
International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

22

Evaluation of Software Vulnerability Detection

Methods and Tools: A Review

Richard Amankwah

Jiangsu University
School of Computer Science $

Telcom Engineering

Patrick Kwaku Kudjo
Jiangsu University

School of Computer Science $
Telcom Engineering

Samuel Yeboah Antwi
Presbyterian College of

Education, Ghana

ABSTRACT
Software vulnerability remains a serious problem among

industry players in the world today because of the numerous

security related challenges it possess to end-users and

stakeholders. Although previous studies have proposed

various methods and tools that can be used in reducing or

eliminating software vulnerability, those studies, however,

raised several additional questions that need be addressed: (1)

Can all the tools be used in curbing software vulnerabilities.

(2) Can a specific tool detect all software vulnerabilities? To

address these questions, we performed a detailed evaluation of

the various software vulnerability detection methods and tools

to find out their differences and similarities. Our studies also

seeks to investigate the most efficient approach for detecting

vulnerabilities based on previously proposed benchmarks and

present some recommendations for future studies.

General Terms
Software Engineering, Information Security

Keywords
Benchmarks; Software Vulnerability; Vulnerability Detection

1. INTRODUCTION
Software vulnerability remains a serious problem faced by

software companies and end users of software product. For

the past years, there has been an increased reportage on

several security vulnerabilities with high devastating effects

on customers; this has brought to the public domain the need

to focus on software vulnerability detection tools and

methods. Software developers have developed a lot of

methods and tools by using several approaches to detect and

report these vulnerabilities that pose security threat to systems

and users. The CERT/CC (Computer Emergency Response

Team Coordination Center) reported that the economic loss

caused by the intrusion events has reached about 6.66 billion

US dollars in 2003 and this figure is still on the ascendancy

with the passage of time. For example, there were a total of

7236 vulnerabilities in 2007, and this number has increased

to 4110 by the end of the first two quarter of 2008 [1].

Although there is no universal definition for software

vulnerability, previous studies have given varied explanation

of the concept. Kuang et al.[2] defined software vulnerability

as the “fault that can be viciously used to harm security of

software systems”. Krsul[3] also define software vulnerability

as a defect that allows an attacker to violate an explicit or

implicit security policy to achieve some impact. In another

study Jimenez et al.[4] defined software vulnerability as a

flaw, weakness or even an error in the system that can be

exploited by an attacker in order to alter the normal behavior

of the system. Schultz et al. [5] defined software vulnerability

as ‘‘a defect, which enables an attacker to bypass security

measure”. Finally the Organization of Internet Safety (OIS)

defines security vulnerability as “a flaw within a software

system that can cause it to work contrary to its documented

design and could be exploited to cause the system to violate

its documented security policy”. The analysis of these

definitions clearly indicates that software errors are the main

causes of information security breaches. This is evident in the

report presented in 2010 by researchers and expert from more

than twenty five universities, international cyber security

organizations about the twenty five (25) most dangerous

software errors that enable cyber-crime. These errors were

classified into three main categories; 1.Software Error based

on insecure interaction between components 2. Software Error

based on risky resource management 3. Software Error based

on Porous Defenses. The recent cyber-attacks on institutions

such as Google, SMEs, Universities, governmental

organization, and home users were all attributed to software

errors [5]. Thus software vulnerability is a subset of

faults[6]and as such can be define based on the weakness,

defect, errors, fault, and failures that occur in software.

Having discussed the main elements that constitute software

vulnerability, this paper also seeks to address some of the

additional questions raised in those previous studies. The

main focus of the study is to evaluate the various tools and

methods proposed by previous studies to find out their

differences and similarities. Evaluation of these vulnerability

detection methods and tools is very key as it help us to: (1)

identify which tool and method is suitable for a particular

vulnerability detection (2) expand the said method or tool

functionality (3) evaluate the weakness and strength of the

methods and tools for detection (4) identify known and

unknown software vulnerabilities.

Our studies also seeks to investigate the most efficient

approach for detecting vulnerabilities based on previously

proposed benchmarks and present some recommendations for

future studies. The remaining sections of the paper are

organized as follows. Section 2 discusses the common causes

of software vulnerability. Section 3 presents a presents a

detailed analysis of software vulnerability methods. Section 4

presents the evaluation of software vulnerability detection

methods. We reports on the vulnerability detection tools in

Section 5. The evaluation of the tools and is presented in

Section 6. Section 7 concludes the study.

2. COMMON CAUSES OF SOFTWARE

VULNNERABILITY
Analyzing the causes of software vulnerability significantly

helps reduce vulnerabilities in software[7]. Several studies

have empirical verify the causes of software vulnerability over

the past decade. Krsul et al. [8] investigated and presented

some common causes of system vulnerabilities, this include

buffer overflow and IP Fragmentation. Buffer overflow

occurs when a program tries to copy some data from one

object into another but does not check if the destination object

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

23

size is large enough to contain the source object. IP

Fragmentation on the other hand can be categorized into two

forms, vulnerabilities that occur during the design of protocol

and IP fragmentation vulnerabilities known as teardrop. In

2001, e-Eye Digital security as well presented a report about a

buffer-overflow that caused vulnerability in Microsoft IIS

Web Servers[9]. The Industrial Control System Cyber

Emergency Response Team (ICS-CERT) in 2015 reported the

following major causes of vulnerabilities [11].

i. Insufficient Entropy: this occurs when attackers

guess the random numbers generated by the system

and gain unauthorized access to a system.

ii. Use of cryptographically weak Ping: this occurs

when a non-cryptographic PRNG is used in a

cryptographic context; this exposes the

cryptography to certain types of attacks.

iii. Authentication by pass by spoofing: this form of

attack is mainly caused by improperly implemented

authentication schemes that are subject to spoofing

attacks

iv. Improper check for unusual or exceptional

conditions

Again based on the report presented in 2010 by expert on the

twenty five most dangerous software errors, the following

were the major cause of software Vulnerabilities identified.

A. Software Error based on insecure interaction

between components

i. Improper neutralization of special elements used in

an SQL Command

ii. Improper neutralization of special elements used in

an OS command

iii. Improper neutralization of input during Web page

Generation

iv. Unrestricted upload of file with dangerous type

v. Cross-site request forgery

vi. URL redirection to untrusted site

B. Software Error based on Risky Resource

Management

i. Buffer copy without checking size of input

ii. Improper limitation of a pathname to a restricted

Directory

iii. Inclusion of functionality from Untrusted control

Sphere

iv. Use of potentially dangerous function

v. Incorrect calculation of buffer size

vi. Uncontrolled format string

vii. Integer overflow or wraparound

C. Software Error Based on Porous Defenses

i. Missing authentication for critical function

ii. Missing authorization

iii. Use of hard-coded credentials

iv. Missing Encryption of sensitive data

v. Reliance on untrusted inputs in a security decision

vi. Execution with unnecessary privileges

vii. Incorrect authorization

viii. Incorrect permission assignment for critical

resource

ix. Use of a broken or risky cryptographic algorithm

x. Improper restriction of excessive authentication

attempts

xi. Use of one-way hash without a salt

Furthermore, we sample eight causes of software vulnerability

reported by the National vulnerability database.

i. Input validation Error (IVE) (boundary condition

error(BCE), buffer overflow(BOF): such types of

vulnerabilities include failure to verify the incorrect

input and read or write involving an invalid memory

address

ii. Access Validation error (AVE): these vulnerabilities

cause failure in enforcing the correct privilege for a

user

iii. Exceptional condition Error Handing (ECHE): these

vulnerabilities arise due to failures in responding to

unexpected data or conditions.

iv. Environmental Error (EE): These vulnerabilities

are triggered by specific conditions of the

computational environment.

v. Configuration Error (CE): These vulnerabilities

result from improper system settings.

vi. Race Condition Error (RC): These are caused by the

improper serialization of the sequences of

processes.

vii. Design Error (DE): These are caused by improper

design of the software structure.

viii. Others: Includes vulnerabilities that do not belong

to the types listed above, sometimes referred

to as nonstandard.

3. VULNERABILITY DETECTION

METHODS
This section of the paper will present an in-depth analysis of

the tools used in detecting vulnerabilities in software

applications. The tools and techniques are used in detecting if

there are systems gaps that could be capitalized by an attacker

to compromise the security of the system or that of the

platform the system runs on.

3.1 Fuzzing
Fuzzing is a security detection method that takes an invalid

input or random input into the application and output a

behavior that is not expected and identity error in the program

and suspected vulnerability. This is because it expected that

every program contain some level of vulnerability that need to

be detected. The key to fuzzing is data generation where

pertinent test are carried out to crash the source program and

also to choose the right tools to monitor the process. But

currently, there is more twist to fuzzing where developers

analyze the executable codes rather than the source code to

detect vulnerabilities. According to [10] Fuzzed data

generation can be performed in two ways. They can be

generated randomly by modifying correct data without

requiring any knowledge of the application details. This

method is known as Black box fuzzing and was the first

fuzzing concept. On the other hand, White box fuzzing

consists in generating tests assuming a complete knowledge of

the application code and behavior. A third type is Gray box

fuzzing which stands between the two methods aiming to take

advantages of both. It uses only a minimal knowledge of the

behavior target. Data generation is the key to fuzzing,

according to the data generation methods, fuzzing can be

categorized as random fuzzing, mutation-based fuzzing,

generation-based fuzzing and direction-based fuzzing.

Random fuzzing is the simplest fuzz testing technique, a

stream of completely random input data is send to the

program under test. The input data can be sending as

command line options, events, or network packets. This type

of fuzzing is, in particular, useful for test how a program

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

24

reacts on large or invalid input data. While random fuzzing

can find already severe vulnerabilities, modern fuzzers do

have a detailed understanding of the input format that is

expected by the program under test. Mutation-based fuzzing

is one type of fuzzing in which the fuzzer has some

knowledge about the input format of the program under test:

based on existing data samples, a mutation-based fuzzing

tools generated new variants, based on a heuristics, that it uses

for fuzzing. The mutation algorithm is the key to improve the

efficiency of fuzzing. Generation-based fuzzing generates

program inputs according to some specifications. Compared

to pure random-based fuzzing, generation-based fuzzing

achieves usually a higher coverage of the program under test,

in particular if the expected input format is rather complex

and has checksums. Direction-based fuzzing use the program

control flow to direct the fuzzing, also called test case

generation fuzzing. SAGE [11] is the type of Direction-based

fuzzing. First, it constructs an initial and valid input IN0,

sends the input into program P, and symbol execution engine

observes P’s processes on IN0 and a path constraint that is in

the form of logical formulas; secondly, it negates the path

constraint encountered during execution, solves new

constraint by a constraint solver, and create a new input IN1

whose execution path is different from IN0’s; finally, it

processes IN1 in the same way with IN0 and repeats the

previous three procedures. There are lots of research [12] and

tools on fuzzing, such as Sulley [13], SPIKE [14], Peach [15].

3.2 Web Application Scanners
Web application scanners are an automatic application that

examines application on the web for security vulnerabilities.

Web security is very difficult since its coverage runs through

the public which includes unscrupulous users. Web

application takes it input from Hypertext Transfer Protocol

request which makes it processing difficult. The volatility of

the input either correct or not correct is the most causes of

web application vulnerabilities. Web application testing for

vulnerability can be carried out by two different methods:

white box testing which analysis the source code of the

application manually by using tools such as FORTIFY [16],

Ounce [16]or Pixy [16]. Once this is done manually it’s very

difficult because of the complex nature of programming

languages and also sometime cannot detect all security

vulnerabilities. Black box testing this is where the scanner

uses fuzzing approach to detect vulnerabilities. It is

sometimes called penetrating testing. The work of the web

application scanners is that its examines the application by

surfing through the web pages through penetrating testing

which is analysis of the web application and come out with

malicious input and further assesses it and sees its response.

Web application scanners are mainly applied in the testing

stage of the system development and it must be able to (1)

identify a vulnerability in a the set web application (2) come

out with a report what is to be carried out that lead to the

vulnerability (3) come out with a low false positive ratio.

Aside these web application scanners, the following

commercial web application scanners can also be used in

detecting software vulnerability, they are; AppScan WebKing

WebInspectNTOspider[17].

3.3 Static Analysis Techniques
The use of web application for daily routine work and for

commercial purposes is on the high side as the day goes by,

this emerging phenomena unfortunately has also presented a

lot of security issues where unscrupulous developers look for

gap and weakness in web application as an avenue for attack.

According to the most recent website security statistics report

63 percent of assessed websites are vulnerable, each having an

average of six unsolved flaws [18]. In 2013, Open Web

Application Security Project[19] and Common Vulnerabilities

and Exposures [20] indicated that, cross site scripting (XSS)

and SQL injection (SQLI) are the top ten most serious

vulnerabilities in web based system. Static Analysis technique

is a defensive and preventive technique that detects

vulnerabilities in web application. The primary objective of

this approach is to identify the weakness in the program

source code before its actual use in the user’s environment for

the first time. This help to detect vulnerability early enough

hence cutting down cost of rectifying it should it happen. The

static analysis approach is used in performing the following

activities: (1) assess the input code (2) applies set rules or

algorithms also called inference (3) generates a list of

vulnerabilities present in the program.

There are a lot of Static analysis approaches available which

is very effective for detecting Buffer Overflow vulnerabilities

before a program come out. Many static analysis approaches

have been introduced in various research aims at detecting

BOF vulnerabilities [21-23]. These approaches can be

classify to these six main areas (1) inference technique (2)

analysis sensitivity (3) Analysis granularity (4) soundness

(5) completeness (6) language

3.4 Brick
Binary Run-time Integer Based Vulnerability Checker which

detects integer based vulnerability at run-time. It is very

effective approach which result gives low false positive and

negative. BRICK process involve three stages: (1) its convert

the binary code to intermediate representation VEX on

Valgrind (dynamic binary instrumentation framework

Valgrind[24] (2) intercept integer related statements at run-

time, and record the necessary information (3) detect and

locate vulnerability with a set checking scheme.

3.5 CRED: C Range Error Detector
One of the vulnerability detecting approach that is not widely

use is the Dynamic Buffer Overrun Detector. This is because

its lack the power to protect against all buffer overrun attacks,

break existing code and also produce too high overhead.

CRED: C Range Error Detector approach corrects the above

in- competencies and finds all buffer overruns attacks. CRED

proved effective in detecting buffer overrun attacks on

programs with known vulnerabilities, and is the only tool

found to guard against tested 20 different buffer overflow

attacks [25]

4. EVALUATION OF SOFTWARE

VULNERABILITY DETECTION

METHODS

4.1 Metrics for Benchmarking
Benchmarks are standard tools that allow evaluating and

comparing different systems, components and tools

according to specific characteristics [26]. This helps all

stakeholders in decision making in terms of selecting the right

approach and for which vulnerability. The following are the

benchmarks for evaluating the vulnerability detection

methods: Time Cost, False Positive, False Negative,

Coverage, Number of vulnerability Detected, False Prediction

Rate and Complexity. Details of the performance comparison

of the vulnerability detection methods are presented in figure:

1.

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

25

5. SOFTWARE VULNERABILITY

DETECTION TOOLS
In other to produce quality application which is devoid of

vulnerabilities, developer s uses software quality assurance

tools which assist them to detect weakness in every part of the

System Development Life Cycle. These tools can be obtained

from the market and also some are open source product.

According to Defense Information Systems Agency's (DISA)

"Application Security Assessment Tool Market Survey,"

Version 3.0, July 29, 2004 [27] classified this variety of tool

into:

5.1 Web Application Tools:
Web application scanner tools are a more specialized class of

tool that focuses specifically on web applications only, and

are not considered generalized network scanners. Examples of

this type of tool and company are as:

i. AppScan DE by Watchfire

ii. N-Stealth by N-Stalker

iii. NTOSpider by NTObjectives

iv. Spike Proxy by Immunity

v. TestMaker by pushtotes

vi. WebScarab by OWASP

5.2 Web Service Tools:
Web service scanner tools are a relatively new class of tool

whose purpose is the analysis of web service applications.

Examples of this type of tool include:

i. SOAPscope by Mindreef

ii. SOA Test by Parasoft

5.3 Database Tools:
Database Scanner tools are a specialized tool used specifically

to identify vulnerabilities in database applications. In addition

to performing some "external" functions like "password

cracking", the tools also examine the internal configuration of

the database for possible exploitable vulnerabilities. Examples

of this type of tool include:

i. AppDetective by Application Security

Inc.

5.4 Developer Tools:
Developer tools are used to identify software vulnerability

during development or after deployment. These tools consist

of static source code analysis tool, disassemble debugger

decompiles binary code/byte code analysis tool, and dynamic

run-time analysis tools. Examples of Static Source Code

Analysis Tools include:

i. BOON by D. Wagner

ii. BoundsChecker, Dev Partner by Compuware

iii. Code Assure by Secure Software Inc.

iv. CodeSurfer, CodeSonar by GrammaTech, Inc.

v. Eau Claire by Brian Chess

vi. Prevent/Extend by Coverity

vii. Cqual by Jeff Foster

viii. Flawfinder by David Wheeler

ix. Fortify Source Code Analysis by Fortify

x. ITS4 by Cigital

xi. K7 by Klocworks

xii. Jtest by Parasoft

xiii. PolySpace by PolySpace Technologies

xiv. Prexis by Ounce Labs, Inc.

xv. RATS by Secure Software

xvi. RSM Source code by Msquared Technologies

xvii. Splint by U. of Virginia

xviii. SPIdynamics

xix. Jlint by Artho.com

xx. PMD by InfoEther, Inc.

xxi. UNO by Bell Labs

xxii. xg++ by Stanford

5.5 Disassembler, Debugger, Decompiler

tools include:
i. IDA PRO by DataRescue Inc.

ii. VmWareVitual Infrastructure by VmWare

iii. Boomerang by Boomerang Open Source

Community Project

5.6 Examples of Binary/Bytecode Analyzer

include:
i. AspectCheck by Aspect Security

ii. FindBugs by University of Maryland

iii. BugScan by LogicLab

iv. BEAST Binary Executable Analysis by Security

Innovation

5.7 Static Analysis Tools
Here eight types of widely-used software vulnerabilities of

static analysis tools from open source are chosen for analysis

and comparison. First the main features of these tools are

briefly described, and then we compared them from a

technical point of view.

A. ITS4
ITS4 [5] is a tool based on lexical analysis technique. It

maintains a vulnerability database to read out the contents of

the database at runtime and compare with the program codes.

The database can be added, modified and deleted.

B. SPLINT
SPLINT (Secure Programming Lint) [6] is the expansion of

LCLINT tool (for detecting buffer overflows and other

security threats). It employs several lightweight static

analyses. SPLINT need to use notes to perform cross-program

analysis. SPLINT set up models for control flow and loop

structure by using heuristic technology.

C. UNO
UNO [7] uses model checking to find loopholes in the code.

UNO is named for the first character of three software defects:

the use of uninitialized variables, dereferencing Nil-pointers,

and Out-of-bound array indexing.

D. CHECKSTYLE
Checkstyle is the most useful tool to help programmers write

standard Java coding. Programmers can integrate Checkstyle

in development environment and use it to automatically check

whether the Java codes are standard. Checkstyle is

configurable and can almost support all the coding standards.

E. ESC / Java
ESC / Java (Extended Static Checker for Java) [8] is a static

detection tool based on theorem proving, and can find run-

time error in Java code. Programmers can build ESC / Java

into the program verification environment, or install ESC /

Java plug-in in the Eclipse.

F. FindBugs
FindBugs [9] is an open source static detection tools,which

check the class or JAR files? By comparing binary codes with

the defect model set, FindBugs can detect latent problems.

FindBugs is not to find loopholes through analyzing the form

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

26

and structure of class files, but by using the visitor pattern. At

present FindBugs contains about 50error pattern detectors.

G. PMD
PMD is an open source, rule-based static detection tool. PMD

scans Java source codes and finds some potential problems,

such as wrong code, duplicate code, fussy code or code to be

further optimized. PMD includes a default rule set. In

addition, it allows users to develop new rules and use

6. EVALUATIONS VULNERABILITY

DETECTION TOOLS
Software quality is very important in application

development, as a result there has been several tools

developed to ensure that application developed are of good

quality. Static analysis tools are one of such that detect

vulnerabilities in applications without having to run the code.

Figure 2 shows a detail comparison of the static analysis tools

7. CONCLUSION
In this paper we evaluated software vulnerability detection

methods and tools. For this reason sample software

vulnerability detection methods such fuzzing, scanning, static

analysis CRED and BRICK were discussed. The strength and

weakness of these methods were also compared. More so,

static analysis detection tools were also discussed and their

detection rate was also compared quantitatively. In this review

I can conclude that there is no single software vulnerability

detection method or tool that can defect weakness in a

software product, each method or tool has its own advantages

and disadvantages, I therefore suggest that moving forward

there should be and integration of the detection methods and

tools to complement each other whiles trying to improve the

weakness of the individual approaches to enhance its

efficiency.

Figure I: Performance Comparison of Vulnerability Detection Methods

Figure II: Performance Comparison of Static Analysis Tools

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time Cost Accuracy F.Positives F.Negatives Coverage No.of Vul.
Detected

CRED

BRICK

Static Analysis

Scanners

Fuzzing

0

2

4

6

8

10

12

ITS4 SPLINT UNO Checkstyle ESC/Java FindBugs PMD

DETECTION RATE

DETECTION RATE

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.8, July 2017

27

8. REFERENCES
[1] M. Alnuaimi, M. A. Al-Fayoumi, and S. J. Aboud,

"Protection of e-commerce Using Hybrid Tools."

[2] C. Kuang, Q. Miao, and H. Chen, "Analysis of software

vulnerability," WSEAS Transactions on Computers

Research, vol. 1, p. 45, 2006.

[3] I. V. Krsul, "Software vulnerability analysis," Purdue

University, 1998.

[4] W. Jimenez, A. Mammar, and A. Cavalli, "Software

Vulnerabilities, Prevention and Detection Methods: A

Review1," Security in Model-Driven Architecture, p. 6,

2009.

[5] E. E. Schultz Jr, D. S. Brown, and T. A. Longstaff,

"Responding to computer security incidents: Guidelines

for incident handling," Lawrence Livermore National

Lab., CA (USA)1990.

[6] G. McGraw, Building Secure Software: How to avoid

security problems the right way: Addison-Wesley

Professional, 2002.

[7] L. Ping, S. Jin, and Y. Xinfeng, "Research on software

security vulnerability detection technology," in Computer

Science and Network Technology (ICCSNT), 2011

International Conference on, 2011, pp. 1873-1876.

[8] I. Krsul, E. Spafford, and M. Tripunitara, "An analysis of

some software vulnerabilities," in Proceesings of the 21st

NIST-NCSC National Information Systems Symposium,

1998, pp. 111-125.

[9] M. Shaneck, "An Overview of Buffer Overflow

Vulnerabilities and Internet Worms," CSCI, 2003.

[10] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, "Finding

software vulnerabilities by smart fuzzing," in Software

Testing, Verification and Validation (ICST), 2011 IEEE

Fourth International Conference on, 2011, pp. 427-430.

[11] P. Li and B. Cui, "A comparative study on software

vulnerability static analysis techniques and tools," in

Information Theory and Information Security (ICITIS),

2010 IEEE International Conference on, 2010, pp. 521-

524.

[12] T. L. Munea, H. Lim, and T. Shon, "Network protocol

fuzz testing for information systems and applications: a

survey and taxonomy," Multimedia Tools and

Applications, vol. 75, pp. 14745-14757, 2016.

[13] P. Amini and A. Portnoy, "Sulley-Pure Python fully

automated and unattended fuzzing framework," ed: May,

2013.

[14] D. Aitel, "An introduction to SPIKE, The fuzzer creation

kit," presentation slides), Aug, vol. 1, 2002.

[15] M. Eddington, "Peach fuzzing platform," Peach Fuzzer,

p. 34, 2011.

[16] M. Vieira, N. Antunes, and H. Madeira, "Using web

security scanners to detect vulnerabilities in web

services," in Dependable Systems & Networks, 2009.

DSN'09. IEEE/IFIP International Conference on, 2009,

pp. 566-571.

[17] E. Fong and V. Okun, "Web application scanners:

definitions and functions," in System Sciences, 2007.

HICSS 2007. 40th Annual Hawaii International

Conference on, 2007, pp. 280b-280b.

[18] S. Gupta and L. Sharma, "Exploitation of cross-site

scripting (XSS) vulnerability on real world web

applications and its defense," International Journal of

Computer Applications, vol. 60, 2012.

[19] M. K. Gupta, M. Govil, and G. Singh, "Static analysis

approaches to detect SQL injection and cross site

scripting vulnerabilities in web applications: A survey,"

in Recent Advances and Innovations in Engineering

(ICRAIE), 2014, 2014, pp. 1-5.

[20] C. Vulnerabilities, "Exposures,“The Standard for

Information Security Vulnerability Names”," Common

Vulnerabilities and Exposures: The Standard for

Information Security Vulnerability Names. url:

http://cve. mitre. org, 2007.

[21] N. Dor, M. Rodeh, and M. Sagiv, "CSSV: Towards a

realistic tool for statically detecting all buffer overflows

in C," in ACM Sigplan Notices, 2003, pp. 155-167.

[22] B. Hackett, M. Das, D. Wang, and Z. Yang, "Modular

checking for buffer overflows in the large," in

Proceedings of the 28th international conference on

Software engineering, 2006, pp. 232-241.

[23] J. Viega, J. Bloch, T. Kohno, and G. McGraw, "Token-

based scanning of source code for security problems,"

ACM Transactions on Information and System Security

(TISSEC), vol. 5, pp. 238-261, 2002.

[24] N. Nethercote and J. Seward, "Valgrind: a framework for

heavyweight dynamic binary instrumentation," in ACM

Sigplan notices, 2007, pp. 89-100.

[25] J. Wilander and M. Kamkar, "A Comparison of Publicly

Available Tools for Dynamic Buffer Overflow

Prevention," in NDSS, 2003, pp. 149-162.

[26] J. Gray, Benchmark handbook: for database and

transaction processing systems: Morgan Kaufmann

Publishers Inc., 1992.

[27] P. E. Black and E. Fong, "Proceedings of Defining the

State of the Art in Software Security Tools Workshop,"

NIST Special Publication, vol. 500, p. 264, 2005.

IJCATM : www.ijcaonline.org

http://cve/

