
International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.6, July 2017

1

0 6 5 8 2 5

6 0 7 6 3 1

5 7 0 10 10 9

8 6 10 0 8 4

2 3 10 8 0 4

5 1 9 4 4 0

Mutually Nearest Vertex Clusters for Solving TSP

Govindaraj Pandith T. G.
Department of Computer Applications

AIMS Institute of Higher Education
Bangalore, India

Registered research candidate in Rayalaseema
University, Kurnool

Siddappa M., PhD
Department of Computer Science and Engineering

Sri Siddartha Institute of Technology
Tumkur, India

ABSTRACT

The Travelling Salesman Problem (TSP) is a classical

problem in the field of combinatorial optimization. Main

objective of TSP is to find an optimal tour which starts from

an arbitrary city (vertex), visits remaining cities exactly once

and returns back to the city at which tour commenced. TSP

belongs to the class of NP Complete problems, has been

studied for many years and is still being studied; a general

solution is yet to be reported.

Proximity of cities plays a vital role while traversing a set of

cities. Proximity can be traced to a similar measure called

distance measure, used in Pattern Recognition (PR). Newer

and newer distance measures are proposed in PR for cluster

analysis and classification. The sole aim of these measures is

to cluster those sets of vertices, which are highly similar or in

other words form group of vertices by taking into account

distance as a metric of PR from the given instance of

complete graph. The objective of this study is to construct a

round tour by utilizing the mutually nearest vertices.

General Terms
Graph, Hamiltonian Circuit, Cost adjacency matrix algorithm

and time complexity.

Keywords
TSP, PR, distance measure, cluster analysis and cluster

classification.

1. INTRODUCTION
Objective: To design an algorithm to find the nearest vertex

clusters to obtain solution for TSP

Travelling Salesman Problem (TSP) is one among the

distinguished problem in the areas of graph theory and

operations research. TSP is an interesting problem whose

statement is quite simple, where as obtaining the optimal

solution for larger instances is extremely cumbersome. The

aim of TSP is find the least cost Hamiltonian Circuit.

TSP has many practical applications. Important applications

are

 Many real – world problems, ranging from

establishing an optimal route for milk van, mail

collection / distribution, news paper distribution,

school buses can be solved easily.

 TSP plays important role in solving industrial

applications like PCB drilling, computer wiring,

message routing and computer networking.

 Many related problems, such as problem of

repetition of cities, multiple salesman, stochastic

TSP, which can be solved by bringing in minor

changes in the TSP.

Formally, goal of clustering is to segregate given a data set

into different groups based on some predefined criteria.

Several clustering techniques use distance measure to analyze

the similarity or dissimilarity between any pair of vertices [1].

Distance between the pair of vertices v and w can be denoted

as dist(v,w). Distance as a measure has to satisfy following

criteria

i) Distance from a vertex to itself is zero.i.e

dist(v,v)=0

ii) If the distance between vertices are

symmetrical then dist(v,u)=dist(u,v) else

dist(v,u)≠dist(u,v)

iii) The triangle inequality holds:

dist(v,u)≤ dist(v,w)+dist(w,v)

There are numerous methods for solving TSP[2-6]. Broadly
algorithms can be classified into following categories:

 Exact Solvers

 Non-Exact Solvers

Exact solvers guarantee finding optimal solutions. These
algorithms consume huge amount of running time and space
requirements. On the other hand Non-Exact solvers offer
potentially non-optimal but typically faster solutions. Many
heuristic methods which can give solutions with 2-3% error
margin from the optimal solution have been developed

Cluster analysis widely used in many fields viz., machine
learning, pattern recognition, image analysis, information

retrieval, bioinformatics, data compression, and computer
graphics. An attempt has been made to obtain a sub-optimal
solution for given instance of TSP by finding clusters.

2. CLUSTER OF VERTICES FOR

SOLVING INSTANCE OF

SYMMETRIC TSP
Procedure to form the cluster of vertices is illustrated by
taking following instance of TSP shown in Figure 1.

Fig1: Instance of symmetric TSP

Initially consider all single vertex clusters. Stack data

structure is used for the formation of clusters. Consider {d} as

a initial vertex cluster. Push {d }to the stack. Next nearest

cluster to {d} is {f}.Push {f} to the stack. Next {b} cluster is

nearest to vertex {f}. Push {b} to the stack as shown in the

Figure 2.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.6, July 2017

2

Fig 2: Formation of cluster using stack

Next nearest vertex for b is f which is the immediate

predecessor, therefore pop all the vertices to get the cluster of

vertices d f b(Means the vertices d f and b are mutually

nearest vertices). Similarly the cluster of vertices {e, a} is

obtained. Finally the single cluster {d,f,b,e,a,c} is obtained by

merging the three sets {d,f,b},{e,a} and vertex {c}. Vertex

clusters are represented in the Figure 3 and Figure 4

Fig 3: Different clusters

Fig 4: Merging the clusters

3. NEAREST-NEIGHBOR CHAIN

ALGORITHM
In the theory of cluster analysis, the nearest-neighbor chain
algorithm [7] takes a collection of points as input, and creates
a hierarchy of clusters of vertices by repeatedly merging pairs
of smaller clusters to form larger clusters.

The main idea of the algorithm is to find pairs of clusters to
merge by following paths in the nearest neighbour graph of
the clusters. Every such path will eventually terminate at a
pair of clusters that are nearest neighbors of each other, and
the algorithm chooses that pair of clusters as the pair to
merge. In order to save work by re-using as much as possible
of each path, the algorithm uses a stack data structure to keep
track of each path that it follows. By following paths in this
way, the nearest-neighbor chain algorithm merges its clusters
in a different order than methods that always find and merge

the closest pair of clusters. However, despite that difference, it
always generates the same hierarchy of clusters.

The time complexity of nearest-neighbor chain algorithm is
O(n2), where n is the number of vertices to be clustered, when
the input is provided in the form of an explicit distance
matrix.

The algorithm performs the following steps:[8][9]

 Initialize the set of active clusters to consist of n

one-vertex clusters, one for each input vertex.

 Let T be a stack for the tour, initially empty, the

elements of which will be active cluster of vertices.

 While still there is more than one cluster in the set

of clusters:

o If T is empty, choose the first active cluster and

push it onto T.

o Let C be the active cluster on top of S.

Compute the distances from C to all other

clusters, and let D be the nearest other cluster.

o If D is already in T, it must be the immediate

predecessor of C. Pop both clusters from T and

merge them.

o Otherwise, if D is not already in T, push it to T.

 Repeat the above steps for obtaining all routes

starting from respective vertices

 Select the least cost route as solution for the given

instance of TSP.

In the case if one cluster has multiple equal nearest neighbors,
then the algorithm has to adopt a consistent tie-breaking rule.
For instance, one may assign priority index numbers to all of
the clusters, and then select the one with the smallest priority
index number [10]. In the case of directed graphs a search
operation on stack is necessary to check whether a newly
selected vertex cluster is present or not. New cluster is pushed
to the stack if it is not present in the stack. If the cluster
already exists in the stack then form the cluster of vertices by
popping all the vertices in the stack. Linked lists can be used
for merging the clusters.

4. CLUSTER OF VERTICES FOR

SOLVING INSTANCE OF

ASYMMETRIC TSP
Similarly Nearest Neighbor chain algorithm can be used for

solving asymmetric TSP. Illustration of the method for the

instance of 10 cities TSP represented by cost adjacency

matrix follows

 0 11 7 6 16 8 9 4 2 9
 14 0 4 12 5 15 22 23 18 21

 2 3 0 1 4 2 21 2 34 10

 6 32 21 0 5 2 8 7 12 15

 5 9 20 10 0 16 11 19 4 7

 14 22 20 15 11 0 4 2 21 14

 3 29 4 19 12 11 0 3 21 4

 20 15 11 9 6 12 14 0 13 17

 9 11 14 16 18 24 28 20 0 6

 11 7 8 4 31 27 29 32 9 0

choosing a as the initial vertex, following the similar

procedure as symmetric TSP results in vertex clusters

{a,i,j,d,f,h,e},{b} and {g,c}. In the case of asymmetric TSP

the recently selected vertex may be present in any part of the

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Path_%28graph_theory%29
https://en.wikipedia.org/wiki/Nearest_neighbor_graph
https://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Distance_matrix
https://en.wikipedia.org/wiki/Distance_matrix
https://en.wikipedia.org/wiki/Stack_%28data_structure%29

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.6, July 2017

3

stack. So searching the stack becomes a mandatory

requirement. If the recently selected new vertex already exists

in the stack then pop all the elements of the stack to form the

cluster. Merging all the clusters gives the single cluster

{a,i,j,d,f,h,e,g,c,b}.

5. RESULT OF SYMMETRIC TSP
An attempt has been made to obtain most appropriate solution

for symmetric TSP by clustering the vertices based on nearest

neighbor chain algorithm. Stage by stage clusters are formed

and merged to get the larger clusters. The route can be

decided by the final set of cluster i.e. {d f b e a c}.

The tour obtained is

Fig 5: The optimal tour: d fbeacd

The total cost of the tour is 25 which is the least cost route

obtained by this method. If the vertex a is considered as the

arbitrary staring vertex the route obtained is

aebfcda and cost of the tour is 33. If vertex b

is considered as starting node then the route obtained is

bfdeacb and the cost of the tour is 27.
Similarly route obtained by starting from vertex c is

caebfdc. This route cost is 25 and which is

another least cost route. Route starting from vertex e is

eabfdce and its cost is 33. Finally route starting

from f is fbdeacf whose cost is 31.

6. RESULT OF ASYMMETRIC TSP
The result for the above instance of asymmetric TSP can be
obtained from following tours. Round tour obtained starting
from vertex a has total cost 54. Following is the round tour.

 ai jdfhegcba

Round tour obtained starting from vertex b is

 bcdfheijgab with total cost 68.

Round tour obtained starting from vertex c is

 cai jdfhebgc with total cost 59.

Round tour obtained starting from vertex d is

 dfheijbagcd with total cost 59.

Round tour obtained starting from vertex e

 eijdfhgabce with total cost 52.

Round tour obtained starting from vertex f is

 fheijdgabcf with total cost 50.

Round tour obtained starting from vertex g is

 gheijdfbcag with total cost 62.

Round tour obtained starting from vertex h is

 heijdfgabch with total cost 46.

Round tour obtained starting from vertex i is

 ijdfhegcbai with total cost 54.

Round tour obtained starting from vertex j is

 jdfheibcagj with total cost 48.

Therefore the optimal tour among the tours mentioned above
is heijdfgabch with total cost
46.

7. CONCLUSION
TSP can be solved by many methods. The methods are

broadly classified into two categories of algorithms viz.,

Exact solvers and Non-exact solvers. Even though exact

solvers produce optimal solution they are highly in efficient

with respect to space and time trade off for larger instances.

In this study a Non-exact solver algorithm is proposed based

on the nearest neighbour chain algorithm. The advantage is in

terms of simplicity and faster execution. The disadvantage is

that algorithm always may not give exact solution. However

select the least cost cluster as an effective estimate for the

optimal tour. In the case of symmetric TSP execution time of

the algorithm is O(n3). A slight modification of the algorithm

is required in the case of asymmetric TSP (Since there is

requirement of search operation for iteration). The time

complexity of the modified algorithm will be O(n4). As far as

data structure is concerned one can use either arrays or linked

list for stack implementation. Merging of clusters can be

achieved by using linked lists. Several variations are possible

with respect to the proposed algorithm which provides scope

for further investigation.

8. REFERENCES
[1] Satu Elisa Schaeffer 'Graph clustering', ELSEVIER C O

M P U T E R S C I E N C E R E V I EW 1 (2 0 0 7) 2

7 – 6 4 available at www.sciencedirect.com, journal

homepage: www.elsevier.com/locate/cosrev

[2] Chetan Chauhan, Ravindra Gupta, Kshitij Pathak

“Survey of methods of solving TSP along with its

implementation using Dynamic Programming approach”

International Journal of Computer Applications, Vol-

52,No-4, August 2012

[3] Anshul Singh, Devesh Narayan “A survey paper on

Solving Travelling Salesman Problem using Bee colony

optimization”, ISSN 2250-2459, Volume 2, Issue 5, May

2012.

[4] Corinne Brucato, “The Travelling Salesman Problem”,

University of Pittsburg, 2013.

[5] Anitha Rao, Sandeep Kumar Hegde “Literature Survey

On Travelling Salesman Problem Using Genetic

Algorithms” International Journal of Advanced Research

in Eduation Technology (IJARET) Vol. 2, Issue 1 (Jan. -

Mar. 2015) ISSN : 2394-2975 (Online) ISSN : 2394-

6814 (Print)

[6] Komal Joshi1, Ram Lal Yadav “A new hybrid approach

for solving travelling salesman problem using ordered

cross over 1(ox1) and greedy approach” IJRET:

International Journal of Research in Engineering and

Technology, Volume: 04 Issue: 05 May-2015.

[7] Nearest Neighbour chain algorithm, Wikipedia

[8] Murtagh, Fionn (1983), "A survey of recent advances in

hierarchical clustering algorithms" (PDF), The Computer

Journal, 26 (4): 354–359, doi:10.1093/comjnl/26.4.354

http://www.multiresolutions.com/strule/old-articles/Survey_of_hierarchical_clustering_algorithms.pdf
http://www.multiresolutions.com/strule/old-articles/Survey_of_hierarchical_clustering_algorithms.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1093%2Fcomjnl%2F26.4.354

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.6, July 2017

4

[9] Murtagh, Fionn (2002), "Clustering in massive data

sets", in Abello, James M.; Pardalos, Panos M.; Resende,

Mauricio G. C., Handbook of massive data sets, Massive

Computing, 4, Springer, pp. 513–516,

Bibcode:2002hmds.book.....A, ISBN 978-1-4020-0489-6

[10] Sedgewick, Robert (2004), "Figure 20.7", Algorithms in

Java, Part 5: Graph Algorithms (3rd ed.), Addison-

Wesley, p. 244, ISBN 0-201-36121-3.

9. AUTHOR PROFILE
Govindaraj Pandith T.G has fourteen years of teaching

experience for UG and PG courses for computer applications

and is presently working as Assistant Professor in the

department of Information Technology, AIMS Institute of

Higher Education, Bangalore. He Obtained B.Sc.(Physics,

Chemistry, Mathematics) from Sri Bhuvanendra College,

Karkala affiliated to Mangalore University in the year 1994.

Completed PGDCA from Dr. NSAM First Grade College,

Nitte in the year 1995 affiliated to Mangalore University. He

completed M.Sc, Mathematics from Mangalagangotri,

Mangalore University in the year 1997. He also successfully

completed M.Sc, Computer Science from Mangalagangotri,

Mangalore University with distinction in the year 2001. His

research interests are in the areas of Discrete mathematics,

Data structures, Pattern Recognition, Analysis and Design of

Algorithms. Currently pursuing PhD from Rayalaseema

University, Kurnool under the guidance of Dr. Siddappa M,

Head of the department of Computer Science and

Engineering, Sri Siddartha Institute of Technology, Tumkur.

Dr. M. Siddappa received B.E and M.Tech degree in

Computer Science & Engineering from University of Mysore,

Karnataka, India in 1989 and 1993 respectively. He has

completed doctoral degree from Dr.MGR Educational

Research Institute Chennai under supervision of

Dr.A.S.Manjunatha, CEO, Manvish e-Tech Pvt. Ltd.,

Bangalore in 2010. He worked as project associate in IISc,

Bangalore under Dr.M.P Srinivasan and Dr. V.Rajaraman

from 1993 – 1995. He has teaching experience of 29 years

and research of 15 years. He published 62 Technical Papers in

National, International Conference and Journals. He has

citation index of 192 till 2016 and h-index of 5 and i10-index

of 4 to his credit. He is a life member of ISTE. He is working

in the field of data structure and algorithms, Artificial

Intelligence, Image processing and Computer networking. He

worked as Assistant Professor in Department of Computer

Science & Engineering from 1996 to1998 in Sri Siddhartha

Institute of Technology, Tumkur. Presently, he is working as

Professor and Head, Department of Computer Science &

Engineering from 1998 in Sri Siddhartha Institute of

Technology, Tumkur. He has visited Louisiana university

Baton rouge, California university and Wuhan university

China. He bagged “Best Teacher” award from ISTE in the

year 2013.

IJCATM : www.ijcaonline.org

https://books.google.com/books?id=_VI0LITp3ecC&pg=PA513
https://books.google.com/books?id=_VI0LITp3ecC&pg=PA513
https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/2002hmds.book.....A
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4020-0489-6
https://en.wikipedia.org/wiki/Robert_Sedgewick_%28computer_scientist%29
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-36121-3

