
International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

17

PFPS: Parallel File Protecting System

Sheetal Adagale

Student
RMD Sinhgad SOE, Pune

Trupti Zanje

Student
RMD Sinhgad SOE, Pune

Aishwarya Sawant
Student

RMD Sinhgad SOE, Pune

Pratiksha Pandagale
Student

RMD Sinhgad SOE, Pune

Kanchan M. Varpe
Guide

RMD Sinhgad SOE, Pune

ABSTRACT
Nowadays everything is digitized. We share information on

network, even confidential information also get transferred in

the form of files. So it require protection of data against

corruption and fault tolerance. This needs secure and efficient

way to protect private data from illegle usage. For that

purpose we have proposed Parallel File protecting System

using CPP (CPU Parallel protecting), CPUP (CPU Parallel

Unprotecting), GPP(GPU Parallel Protecting), GPUP(GPU

Parallel Unprotecting), HPP(Hybrid Parallel Protecting),

HPUP (Hybrid Parallel Unprotecting) which secures file with

the help of SHA3, AES and BLAKE2b algorithm. In

proposed system we optimized SHA3-256 and parallel AES

algorithm for security purpose with GPU Parallelism and CPU

Parallelism for high performance. Parallelism is achieved with

the help of NVIDIA’s GPU. Along with SHA3 Blake2b is

used for fast secure hashing. We have achieved better speed

and security with the help of Blake2b. Thus Parallel File

Protecting System is secure system and it can be used in

computer equipped with NVIDIA’s GPU.

General Terms
Security, Algorithms, GPU, CPU, SHA3-256, Paralllel AES,

Blake2b etc.

Keywords

Deduplication, integrity checking, protecting, unprotecting

etc.

1. INTRODUCTION
Now days all the transactional processes are does online,

many calculations does over on network therefore for

providing efficient security to all types of data on network is

very difficult. To overcome these drawback parallel

computing concept is used in proposed system for providing

efficient security to data using various security algorithms.

This system uses combination of three algorithms such as

parallel AES, SHA3-256 and blake2b. In proposed system

parallel AES is used for parallel encryption and decryption

process, whereas SHA3-256 and blake2b is used for key

generation, hash function and achieving better speed in

security. The SHA3-256 and blake2b both are cryptographic

hash functions, but SHA3-256 is not efficient for fast software

hashing for applications such as integrity checking and

deduplication in file systems and cloud storage. Therefore

blake2b and SHA3-256 algorithms are used together in this

system for getting faster speed in system performance. In

proposed system for achieving parallelism in encryption and

decryption process GPU is used with the help of CUDA

platform. In existing system SHA3-256 and parallel AES

algorithms are used but they are not enough capable for

improving IO performance and integrity checking, therefor

this system uses Blake2b for overcoming existing system

drawback with high speed performance.

The system uses six algorithms for achieving better security

on individual devices as well as together such as (CPU

Parallel Protecting), CPUP(CPU Parallel Unprotecting),

GPP(GPU Parallel Protecting), GPUP(GPU Parallel

Unprotecting), HPP(Hybrid Parallel Protecting)

,HPUP(Hybrid Parallel Unprotecting).

2. SYSTEM WORKING
This section consists of system architecture and workflow of

the system. The System architecture is designed as shown in

fig. 1.

To implement a secure and efficient file protecting system

using parallel AES and SHA3-256 and Blake2b with the help

of GPU. In this system users are authenticated on the basis of

login details of the user. The authenticated user gets the

access to the system and gets input file for further processing.

To secure input file the PFPS system has two main functional

parts first is encryption and second is decryption both the

phases work in a parallel way by using NVIDIA GPU. In

encryption phase given input file is transfer to the main

memory and applies all three security algorithms such as

parallel AES, SHA3-256, Blake2b. Therefore while applying

all these algorithms for encryption on data some bits are

padded at the end of data. In padding some bits are added in

the data for generating encrypted file. Then padded data is

divided upto 128 bit blocks and encrypted. The parallel AES

is a block cipher and it uses 128 bit key for encryption.

Therefore each block goes through 11 rounds of encryption,

with 4 steps such as Subbytes, ShiftRows, MixColumns,

AddRoundKey. The rounding process takes much more time

for encrypting the file therefore that round takes in parallel

way with the help of GPU for reducing the total required time

of rounding process. In rounds are takes for each and every

block, after performing round on data encrypted file is

generated. In the second part of the of the system i.e

decryption takes encrypted file as a input and again divides

that encrypted file into 128 bits of blocks. Therefore for

getting decrypted file it goes through all 11 rounds which are

takes in encryption process also. In decryption part exactly

inversion process is done.

The system uses SHA3-256 with blake2-b for achieving better

speed .Blake2 b algorithm provides more features than SHA3-

256 such as 32% less RAM required than BLAKE,

parallelism for many-times faster hashing on multicore or

SIMD CPUs, Tree hashing for incremental update or

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

18

verification of large files, personalization for defining a

unique hash function for each application, minimal padding,

which is faster and simpler to implement.

Fig.1 System Architecture.

For more understanding first understands the working of all

the three algorithms in the next section.

3. ALGORITHMS

3.1 Parallel AES Algorithm
The parallel AES is cipher cryptographic algorithm. Also

meant the substituting permutation network. It contains the

several operations such as the given input replaced by the

special substitution shuffling the rows and adding bit into it.

In this system parallel AES is achieved parallelism on blocks

of data. Therefore all the blocks are encrypted and decrypted

in a parallel way. In this algorithm following steps are follows

for encryption process such as:

1. Byte Substitution (Sub Bytes)

2. Shift Rows

3. Mix Columns

4. Add Round Key

A. Byte Substitution

Byte substitution by based on the fixed table of input is in

bytes and the result also will be the matrix of four columns

and rows.

B. Shift Rows

The shifting processing carried out in the matrix by shifting

the rows to the left one by one. In the shifting process if any

entries are fall of then those entries shifted or reinserted right

side of the row. It is important for the encryption of the data

given as the input.

o The first row in the matrix is not shifted.

o While the second row shifted to one position from

current position to the left.

o Then third row shifted two positions to the left.

o Fourth row is shifted three positions to the left.

o One by one row shifted to the left and any rows fall of, it

reinserted to the right.

o New matrix will the same number of bytes 16 but shifted

as above with each other.

C. Mix Columns:

Mix the four bytes by using the functions using math. In this it

get the four byte of inputs and writes the newly generated

bytes in which it replaces the existing data. It will write the

other matrix of newly generated data.

D. Add Round Key

The 16 bytes of the matrix are now considered as 128 bits and

are XOR-ed to the 128 bits of the round key. If this is the last

round then the output is the cipher text. Otherwise, the

resulting 128 bits are interpreted as 16 bytes and we begin

another similar round.

E. Decryption process of Parallel AES algorithm

Decryption can be done in a similar way to encryption. First

two arrays are defined. When a decryption needs to be

performed, one array contains the key and the other one the

cipher text.

It is the inversion process of encryption

1. Inversion of Add round key

2. Inversion of Mix columns

3. Inversion of Shift rows

4. Inversion of Byte substitution

 The parallel AES algorithm:

1. Cipher(byte in[16], byte out[16], key_array

round_key[Nr+1])

2. Begin

3. byte state[16];

4. state = in;

5. AddRoundKey(state, round_key[0]);

6. for i = 1 to Nr-1 stepsize 1 do

7. SubBytes(state);

8. ShiftRows(state);

9. MixColumns(state);

10. AddRoundKey(state, round_key[i]);

11. end for

12. SubBytes(state);

13. ShiftRows(state);

14. AddRoundKey(state, round_key[Nr]);

15. end.

3.2 SHA3-256 Algorithm
The file contents hashed by SHA3 and the digest the message

in it for the security purpose. To know the any modification

into the files contents some data is digested into the file. The

Message can be evenly partitioned into n-bit chunks, for this

step padding is required. It uses the pattern 10 1: a1 bit, zero

or more 0 bits and a last 1 bit. The last 1 bit is compulsory for

the safety resistant of different data contents, that is, diverse

hash functions are padded through the block. Without it,

various hash functions of the data will be the same up to

truncation to compute a hash, reset the state to 0, pad the data

given as the input, and break it into pieces into n-bits the

encrypted key depends on the SHA3-256 algorithm.

The SHA3-256:

1. SHA3:=proc(message::string, messagetype::name:=text)

2. Local n,m,l;

3. If type(procname,’indexed’)then

4. n:=op(procname)

5. else

6. error “output length not specified”

7. end if;

8. if not n in{224,256,384,512}then

9. error “%1 is not a valid output length”,n

10. end if;

11. m:=messagebytes(message,messagetype);

12. l:=keccak(m,1600-2.n,n,hash);

13. bytestohexstring(l)

14. end proc;

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

19

3.3 Blake2b Algorithm
The Blake2b algorithm is used for the secure hashing. 224,

256, 384, and 512 bits size message digested into the file. The

Maximum message length of hash function is at least 64 −

1bits. In addition, its compulsory to use Blake2b to explicitly

handle hashing with is parallelizable to improve the

performance trade-offs be suitable for insubstantial

surroundings. The Blake2b pads the last data block if and if

only it is required, with null bytes. If the data length is divided

into blocks of size and in multiple of blocks, no extra padded

bytes is added to it then it operates on 64-bit words and

returns a 64-byte hash value. Blake2b does 12 rounds, against

16 and 14 respectively for Blake2b. Based on the security

analysis performed so far, and on reasonable assumptions on

future progress, it is unlikely that 16 and 14 rounds are

meaningfully more secure than 12 and 10 rounds.

The Blake2b algorithm :

1. Input:

M

cbMessageLen: Number, (0..2128)

Key

cbKeyLen: Number, (0..64)

cbHashLen: Number, (1..64)

2. Output:

 Hash

 h0 ← 0xcbbb9d5dc1059ed8

 h1 ← 0x629a292a367cd507

 h2 ← 0x9159015a3070dd17

 h3 ← 0x152fecd8f70e5939

 h4 ← 0x67332667ffc00b31

 h5 ← 0x8eb44a8768581511

 h6 ← 0xdb0c2e0d64f98fa7

 h7 ← 0x47b5481dbefa4fa4

3. h0 ← h0 xor 0x0101kknn

4. cBytesCompressed ← 0

5. cBytesRemaining ← cbMessageLen

6. if (cbKeyLen > 0) then

7. M ← Pad(Key, 128) || M

8. cBytesRemaining ← cBytesRemaining + 128

9. end if

10. while (cbBytesRemaining > 128) do

11. chunk ← get next 128 bytes of message M

12. cBytesCompressed ← cBytesCompressed + 128

13. cBytesRemaining ← cBytesRemaining - 128

14. Compress(h, chunk, cBytesCompressed, false)

15. end while

16. hunk ← get next 128 bytes of message M

17. cBytesCompressed←

cBytesCompressed+cBytesRemaining

18. chunk ← Pad(chunk, 128)

19. Compress(h, chunk, cBytesCompressed, true)

20. Result ← first cbHashLen bytes of little endian state

vector h

21. End Algorithm Blake2b

Blake2b is optimized for 64 bit platforms. Like SHA-2, Blake

comes in two variants: one that uses 32-bit words, used for

computing hashes up to 256 bits long, and one that uses 64-bit

words, used for computing hashes up to 512 bits long. The

core block transformation combines 16 words of input with 16

working variables, but only 8 words (256 or 512 bits) are

preserved between blocks.

4. MATHEMATICAL MODEL
A mathematical model is a description of a system

using mathematical concepts and language. A model may help

to explain a system and to study the effects of different

components, and to make predictions about behavior.

In this mathematical model gives the idea abot flow of the

system. It shows that system uses six algorithms such as CPU,

CPUP, GPU, CPUP, HPP, HPUP and its mathematical

representation.

4.1 Mathematical Model:
1. S={f,E,D,GPU,CPU,HPP,CPP,CPUP,GPP,GPUP,O

,HPP,HPUP}

2. S = System

3. f = File

4. E = Encryption

5. D= Decryption

6. F(AES) =

(E) + (D)……(1) //AES

Encryption and Decryption process

7. GPP=f + 16+(16 - f %16) + hashByteLen

8. // GPU file protecting

9. GPUP=cipherLen=cipherLen-hashByteLen-16-

cipher[cipherLen-1] ….//GPU file Unprotecting

10.
 ..//GPU

parallel file Encryption and Decryption

11. Where,

12. GPP=GPU Parallel Protecting

13. GPUP=GPU Parallel Unprotecting

14.

CPP= f +1 6 + (16-f%16)+hashByteLen….. //CPU

parallel file protecting

CPUP=Hash(hashByteLen*8,cipher,(cipherLen-

hashbyteLen)*8,hashValue)…..// CPU parallel file

unprotecting

 …(3)

CPU file Encryption and Decryption

Where,

CPP-CPU Parallel Protecting

CPUP-CPU Parallel UnProtecting

HPP=plain+plainLen

hashByteLen,hashvalue,hashByteLen…//Hybrid parallel file

protecting

HPUP = GipherLen * 1.0/(ratio+1)/16*16….//Hybrid parallel

file unprotecting

Where,

HPP-Hybrid Parallel Protecting

HPUP-Hybrid Parallel Unprotecting

As per eq. 2 and 3

 = Output

 …(4)

 …(5)

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

20

This mathematical model gives the mathematical formula’s

for implementing all the six algorithms in system. In this HPP

and HPUP is a combination of CPP-GPP and CPUP-GPUP

algorithms.

5. RESULTS
This section presents results accomplish by PFPS System with

the help of Graphs also experimental discussion is included to

show implemented system testing.In Fig. 2 shows the

comparison between existing system and proposed system

related to protecting or encryption process. It gives the speed

of protecting in existing and proposed system. It compares the

performance on the basis of two parameters such as total time

which is required for protecting and file size. In this some

comparison is if file size is 5.6kb then it takes 0.4ms in

existing system and 0.3ms in proposed system, if file size is

20.4kb then it takes 0.5ms for existing system and 0.4ms for

proposed system, if file size is 2.21mb then it takes time

0.08ms for existing system and 0.05 for proposed system.

Therefore all the comparisons shows that proposed system

gives better performance than the existing system.

Fig.2 File Protecting

Fig.3 File Unprotecting

In Fig 3 shows the comparison between existing system and

proposed system related to unprotecting or decryption

process. It gives the speed of unprotecting in existing and

proposed system.

It gives the speed of unprotecting in existing and proposed

system.It compares the performance on the basis of two

parameters such as total time which is required for protecting

and file size. In this some comparison is if file size is 5.6kb

then it takes 0.3ms in existing system and 0.1ms in proposed

system, if file size is 20.4kb then it takes 0.5ms for existing

system and 0.2ms for proposed system, if file size is 2.21mb

then it takes time 0.08ms for existing system and 0.03 for

proposed system. Therefore all the comparisons shows that
proposed system gives better performance than the existing
system.

 Experimental Discussion

o HW , SW used :

The PFPS system is mainly used for parallel encryption

and decryption, therefore for performing this operations

on data only CPU is not capable for performing these

operations in a parallel way. Therefore this system uses

NVIDIA GPU for handling all the parallel operations

efficiently.

The PFPS system uses CUDA platform for

implementation with help of C/C++ programming

language .It also uses Windows operating system and

Visual Studio 2012 .This system uses only applies

C/C++ programming language because CUDA platform

uses only this language for doing parallel programming.

o System implementation platform

This system uses CUDA platform for

implementation of the system. This system requires

only CUDA platform because it uses only for

parallel programming. It can be does all the

operations in a parallel way and increasing the

system performance.

o System Testing using Snapshots

6. CONCLUSION
In this paper we have implemented PFPS:Parallel File

Protecting System to provide security to the user files that are

transferred or stored on the network against illegal usage. This

system is mainly focused for protecting files for transferring

or storing safely. It can secure any type of file such as audio,

video, RAR etc.

For security purpose SHA3-256, parallel AES algorithm is

applied with the help of CUDA platform. For improving IO

management Blake2b algorithm in combination with

optimized SHA3-256 is introduced in PFPS.

It increases the speedup performance in encryption and

decryption as compared with existing system. This PFPS can

be used as an application to protect files in a fastest way by

parallelism over the huge storage web portals.

In future, algorithm Blake2b will need to optimize and also

PFPS can be extended for cloud storage.

7. REFERENCES
[1] Xiongwei Fei , Kenli Li , Wangdong Yang , Keqin Li,A

secure and efficient file protecting system based on

SHA3 and parallel AES,Parallel Computing 52(2016)

106-132

[2] .X. Shi, F. Park, L. Wang, J. Xin, Y. Qi, Parallelization

of a color-entropy preprocessed chan-vese model for face

contour detection on multi-core cpu and gpu, Parallel

Comput. 49 (2015) 2849.

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

21

[3] K. Li, J. Liu, L. Wan, S. Yin, K. Li, A cost-optimal

parallel algorithm for the 01 knapsack problem and its

performance on multicore cpu and gpu implementations,

Parallel Comput. 43 (2015) 2742.

[4] .K. Li, W. Yang, K. Li, Performance analysis and

optimization for SPMV on GPU using probabilistic

modeling, IEEE Trans. Parallel Distrib. Syst. 26 (1)

(2014) 196205.

[5] A. Pousa, V. Sanz, A. de Giusti, Performance analysis of

a symmetric cryptographic algorithm on multicore

architectures , in: Computer Science Technology Series-

XVII Argentine Congress of Computer Science-Selected

Papers, Edulp, 2012, pp. 5766.

[6] Hoang-Vu Dang, Bertil Schmidt ,The Sliced COO

Format for Sparse MatrixVector Multiplication on

CUDA-enabled GPUs computing,2011 W. D. Doyle,

“Magnetization reversal in films with biaxial

anisotropy,” in Proc. 1987 INTERMAG Conf., 1987, pp.

2.2-1-2.2-6.

[7] Marcin Krotkiewski , 2011 , perfomance study of our

CUDA based implementation of the symmetric 7-point

and 27-point ,and the general 27-point stencil(3 3 3

convolution) for modern GPUs,2011

[8] C. Mei, H. Jiang, J. Jenness, CUDA-based AES

parallelization with fine-tuned GPU memory utilization,

in: 2010 IEEE International Symposium on Parallel

Distributed Processing, Workshops and Phd Forum

(IPDPSW), IEEE, 2010, pp. 17.

[9] S.A. Manavski, CUDA compatible GPU as an efficient

hardware accelerator for AES cryptography, in: IEEE

International Conference on Signal Processing and

Communications, 2007 (ICSPC07), IEEE, 2007, pp.

6568.

[10] M. Biglari, E. Qasemi, B. Pourmohseni, Maestro: A high

performance AES encryption/decryption system, in:

2013 17th CSI International Symposium on Computer

Architecture and Digital Systems (CADS), IEEE, 2013,

pp. 876-880. Available:

[11] Kenli Li, Wangdong Yang, and Keqin Li, Senior

Member, IEEE Performance optimization using

partitioned SpMV on GPUs and multicore CPUs,IEEE

Transactions on Computers 64(9):2623-2636 September

2015.

[12] A. Mohd, Y. Jararweh, L.A. Tawalbeh, Aes-512: 512-bit

advanced encryption standard algorithm design and

evaluation, in: IAS, IEEE, 2011, pp. 292297.

[13] B. Liu, B.M. Baas, Parallel aes encryption engines for

many-core processor arrays, IEEE Trans. Comput. 62 (3)

(2013) 536547.

[14] J. Diaz, C. Munoz-Caro, A. Nino, A survey of parallel

programming models and tools in the multi and many-

core era, IEEE Trans. Parallel Distrib. Syst.23 (8) (2012)

13691386.

[15] T. Nhat-Phuong, L. Myungho, H. Sugwon, L. Seung-Jae,

High throughput parallelization of AES-CTR algorithm,

IEICE Trans. Inform. Syst. 96 (8) (2013)16851695.

[16] Q. Dong, J. Zhang, L. Wei, A sha-3 based rfid mutual

authentication protocol and its implementation, in: 2013

IEEE International Conference on Signal Processing,

Communication and Computing (ICSPCC), IEEE, 2013,

pp. 15

[17] N. Moreira, A. Astarloa, U. Kretzschmar, Sha-3 based

message authentication codes to secure IEEE 1588

synchronization systems, in: 39th Annual Conference of

the IEEE on Industrial Electronics Society (IECON13),

IEEE, 2013, pp. 23232328.

[18] J.S. Banu, M. Vanitha, J. Vaideeswaran, S. Subha, Loop

parallelization and pipelining implementation of AES

algorithm using OpenMP and FPGA, in:2013

International Conference on Emerging Trends in

Computing, Communication and Nanotechnology (ICE-

CCN), IEEE, 2013, pp. 481485

[19] X. Shi, F. Park, L. Wang, J. Xin, Y. Qi, Parallelization of

a color-entropy preprocessed chan-vese model for face

contour detection on multi-core cpu and gpu, Parallel

Comput. 49 (2015) 2849.

[20] C. JunLi, Q. Dinghu, Y. Haifeng, Z. Hao, M. Nie, Email

encryption system based on hybrid aes and ecc, in: IET

International Communication Conference on Wireless

Mobile and Computing (CCWMC11), IET, 2011, pp.

347350

[21] A.Mohd, Y.Jararweh, L.A.Tawalbeh, Aes-512:512-bit

advanced encryption standard algorithm design and

evaluation,in:IAS,IEEE,2011,pp.292297.

[22] P.Maistri, F.Masson, R.Leveugle, Implementation of the

advanced encryptio standard on gpus with the nvidia

cuda framework,in:2011 IEEE Symposiumon Industrial

Electronics and Applications (ISIEA), IEEE, 2011,

pp.213217.

[23] C.-L.Duta, G.Michiu, S.Stoica, L.Gheorghe,

Accelerating encryption algorithms using parallelism, in:

2013 19th International Conference on Control Systems

and Computer Science (CSCS), IEEE, 2013, pp.549554.

IJCATM : www.ijcaonline.org

