client

registrations messages. However, 2P2C may not achieve a

high consistency degree, because the pull clients may have

non-identical copies of the same data item.

Most of existing schemes do not meet all required issues

for information retrieval and data consistency as

minimizing communication overhead, minimizing network

traffic, minimizing energy consumption, and maximizing

the consistency degree of data items in the networks.

3. CACHE CONSISTENCY PROBLEM

IN MOBILE AD-HOC NETWORKS
The cache consistency problem in MANETs, CCPM, is

how to keep all copies of a certain data item in the system

with last update content by considering the consumed

energy for updating operation, the update time delay, and

the mobility nature of MANETs. In the rest of this section,

the assumptions and models will be introduced then the

CCPM will be formulated.

3.1 Assumptions and Models
Mobile ad-hoc networks consists of a set of mobile nodes, MN =

{mn1, mn2, …, mni, … , mnK} and each mobile node, mni, has a

limited cache Ci and a limited battery, Ei. A set of data items, DI =

{d1, d2, …, dj, … , dR} where each data item dj can be distributed and

cached at different mobiles nodes in the networks based on the

issued requests by the mobile nodes and the available size of their

cache memory. The set of copies of each data item dj is denoted as

RDj = {rd j,1, rdj,2, …, rdj,x, …, rdj,Xj}. We assume that each mobile

node can request a certain data item from its owner or from any

nearby cache node that has a copy of this data item. We assume that

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

36

the owner of each data dj can send an update for all mobile nodes in

the system that have a copy of this data items. Any mobile node that

has a copy of any data item is called a cache node, cni. We assume

that each update operation for any data item in the system is

numbered by an integer value, unj in ascending order as 1, 2, 3, ...,

and so on. We assume that each cache node has a list of copies of

some of data items which is denoted as CDi . We assume that each

mobile node that receives an update operation from the owner or

from any other cache node for updating a certain data item dj in its

cache, will store the data item id, the number of last update number

of this data item, luj, and the time of received update, truj in an array

structure called Stored Update Copies, SUC as shown in Fig.1. We

assume that any cache node in the system has an array structure

called Cache Nodes Info, CNI, to store all information about all

nodes that receive a copy of a certain data item from this

Fig. 1: SUC, Structure of Stored Update Copies

Fig. 2: CNI, Structure of Cache Node Info.

cache node as node id, Nid and list of data item copies with its

sending time pairs, (rdj,x, stj,x). CNI is shown in Fig.2. In any update

operation of a data item dj, the owner will send an update message

that contains the new content of data item and the number of current

update, unj. Then the cache node that receives this message, will

update its SUC and resend the same message to its related cache

nodes that exist in its CNI. The total cost of each update operation is

based on the consumed energy, uCE(dj, unj), and the update time

delay, uTD(dj, unj), which represents the total time interval for

arriving the update message to each cache node. uCE(dj, unj) and

uTD(dj, unj) are defined as follows.

where uce(rdj,p, unj) and utd(rdj,p, unj) are the consumed energy and

the total time delay for updating all copies of data item dj , by the

operation number unj, respectively.

By using Equations 1 and 2, for a data item dj, the total cost of its

update operation is defined as follows.

where w1 and w2 are weight values that represent the importance

degree of the consumed energy and the delay time for the system,

such that w1 + w2 = 1. By using Equation 3, the total cost for all data

items is defined as follows.

where Hj is the total number of update operations for data item dj .

 In addition, we assume that the cache consistency can be measured

by computing the number of cache nodes that have the last update

number of a data item dj which can be found in SUC of each cache

node. Here, we define the consistency as a ratio of number of cache

nodes that have the last update number to the total number of cache

nodes of a data item dj. This ratio is called consistency degree,

cDeg(dj) and is defined as follows.

 Where MCN(dj) and CN(dj) are the set of cache nodes that have the

last copy of data item dj and the set of all cache nodes that have a

copy of data item dj, respectively. By using Equation 5, the final

consistency degree for all data items in DI is equal to the average of

all consistency degrees of all data items and is defined as follows.

 3.2 Problem Formulation
The main objective of CCPM is maximizing the consistency degree

and minimizing the total cost of updating operations for each data

item. So, CCPM is an optimization problem and is formulated as

follows.

such that

constraint 8 means that the consumed energy for updating copies of

each data item dj must be less than or equal to a predefined

threshold for the consumed energy called CETdj. Constraint 9

means that the update time delay for updating copies of each data

item dj must be less than or equal to a predefined threshold for the

time delay called TDTdj. Constraint 10 means that the total size of

the cached data items in each node must be less than or equal to the

available size of its cache. Constraint 11 means that the total

consumed energy by a node for sending and receiving update

messages is less than or equal to the available energy of its battery.

4. THE PROPOSED ADAPTIVE CACHE

CONSISTENCY METHODS
In this section, to solve the CCPM problem in MANETs, a new

updating scheme called an Adaptive Push-Pull Data-Based for

Caching Consistency, A2PD2C is proposed. The basic idea

of A2PD2C is based on (1) Data classification: which means that

classifying the set of data items into push data items and pull data

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

37

items. In other words, the determination of push or pull data

depends on the data level and it did not depend on the node level as

in 2P2C scheme [15]. (2) Data updating: which means that each

owner of data items will send periodically update messages for

updating all push data items that are cached on other mobile nodes.

Whereas for any pull data item, the owner will send the update

message to all mobile nodes which has cached copies of this pull

data item if a certain mobile node asked for the updating version.

Based on this basic idea, A2PD2C can keep all data items with high

consistency level and it can minimize the overhead of the updating

process which produces a large amount of sending and receiving

messages.

4.1 The Proposed Scheme
The proposed scheme A2PD2C consists of three modules: Marking

module, updating module, and replacement module. These three

modules are described as follows.

4.1.1 Marking module
In this module of A2PD2C, each owner of data items marks each

data item with a bit flag called Update Type Flag (UTF). The value

0 of UTF means that this data item is pull data item while the value

1 means that this data item is push data item. By using this UTF

value, each cache node that has a set of cached data items can

classify their cached data items into push data items (all cached

items with UTF =1) and pull data items (all cache items with

UTF=0).

4.1.2 Updating module
In this module of A2PD2C, each owner of data items sends an

update message for each push data item periodically by determining

the best value of updating interval for sending this update message.

While for pull data item, the owner node will send an update

message if at least one of cache node for this data item asked for

updating the data. Here, the problem is how the new update

message for a certain data item can be sent to all cache nodes such

that the total cost of updating process is minimized. In other words,

how to minimize the number of traversing messages for sending a

new update data to all cache nodes. To achieve this goal, A2PD2C

proposes two different methods for sending any new update data

message. These two methods are described as follows.

Fig. 3: Updating example by using SPM.

The first method is called Separate Path Method (SPM). In this

method, A2PD2C sends the new updating data along a separate

path for each cache node. For example, if a node mni has a data item

dj, and there are B cache nodes that have a copy of this data item. If

mni wants to send a new updating data to these B nodes, it will send

this new message along B routing paths, separately, as shown in

Fig.3. This SPM will be used by each owner node and each cache

node to process the updating data message.

Fig. 4: Updating example by using kPTM.

The second method is called k-Path Tree Method (kPTM). In this

method, A2PD2C sends the new updating data by using a tree

structure with k roots as follows.

1. Assume that there is H cache nodes in CNI list of the owner

of data (cache node) of data item dj.

2. kPTM selects k nodes of CNI list, where k ≥ 2.

3. For the reminder number of (H - k) nodes in CNI list, kPTM

constructs k groups of nodes. Each group of nodes is denoted

as g(cns,dj, l) where 1 ≤ s ≤ k and l represents the tree level

in constructed tree for kPTM. The value of l is started with 0

(level 0, the first level at owner node), and is ended with

maxLVk (last level of the constructed tree). The value of

maxLVk depends on the number of cache nodes in CNI list,

H. Here, each g(cns, dj, l) can contain some elements of CNI

or is empty group such that

4. kPTM sends the new updating data to each node of the k

selected nodes and associates each message with one of the

constructed groups.

5. Each selected node of k nodes that receives the updating data

will select new k nodes from the received group of nodes,

g(cns,dj, l) and repeat steps 3 and 4.

6. kPTM will repeat this process until all cache nodes receive the

updating data. The last node receives this updating message

represents the maxLVk level of the constructed updating tree,

UTkPTM. Fig.4. shows an example of kPTM method.

4.1.3 Replacement module

Due to the limited size of the cache in each mobile node in

MANETs, the most important issue is not only the cache update,

but also the cache replacement, which means which data item in the

cache must be replaced by a new received data item. There are a lot

of replacement schemes that have been proposed in the literature

[16], [17], [18], [19], [20], [21]. In [21], Ahmed et al. proposed a

new replacement scheme called PMCR for mobile

environments. PMCR selects the data items for replacing

from the cache based on Markov Model, predicted region,

and cost function. To determine the radius of a predicted

region, PMCR uses the root-mean squared distance. The

replacement scheme is out of scope of this paper, so A2PD2C uses

PMCR as a cache replacement strategy. The three modules

architecture of A2PD2C is shown in Fig.5.

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

38

Fig. 5: Three modules architecture of A2PD2C.

4.2 Updating Cost and Time Complexity of

A2PD2C
To show the efficiency of the proposed scheme A2PD2C, in this

section the time complexity of A2PD2C will be determined for the

two-proposed updating methods SPM and kPTM. Also, the

updating cost of two methods which is based on the number of

sending and receiving updating messages along all paths from the

owner of the data item to the cache nodes. Assume that the current

number of cache nodes for data item dj which is owned by mni is B

nodes. Assume that the path length from mni to any cache node is

PL(mni , cnb), 1 ≤ b ≤ B.

The updating cost of SPM and kPTM depends on the path length of

routing paths from the owner of the data item to the cache nodes.

But the two methods have different values which can be calculated

as follows.

For SPM, the updating cost, UCSPM(mni, dj), is equal to the sum of

all updating costs along the separate paths to the cache nodes and is

determined by the following equation.

While for kPTM, the updating cost, UCkPTM(mni, dj), is equal to the

sum of all updating costs along all k tree branches to all cache nodes

and depends on the maximum number of levels, maxLVk, in the

updating tree. This cost is determined by the following equation.

The time complexity of SPM, TCSPM, is based on the path length of

routing paths from the owner of the data item to the cache nodes.

Thus, the time complexity of SPM method is defined as follows.

While the time complexity of kPTM, TCkPTM , is based on the

maxLVk value of the last level in the constructed tree. Thus, the

time complexity of kPTM method is defined as follows.

 Here, the value of maxLVk depends on the number of cache nodes

of a data item dj which is B. So, the determination of maxLVk value

is demanded for getting the values of UCkPTM and TCkPTM. To

determine this value, the following theorems and their proofs are

introduced as follows.

Theorem 1: For kPTM method, if the number of cache nodes is B

and the dividing value is k for any data item dj , then the number of

reminder nodes, NRNi , for each branch in a level i of its updating

tree, UTkPTM is determined by the following equation.

Proof: Here, Theorem 1 will be proofed by using the mathematical

induction based on the level value l as follows.

Step 1: for l = 1 (level 1), the number of reminder nodes after

selecting k nodes is (B-k) nodes and after constructing k groups of

the reminder nodes, then the number of reminder nodes for each

branch in this level is determined as follows.

multiply the right-hand side of equation 18 by

 , we get

thus, equation 17 is true at l = 1.

Step 2: for l = q (level q), assume that equation 17 is true and

Step 3: for l = q+1 (level q+1), the number of nodes in the received

set of cache nodes is NRNq at any node in level q+1. By applying

kPTM at level q+1, the number of reminder nodes is determined as

follows.

by substituting from equation 20 in equation 21, we get

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

39

from equation 25, we get that equation 17 is true at i = q+1. Thus,

theorem 1 is proofed.

Theorem 2: For kPTM method, if the number of cache nodes is B

and the dividing value is k for any data item dj , then the maximum

number of levels, maxLVk, of its updating tree, UTkPTM, is

determined by the following equation.

Proof: by using Theorem 1, the number of reminder nodes for

each branch in any level l is defined as follows.

assume that level l is equal to maxLVk , so the number of reminder

nodes for each branch at level maxLVk is equal to zero. Thus

by taking the Log function for base k, we get

From equation 31, Theorem 2 is proofed.

 Fig. 6: Comm. overhead vs. request rate Fig. 7: Total traffic vs. request rate Fig. 8: Query delay vs. request rate

 Fig. 9: Consistency degree vs. request rate Fig. 10: Hit ratio vs. request rate

5. SIMULATION AND RESULTS
In this section, the evaluation of the proposed scheme A2PD2C is

introduced by comparing the two proposed updating methods with

2P2C scheme [15]. OMNet++ Simulator [22] is used to simulate the

proposed A2PD2C and 2P2C schemes. OMNet++ is a network

simulator that is widely employed to simulate a layered environment

in wired or wireless environments. The simulation settings and

parameters are summarized in Table 1.

Table 1. Simulation Parameters

Simulation Parameter Value

Area size 500m x 500m

Mobility model Random Way Point (RWP)

of mobile nodes 15 … 75

Speed of a mobile node 1, 2, 3, 4, 5, 6 m/s

Cache size 50…250

Request rate 2, 4, 6, 8, 10

Update rate 2, 4, 6, 8, 10

Split values, k 1… 6

Here, mobile nodes are made to move in a 500 m × 500 m area for a

simulation time of 900s. A random way point model is adopted as a

mobility model for all mobile nodes in the simulation setup. For

analysis, traffic, delay, update rate, speed of a node, request rate, and

cache size are considered as simulation parameters. Also, each

experiment is repeated 5 times and the average was taken. The

used performance metrics are described as follows.

 Communication overhead: This is the overhead that arises

due to transmissions of additional messages to maintain

consistency between the cache clients and the server. It is

represented in terms of number of messages/second.

 Traffic: This traffic includes requests for an item,

forwarding of the requests, and replies for the requests. It is

given in terms of number of messages/second.

 Query delay: The delay between the query requests and the

time at which the data arrive at the requesting.

 Consistency degree: This is the ratio of number of cache

nodes that have the last update of a certain data item to their

total number of cache nodes in the network.

 Hit ratio: This is used to determine the success rate of

requests generated within the network. Here the hit ratio is

classified into three classes, namely:

o Local cache hit, LCH: This type of hit arises if the

requested data are present in the cache of the requestor node

itself.

o Cache node hit, CNH: If the requests are serviced by

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

40

intermediate cache nodes, then it leads to a cache node hit.

o Server hit, SH: In this case, all the previous attempts end up

with a miss, and then the request is forwarded to wards the

server, which in turn serves the requestor with the desired

data.

5.1 Different request rate
Fig.6, Fig.7, Fig.8, Fig.9, and Fig.10 show the communication

overhead, total traffic, query delay, consistency degree, and hit ratio

of SPM, kPTM, and 2P2C against different values of request rate

when the number of data items was 10, the number of nodes was 30

nodes, the update rate was 2, the cache size was 100MB, and the

mobile node speed was 1m/s. As shown in Fig.6, the communication

overhead increases as request rate increases, this is because the

existence of increasing in request rate will increase the number of

cache nodes in the network for each data item. Thus, a higher

number of communication messages are needed to maintain the

consistency degree among all cache nodes. In addition, as shown in

Fig.6, the communication overhead of SPM is much larger than

kPTM and 2P2C methods. This is because SPM uses a normal path

from owner of a data item to a cache node while kPTM uses a tree

structure to send update messages for all cache nodes and 2P2C

sends update messages based on normal path but with a node level

(push or pull node). Also, as shown in Fig.6, for higher values of the

request rate, kPTM is better than 2P2C method, this because kPTM

sends update messages based on data level (push or pull data) while

2P2C uses a node level for maintaining consistency degree among

cache nodes. As shown in Fig.7, the total traffic increases as request

rate increases, this is because the increasing in request rate will

increase the number of cache nodes for each data item and increase

the number of forwarding and replying messages in the network. In

addition, the total traffic for the three methods is almost the same.

 Fig. 11: Comm. overhead vs. update rate Fig. 12: Total traffic vs. update rate Fig. 13: Query delay vs. update rate

 Fig. 14: Consistency degree vs. update rate Fig. 15: Hit ratio vs. update rate

As shown in Fig.8, the query delay decreases as request rate

increases, this is because the increasing in request rate will increase

the number of cache nodes in the network for each data item. Thus,

any cache node or a local cache of a node can reply to data request

directly without a need to forward the request to the owner node.

This replying will minimize the query time delay. In addition, as

shown in Fig.8, for low values of request rate, the query delay of

SPM and 2P2C is less than the query delay of kPTM while for the

higher values, the query delay of the three methods is almost the

same. As shown in Fig.9, the consistency degree increases as request

rate increases, this is because the existence of increasing in request

rate will increase the number of cache nodes in the network for each

data item. Thus, a higher number of updating messages are needed

to maintain the consistency degree among all cache nodes. In

addition, as shown in Fig.9, the consistency degree of SPM is much

larger than kPTM and 2P2C methods. This is because SPM uses a

normal path from owner of a data item to each cache node which

increases the success possibility to reach the destination cache nodes.

While kPTM uses a tree structure to send any update message for all

cache nodes and 2P2C sends update messages based on normal path

but with a node level. Also, as shown in Fig.9, the consistency

degree of kPTM and 2P2C is almost the same. As shown in Fig.10,

the server ratio decreases as request rate increases while the local hit

ratio and cache hit ratioincrease as request rate increases. this is

because the increasing in request rate will increase the number of

cache nodes for each data item and increase the number of data items

in a local cache of a node. In addition, the local hit ratio and cache hit

ratio of the proposed method SPM and kPTM are better than 2P2C

method.

5.2 Different update rate
Fig.11, Fig.12, Fig.13, Fig.14, and Fig.15 show the communication

overhead, total traffic, query delay, consistency degree, and hit ratio

of SPM, kPTM, and 2P2C against different values of update rate

when the number of data items was 10, the number of nodes was 30

nodes, the request rate was 2, the cache size was 100MB, and the

mobile node speed was 1m/s. As shown in Fig.11, the

communication overhead increases as update rate increases, this is

because as update rate increases a required number of

communication messages are needed to maintain the consistency

degree among all cache nodes. In addition, the communication

overhead of SPM is much larger than kPTM and 2P2C methods.

This is because using of updating tree and the using of node level

concept in kPTM and 2P2C, respectively, decreases the required

number of communication messages. While SPAM uses a normal

path from owner of a data item to a cache node 2 which increases the

required number of communication messages. Also, for higher

values of an update rate, kPTM is better than 2P2C method, this is

because kPTM uses a data level approach to send update messages

while 2P2C uses a node level approach for maintaining consistency

degree among cache nodes. As shown in Fig.12, the total traffic

increases as update rate increases, this is because the increase in

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

41

update rate produces a high number of forwarding messages in the

network. In addition, the total traffic of kPTM is better than SPM and

2P2C methods. As shown in Fig.13, the query delay increases as

update rate increases, this is because as update rate increases, the

number of messages that will cross through the network increases

which maximize the query delay for each crossing message. In

addition, the query delay of SPM and kPTM is lower than 2P2C

method, this is because the two proposed methods use data level

approach while 2P2C uses node level approach. Also, the number of

cache nodes with last update content in case of SPM and kPTM may

be larger than 2P2C which can reply with the required data with

small delay. As shown in Fig.14, the consistency degree increases as

update rate increases, this is because sending more updating

messages with high update rate can maintain the consistency of data

items more accurately. In addition, the consistency degree of SPM

and kPTM is much better than 2P2C method. This is because SPM

and kPTM use data level policy while 2P2C sends update messages

based on normal path but with a node level. Also, the consistency

degree of SPM is larger than kPTM. As shown in Fig.15, the server

hit ratio, the local hit ratio and cache hit ratio are changeable as

update rate increases. This is because the update rate does not effect

on the hit ratio of data items.

5.3 Different number of data items
Fig.16, Fig.17, Fig.18, Fig.19, and Fig.20 show the communication

overhead, total traffic, query delay, consistency degree, and hit ratio

of SPM, kPTM, and 2P2C against different number of data items

when the number of nodes was 30 nodes, the request rate was 2, the

 Fig. 16: Comm. overhead vs. # of data items Fig. 17: Total traffic vs. # of data items Fig. 18: Query delay vs. # of data items

 Fig. 19: Consistency degree vs. # of data items Fig. 20: Hit ratio vs. # of data items

update rate was 2, the cache size was 100MB, and the mobile node

speed was 1m/s. of the proposed method SPM. As shown in Fig.16,

the communication overhead increases as number of data items

increases, this is because the growth in number of data items will

increase the number of cache data items. Thus, a higher number of

communication messages are needed to maintain the consistency

degree for all cache data. In addition, the communication overhead

of SPM is much larger than kPTM and 2P2C methods. This is

because SPM uses a normal path from owner of a data item to a

cache node while kPTM uses a tree structure to send update

messages for all cache data and 2P2C sends update messages based

on normal path but with a node level. Also, the communication

overhead kPTM is lower than 2P2C method, this because kPTM

sends update messages based on data level, while 2P2C uses a node

level for maintaining consistency degree for all cache data. As

shown in Fig.17, the total traffic increases as number of data items

increases, this is because as number of data items increases, the

number of forwarding and replying messages increases. In addition,

the total traffic of the two proposed methods is much lower than

2P2C method and kPTM are better than 2P2C method. As shown in

Fig.18, the query delay increases as number of data items increases,

this is because the increase in number of data items will increase the

number of updating, forwarding and replaying messages through the

network which will affect the time delay for each query. In addition,

the query delay of SPM and kPTM is lower than the query delay of

2P2C. As shown in Fig.19, the consistency degree increases as

number of data items increases, this is because with a specific update

rate, the increase in number of data items improves the average

consistency degree among all data items in the network. In addition,

as shown in Fig.19, the consistency degree of SPM and kPTM is

larger than 2P2C method. This is because SPM uses data level

approach while 2P2C sends update messages based on normal path,

but with a node level approach. As shown in Fig.20, the local hit

ratio decreases as number of data items increases, the cache hit ratio

is changeable as number of data items increases, and the server hit

ratio increases as number of data items increases. This is because

when the number of data items increases the cache of each node

does not keep each cache data item for long time. So, the number of

replying messages by the owner of data item increases and it will

receive a large number of requests. In addition, the local hit ratio and

cache hit ratio of the proposed methods SPM and kPTM are better

than 2P2C method.

5.4 Different speeds of a mobile node
Fig.21, Fig.22, Fig.23, Fig.24, and Fig.25 show the communication

overhead, total traffic, query delay, consistency degree, and hit ratio

of SPM, kPTM, and 2P2C against different values of mobile node

speed when the number of data items was 10, the number of nodes

was 30 nodes, the request rate was 2, the update rate was 2, and the

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

42

cache size was 100MB. As shown in Fig.21, the communication

overhead increases as mobile node speed increases from 1m/s to

4m/s while it decreases as mobile node speed increases from 5m/s to

6m/s. This is because with higher mobile node speed some of

communication messages for updating cannot be received by cache

nodes, so the number of communication messages will be decreased

through the network. In addition, as shown in Fig.21, the

communication overhead of SPM is much larger than kPTM and

2P2C methods. This is because SPM uses a normal path from owner

of a data item to a cache node while kPTM uses a tree structure to

send update messages for all cache nodes and 2P2C sends update

messages based on normal path but with a node level. As shown in

Fig.22, the total traffic increases as mobile node speed increases

from 1m/s to 4m/s while it decreases as mobile node speed increases

from 5m/s to 6m/. This is because with higher mobile node speed

some of nodes cannot communicate to each other and cannot

forward or reply to the requested nodes in the network. In addition,

for lower values of mobile node speed, the two proposed methods

achieve lower traffic than 2P2C. While for higher speed values,

2P2C achieves lower values of traffic than SPM and kPTM. As

shown in Fig.23, the query delay increases as mobile node speed

increases from 1m/s to 4m/s while it decreases as mobile node speed

increases from 5m/s to 6m/s. This is because with higher values of

mobile node speed, the number of requested queries will be small

due to fast change in network topology which effect on the

connection among nodes in the network. In addition, the query delay

of SPM and kPTM is less than the query delay of 2P2C.

As shown in Fig.24, the consistency degree decreases as mobile

node speed increases, this is because some of cache nodes cannot

receive the update data message due to the dynamic change of

network topology and some of network disconnections may exist. In

addition, the consistency degree of SPM is larger than kPTM and

2P2C methods.

 Fig. 21: Comm. overhead vs. speed Fig. 22: Total traffic vs. speed Fig. 23: Query delay vs. speed

 Fig. 24: Consistency degree vs. speed Fig. 25: Hit ratio vs. speed

This is because SPM uses a normal path from owner of a data item

to a cache node which increases the success possibility to reach the

destination cache nodes, while kPTM uses a tree structure which

cannot be stable with some high-speed values, and 2P2C sends

update messages based on normal path but with a node level (push

or pull node). As shown in Fig.25, the server ratio increases as

mobile node speed increases, while the local hit ratio and cache hit

ratio decrease as request rate increases. this is because the increasing

in mobile node speed will decrease the number of cache nodes for

each data item and decrease the number of data items in a local

cache of a node. In addition, the local hit ratio and cache hit ratio of

the proposed methods SPM and kPTM are better than 2P2C method.

5.5 Different cache sizes
Fig.26, Fig.27, Fig.28, Fig.29, and Fig.30 show the communication

overhead, total traffic, query delay, consistency degree, and hit ratio

of SPM, kPTM, and 2P2C against different values of cache size

when the number of data items was 10, the number of nodes was 30

nodes, the request rate was 2, the update rate was 2, and the mobile

node speed was 1m/s. As shown in Fig.26, the communication

overhead increases as cache size increases. This is because, for

higher values of cache size in each node, the mobile node can store

many data items, and they need to communicate with the data owner

or the server to update their data items which will increase the

number of messages to maintain the data consistency. In addition, as

shown in Fig.26, the communication overhead of kPTM is much

lower than SPM and 2P2C methods. This is because kPTM uses a

tree structure to send update messages for all cache nodes, while

SPM and 2P2C send update messages based on normal path with

data level and node level policies, respectively. As shown in Fig.27,

the total traffic increases as cache size increases from 50MB to

150MB, while it decreases as cache size increases from 200MB to

250MB. This is because for lower cache size, the mobile node can

store few data items, so they will send many requests through the

networks which maximize the number of forwarding and replying

messages. While for higher cache size, the mobile node can several

data items, so they do not need to send many requests through the

networks which minimize the number of forwarding and replying

messages. In addition, the total traffic for the two proposed methods

is lower than 2P2C method. As shown in Fig.28, the query delay

decreases as cache size increases from 50MB to 150MB while it

decreases as cache size increases from 200MB to 250MB. This is

because, for higher cache size, the mobile node can store several data

items and they can find the required data item in its cache or in a

nearby other cache node with small delay time. In addition, as shown

in Fig.28, the query delay of SPM and kPTM methods is less than

the query delay of 2P2C method. As shown in Fig.29, the

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

43

consistency degree decreases as cache size increases, this is because

the existence of a large number of different data items in each cache

node which will effect on the whole consistency degree of all data

items. In addition, as shown in Fig.29, the consistency degree of

SPM and kPTM is larger than 2P2C method. As shown in Fig.30,

the server ratio and the cache hit ratio decrease as cache size

increases while the local hit ratio increases as request rate increases.

This is because existence of a large cache size will maximize the

local hit ratio for a node by fetching its local cache which stores

several data items. In addition, the local hit ratio and cache hit ratio

of the proposed methods SPM and kPTM are better than 2P2C

method.

5.6 Different number of mobile nodes
Fig.31, Fig.32, Fig.33, Fig.34, and Fig.35 show the communication

overhead, total traffic, query delay, consistency degree, and hit ratio

of SPM, kPTM, and 2P2C against different number of mobile nodes

when the number of data items was 10, the request rate was 2, the

update rate was 2, the cache size was 100MB, and the mobile node

speed was 1m/s. As shown in Fig.31, the communication overhead

increases as number of mobile nodes increases, this is because the

increasing in number of mobile nodes will increase the number of

data requests for data items and will increase the number of cache

nodes through the network. Thus, a higher number of

communication messages will be transferred to maintain the

consistency degree among all cache nodes.

 Fig. 26: Comm. overhead vs. cache size Fig. 27: Total traffic vs. cache size Fig. 28: Query delay vs. cache size

 Fig. 29: Consistency degree vs. cache size Fig. 30: Hit ratio vs. cache size

In addition, as shown in Fig.31, the communication overhead of

SPM is much larger than kPTM and 2P2C methods. This is because

SPM uses a normal path from owner of a data item to a cache node

while kPTM uses a tree structure to send update messages for all

cache nodes, and 2P2C sends update messages based on normal path

but with a node level policy. Also, as shown in Fig.31, for higher

values of number of mobile nodes, kPTM is better than 2P2C

method, this because kPTM sends update messages based on data

level policy, while 2P2C uses a node level for maintaining

consistency degree among cache nodes. As shown in Fig.32, the

total traffic increases as number of mobile nodes increases, this is

because the increasing in number of mobile nodes will increase the

number of cache nodes for each data item and increase the number

of forwarding and replying messages in the network. In addition, the

total traffic for the kPTM is lower than SPM and 2P2C methods. As

shown in Fig.33, the query delay increases as number of mobile

nodes increases from 15 to 30 nodes while it decreases when number

of mobile nodes increases from 45 to 75 nodes. This is because if

there is a low number of mobile nodes, a small number of messages

will be generated through the network which will not affect the time

delay for each query while if there is a high number of mobile nodes,

many messages through the network will be generated which will

effect on the time delay for each query. In addition, as shown in

Fig.33, the query delay of SPM and kPTM is less than the query

delay of 2P2C. As shown in Fig.34, the consistency degree

decreases as the number of mobile nodes increases, this is because

the increasing in number of mobile nodes will increase the number

of cache nodes in the network for each data item. Thus, a higher

number of updating messages are needed to maintain the consistency

degree among all cache nodes. In addition, as shown in Fig.34, the

consistency degree of SPM and kPTM is larger than 2P2C method.

This is because SPM and kPTM use a data level for updating while

2P2C sends update messages based on normal path but with a node

level. As shown in Fig.35, the server ratio decreases as number of

mobile nodes increases while the cache hit ratio increases as request

rate increases. But the local hit ratio is almost the same. This is

because with more mobile nodes in the network, there is a possibility

to increase the number of cache nodes which will maximize the

cache hit ratio and minimize the server hit ratio. In addition, the

cache hit ratio of the proposed SPM and kPTM are better than 2P2C

method in almost cases.

5.7 Different values of parameter k
Fig.36, Fig.37, Fig.38, Fig.39, and Fig.40 show the communication

overhead, total traffic, query delay, consistency degree, and hit ratio

of SPM, kPTM, and 2P2C against different split values of k for

kPTM which are 1, 2, 3, 4, 5, 6 when the number of data items was

10, the number of mobile nodes was 30, the request rate was 2, the

update rate was 2, the cache size was 100MB, and the mobile node

speed was 1m/s. As shown in Fig.36 and Fig.37, the communication

overhead and the total traffic increase as split value increases, this is

because when split value increases kPTM tends to be as SPM with

normal paths. As shown in Fig.38, the query delay decreases as split

value increases, this is because the increasing in split value will

increase the number of paths in the tree which will effect on the time

delay of each query. As shown in Fig.39, the consistency degree

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

44

increases as split value increases, this is because kPTM tends to be as

SPM with normal paths and update data will be sent directly to each

cache node. As shown in Fig.40, the server ratio decreases as split

value increases while the cache hit ratio increases as split value

increases. But the local hit ratio is less unchangeable by increasing

the split value. This is because kPTM will work as SPM method to

send update data for all cache nodes.

6. CONCLUSION
In this paper, a new adaptive hybrid data-based cache

consistency scheme is proposed called A2P2C scheme. The

proposed scheme classifies the data items into push data

items and pull data items based on the owner decision.

A2PD2C proposed two new updating methods SPM method

and kPTM method to improve the cache consistency. The

conducted simulation results showed that the proposed

A2PD2C can maintain the data consistency, decrease

unnecessary communication overhead, reduce access

latency, reduce the server hit ratio, maximize the cache and

local hit ratios, and was much better than existing methods.

In the future work, the optimal tree structure and the optimal

value of k for kPTM will be studied to improve the

consistency degree.

7. ACKNOWLEDGMENTS
I feel greatly privileged to express thanks to IJCA for giving

me this opportunity to publish this work.

 Fig. 31: Comm. overhead vs. # of nodes Fig. 32: Total traffic vs. # of nodes Fig. 33: Query delay vs. # of nodes

 Fig. 34: Consistency degree vs. # of nodes Fig. 35: Hit ratio vs. # of nodes

 Fig. 36: Comm. overhead vs. split value Fig. 37: Total traffic vs. split value Fig. 37: Query delay vs. split value

 Fig. 38: Consistency degree vs. split value Fig. 40: Hit ratio vs. split value

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.2, July 2017

45

8. REFERENCES
[1] Yin L., Cao G. (2006). Supporting cooperative caching

in ad hoc networks. IEEE Transactions on Mobile

Computing, 5, 77-89.

[2] Lim S., Lee W., Cao G., Das C. (2006). A novel caching

scheme for improving internet based mobile ad hoc

networks performance. Ad Hoc Networks, 4, 225-239.

[3] Artail H., Safa H., Mershad K., Abou-Atme Z., Sulieman

N. COACS. (2008). A cooperative and adaptive caching

system for MANETs. IEEE Transactions on Mobile

Computing, 7, 961-977.

[4] Krishnamurthy B., Wills CE. (1998). Piggyback server

invalidation for proxy cache coherency. In Seventh

International World-Wide Web Conference (pp. 185-

193), Brisbane, Australia.

[5] Krishnamurthy B., Wills C. (1997). Study of piggyback

cache validation for proxy caches in the World Wide

Web. In Usenix Symposium on Internet Technologies

and Systems (pp. 1-12), California, USA.

[6] Yin L., Cao G., Cai Y.A. (2003). Generalized target

driven cache replacement policy for mobile

environments. In International Symposium on

Applications and the Internet (pp. 14-21), Orlando, FL,

USA.

[7] Fawaz K., Artail H. (2013). DCIM: Distributed cache

invalidation method for maintaining cache consistency in

wireless mobile networks. IEEE Transactions on Mobile

Computing, 12, 680-693.

[8] Mershad K., Artail H. (2010). SSUM: Smart server

update mechanism for maintaining cache consistency in

mobile environments. IEEE Transactions on Mobile

Computing, 9, 778-795.

[9] Cao J., Zhang Y., Cao G., Li X. (2007). Data consistency

for cooperative caching in mobile environments.

Computer, 40, 60-66.

[10] Cao P., Liu C. (1998). Maintaining strong cache

consistency in the world-wide web. IEEE Transactions

on Computers, 47, 445-457.

[11] Jing J., Elmagarmid A., Helal A., Alonso R. (1997). Bit-

sequences: an adaptive cache invalidation method in

mobile client/server environments. Mobile Networks and

Applications, 2, 115-127.

[12] Tang X., Xu J., Lee WC. (2008). Analysis of TTL-based

consistency in unstructured peer-to-peer networks. IEEE

Transactions Parallel and Distributed Systems, 19, 1683-

1694.

[13] Jung J., Berger AW., Balakrishnan H. (2003). Modeling

TTL-based internet caches. In INFOCOM (pp. 417-426),

San Francisco, CA, USA.

[14] Cao G. (2003). A scalable low-latency cache invalidation

strategy for mobile environments. IEEE Transactions on

Knowledge and Data Engineering, 15, 1251-1265.

[15] Selvin , L. S., palanichamy, Y. (2016): Push-pull cache

consistency mechanism for cooperative caching in

mobile ad hoc environments. Turkish Journal of

Electrical Engineering and Computer Sciences, 24(5),

3459-3470.

[16] Joy, P. T., Jacob, K. P. (2012): A Comparative Study of

Cache Replacement Policies in Wireless Mobile

Networks. Advances in Computing and Information

Technology, Springer Berlin Heidelberg, 176, 609-619.

[17] Dar S., Franklin M. J., Jonsson B. T., Srivastava D., Tan

M. (1996): Semantic data caching and replacement. In

Proceedings of the 22th International Conference on

Very Large Data Bases (VLDB) (pp. 330-341).

[18] Ren Q., Dunham M. H. (2000): Using semantic caching

to manage location dependent data in mobile computing.

In Proceedings of the 6th ACM annual international

conference on Mobile computing and networking

(MOBICOM) (pp. 210-221), Boston, MA, USA.

[19] Lai K. Y., Tari Z., Bertok P. (2004): Mobility-aware

cache replacement for users of location-dependent

services. In the 29th Annual IEEE International

Conference on Local Computer Networks (pp. 50-58).

[20] ElDahshan K.A., Ahmed A.A.G., Sobhi A., (2015): A

Distance-based Predicted Region Policy for Cache

Replacement in Mobile Environments. International

Journal of Computer Applications, 126, 1-10.

[21] Ahmed A.A.G., ElDahshan K.A., Sobhi A. (2016): A

Predictable Markov Based Cache Replacement Scheme

in Mobile Environments. International Journal of

Computer Science and Information Security, 14(4), 15-

26.

[22] Varga, András. (2001). "The OMNeT++ discrete event

simulation system." Proceedings of the European

simulation multi-conference (ESM’2001).

IJCATM : www.ijcaonline.org

