
International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.9, July 2017

22

User Oriented Requirements Engineering for

Agent Oriented Systems

Anuja Soni
Deen Dayal Upadhyaya College

 University of Delhi

ABSTRACT
Poor requirements are one of the principal reasons for failures

of projects. A casual attitude to the user-requirements at the

requirements stage leaves little room for improvement at the

final stage of software development. This study is aimed to

act as a bridge between the real world needs of users alleged

as requirements and potential of developer to intensively

investigate their needs for Agent Oriented Systems. This

work employs the notion of the User Story Card (USC) for

requirements elicitation that acts as a powerful tool to reflect

the true requirements of users in the final artifact. In addition,

this work presents Agent Cards(ACs) to define as well as

validate the requirements to ensure that the requirements truly

represent users’ expectations so that the system based on

these requirements eventually would lead to their satisfaction.

Keywords
User Story Card (USC); Agent Card (AC); Multi-Agent

System (MAS), Requirements Engineering, Validation

1. INTRODUCTION
From the commencement of requirements gathering till its

conclusive form, the developer is subject to face several

vicissitudes. The lack of concreteness in the requirements

leads to the devastation of projects. Therefore, for the

successful accomplishment of the system, the developer is

required to cautiously complete and validate the requirements

before proceeding to design stage [1].

Requirements Engineering (RE) is a structured process of

acquiring, defining, validating and specifying the

requirements of a system. There are various approaches

recognized by researchers in literature for requirements

engineering such as Goal based requirements engineering [2],

Agile based visualization techniques [7], Formal Tropos [1],

Agent based requirements Engineering [4] etc. Out of these

methodologies, Agent based requirements engineering models

problems in terms of autonomous interactive component

agents that is proving to be a more natural way of

representing task allocation, team planning and user

preferences. An agent based system provides a flexible

mechanism to model the stakeholders [5] that facilitate the

mutual influence between envisioned system and human

context where it will work [6].

Agent Oriented requirements engineering addresses the

requirements of a system in terms of agents. Software agents

are computer programs that act autonomously on behalf of

their users across open and distributed environments. Various

requirements frameworks such as i* [1], ConGolog [1], REF

[5] have been recommended for Agent Oriented systems. All

these approaches have their own potencies and limitations. i*

framework supports only early phase of requirements

engineering (RE); ConGolog is expressive logic based formal

framework that supports late phase of RE activities.

Concerted form of i* and ConGolog framework [1] supports

early to late phase of requirements engineering. These

techniques assist the developers to elicit the requirements

from the users; however users themselves are not involved to

provide their requirements.

Non-specific requirements wander off the developers from the

users’ true needs and expectations resulting in defective

requirements and the consequences of these defects are

repulsive [4, 6] such as:

Likelihood of misinterpretation of requirements due to lack of

users’ participation:

-Unsatisfied users

-Cost and resource overrun

-A poor quality product

-Delayed system delivery

-Expensive maintenance

-Exhausted and demoralized software development team

In light of these issues, a User Oriented Requirements

Engineering is required that necessitates the involvement of

the users for obtaining their true requirements.

To reflect users’ expectations into the final requirements

document; this paper proposes a User Oriented Requirements

Engineering methodology for Agent Oriented systems that

assists developers in acquiring the requirements directly from

the users and prevents the chances of misinterpretation among

users and developers. This methodology facilitates the

developers to refine the requirements iteratively to have a

complete, consistent and precise list of requirements before

proceeding to design stage. In this framework, the

requirements are recorded in a set of USCs [7] developed

jointly by customer representatives and the development

team. USCs are mapped to ACs that is an easy and effective

means to understand characteristics of an agent in terms of

goals and tasks. This work argues that highly interactive

USCs and goal oriented ACs; collectively result in a

requirements artifact through a mapping process that is

precise, consistent and comprehensive. Also, this approach

ensures that user-requirements are truly reflected into the final

requirements document as it is the user who ultimately

decides the success of a system.

The organization of the paper is as follows: Section II

presents the User Oriented Requirements Methodology for

Agent Oriented systems. Section III exhibits the applicability

of the proposed approach and finally section IV concludes the

paper.

2. USER ORIENTED REQUIREMENTS

METHODOLOGY FOR AGENT-

ORIENTED SYSTEMS
Requirements Methodology involves the process of acquiring

and then establishing the user oriented view of the

requirements of a system.

Poorly collected requirements in the early phases of the

software development can be exceedingly costly in the later

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.9, July 2017

23

stages of software production. This paper focuses on

requirements methodology for Agent-Oriented system that

comprises of the activities such as requirements elicitation,

definition, validation and specification. The Fig. 1 illustrates

the main steps of the methodology. The user stories are

collected from the users using the interface USCs. USCs are

expanded into a number of sub-USCs that facilitate in

extracting complete set of user-requirements ‘R’.

Requirements ‘R’ are mapped to various ACs that eventually

help in mapping USCs to ACs iteratively till all USCs are

mapped to ACs. A reverse mapping from ACs to USCs is

applied to locate unmapped ACs. Users are involved in

workshops for discussion over unmapped requirements.

The process is repeated till all requirements are refined.

Refined requirements are validated for their consistency and

completeness and act as a base line document for

requirements specification document. The same is described

in detail in the subsequent sub sections.

Fig 1: User-Oriented Requirements Engineering Methodology for Agent Oriented Systems

2.1 Requirements Elicitation
Requirements elicitation involves gathering requirements of a

system from various stakeholders. Various techniques for

requirements elicitation are mentioned in the literature namely

interviews, observations, prototyping [3], textual-based

artifacts like use cases [11], plain natural language [15], a

hybrid approach (integration of user interaction and natural

language processing) [12], Value Gap Model [14], Key words

mapping based requirements elicitation [13], Pattern-based

requirements elicitation [10] etc.

Elicitation strategies which produce requirements in the form

of high level designs run the risk of creating requirements

which are ambiguous to the user community.

These requirements may not be verifiable by the users

because they do not adequately understand the design

language. Also, requirements expressed as a design is much

more likely to incorporate additional decisions not reflecting

user needs i.e. requirements will not be precise and necessary.

Many requirements elicitation methods involve error prone

recording process and delayed cost-estimation and thereby

focus on fulfilling the requirements list rather than the

intended user-goals [3]. The ever-increasing demand of high

quality software has elevated the need for users’ involvement

in requirements elicitation. To enhance the users’ involvement

in the requirements elicitation, this work uses a simple and

user-Oriented concept of User Story.

User Story assists the developers in acquiring requirements

directly from users to reduce the likelihood of defects in the

requirements [3]. User Stories are written using the prescribed

template shown below that is disseminated among various

stakeholders involved in requirements elicitation [9].

As a < User > I want to achieve < Goal > So That < Reason

>

The User Stories signify goals of a system placed in short

sentences in active voice. The <Goal> clause of the User

Story signifies the actual requirements of users and is likely to

be exhibited by the final system, whereas the term <User>

signifies the role of the user in a real world environment.

The goals along with many other parameters like User Story

Number, User Story Title, User Role, User Name, Date of

Creation, Time-Estimation are recorded on USCs developed

jointly by customer representatives and developers.

The <Reason> clause in the User Story facilitates the users to

specify the motive for their needs. After obtaining the

requirements of the users, the “reason” turns out to be self

evident, therefore it is not recorded on the USC for further

processing. The structure of USC is illustrated in Fig. 2. USC

Reverse mapping
from ACs to USCs

Unrefined Requirements

Requirements Elicitation Requirements Definition

Requirements Validation

Requirements Specification

USCs

Unique Requirements

ACs

Expansion of Unresolved
Requirements

Map R to ACs Acquire USCs Expand USCs
into Sub-USCs

Map USCs to
Requirement R

Map USCs to ACs

Base line
Requirements

Document

Non mapped

Mapped

Refinement & Approvals

User
s

Mapped

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.9, July 2017

24

serves as a means to eliminate the gap between users and

developers during requirements elicitation. These USCs can

be further expanded and refined into a number of sub USCs

after a thorough discussion with users.

The process of expansion of User Stories into sub-stories

continues iteratively till all requirements are captured from

users up to their satisfaction. USCs once validated form an

artifact for Software Requirements Specification.

Fig 2: Structure of USC

An example of USC is illustrated in Fig. 3. These user stories

can be stored manually or electronically. USCs can be

effectively managed by using the tag interface tools that

support quick access to user stories during the period of

appraisal [9].

Fig 3: Example of USC

2.2 Requirements Definition
Requirements definition translates the requirements captured

from the users into the services, that the final system is

expected to provide. This work employs Agent-Oriented

approach to define the requirements of a system in terms of

agents.

Multi-Agent System (MAS) is a system composed of various

agents namely User Interface Agent, Goal Oriented Agent,

Monitoring Agent, Security Agent and Communicative Agent

etc. that cooperate to solve a complex problem in a

decentralized way and are defined as follows:

User Interface Agent: User Interface Agent is conscientious for

user interface and input output facets.

Goal Oriented Agent: Goal Oriented Agent is responsible for

the achievement of major goals of organization.

Monitoring Agent: Monitoring Agent is responsible for

registering, de-registering agents and co-ordinate

their activities.

Security Agent: Security Agent takes care of security features

imposed on data confined with a single agent or

shared by multiple agents.

Communicative Agent: Communicative Agent is responsible

for facilitating communication among two or more

agents.

This paper presents AC [16], as a means for defining the

requirements in terms of the goals that are expected to be

achieved by various agents in MAS. AC acts as a repository

of the information in terms of goals, tasks and other

associated parameters of various agents that facilitate the

developer to foresee the requirements of a system in a broader

way.

AC enables the developers to establish the comprehensive list

of requirements of agents in terms of roles, goals, tasks and

services. The template of AC is shown in Fig. 4 that works as

a repository of the requirements for an agent [8].

 Fig 4: Template of AC

Type AGENT_STRUCTURE is record

Agent_ID : varchar2;

Agent_Name : varchar2;

Agent_Roles[] : ROLE;

Date : date;

Time : varchar2;

Source : varchar2;

Agent_Goals[] : GOAL;

Agent_Origin : ORIGIN;

End record;

Type GOAL is record

Goal_Name : varchar2;

Agent_Tasks [] : varchar2;

Type ROLE is record

Agent_Roles [] : varchar2;

Dependums[] : varchar2;

End record;

Type ORIGIN is record

USC_Name[] : varchar2;

USC_Id[] : varchar2;

End record;

Fig 5: Structure of AC

User

USC_NO:
User Story Title:
User Name:
Date of Creation:
Time-estimation:
User Role:
 Goal:

Software tool

Agent ID Text (ID should

Auto

 increment)

Agent Name Text(15-characters)

Agent Type Text

Date DD/MON/YYYY

Role Text

Source Text

Time HH:MI AM/PM

Iteration No Numeric

Estimation

Time

Text

Risk Level Text

Goals Text

Goal Type Text

asks Text

Related USCs

USC1,USC2, ………USCi

Communicative

Description

<Optional>

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.9, July 2017

25

ACs are expanded form of USCs that leverage detailed

understanding of requirements in the context of functionality

of various agents. USCs incorporate simple requirements

depicting user’s perspective but, on the contrary ACs,

designed by developers represent the broad perception of

requirements. By fabricating ACs, developer reaches to

additional goals and tasks and decides whether requirements

already captured by users in the form of USCs are actually

feasible to achieve. The structure of AC is shown in Fig. 5.

The structure illustrates various agent attributes like Agent

ID, Agent Name, Agent Type etc. that are explained in the

following section.

Agent ID consists of agent identification number assigned by

monitoring agent; Agent name incorporates the name of the

associated agent; Agent-role indicates the behavior of an

agent for accomplishing a goal and a goal for which one agent

is dependent on another agent is called dependum. Origin

defines the names and identification numbers of

corresponding USCs from which the AC is generated.

The source indicates the personal details of the concerned

persons who are accountable for allied USCs; date and time

can have any standard format like dd/mon/yyyy and hours:

minutes am/pm respectively depicting, when the AC was

created; iteration number stipulates the iteration for agent

implementation; estimation time is the faltering execution

time for AC in terms of number of days; risk level refers to

the risk (medium/high/low) associated with implementation of

agent specified in AC; role indicates the role of the concerned

agent; goals describe the main goal of the agent; tasks specify

the sub-goals that agent would meet for achieving the main

goal. Goal type can be hard goals, soft goals or maintenance

goals [3]. Communicative description shows the dependencies

among agents in terms of goal, task, resource and soft goal as

prescribed by i* framework [2].

The algorithm to define the requirements consists of the

following steps:

1) Formulate relation Ur : USCs R that maps user stories

USCs to requirements R. This would result in reducing

the ambiguity by tracing out redundant requirements.

 Suppose

i. ntotal no. of requirements

ii. ino. of redundant requirements

iii. n-ino. of unique requirements left in USCs that

would be utilized in following step.

2) Determine relation Ar: R ACs that maps requirements

‘R’ obtained in previous step to one or more ACs.

3) Obtain the relation Ua: USCsACs from relations Ur

and Ar that finally maps the USCs to the ACs.

The mapping process assists developer to explore additional

requirements pertaining to agents and to obtain consolidated

association of requirements with respect to USCs and ACs.

2.3 Requirements Validation
To achieve completeness and consistency of requirements

procured, reverse mapping is done from ACs to USCs that

traces out missing goals in USCs. Developer carries out

reverse mapping to obtain a consistent, complete and unique

list of requirements.

Assume

 Task: Tm (m: no. of tasks linked with ACr)

 Goal: Gj (j: no. of Goals associated with ACr)

 USC: Uh (h: no. of USCs associated with ACr)

 r: number of ACs

 f Tm s.t. is mapped to C
 Fig.6 ensures the completeness and consistency between AC

and associated USCs if condition (1) turns out to be true else

there can be two cases:

(i) Mapping of tasks to goals:

 f Tm h .
Equation (1.1) implies that for every task there is not any

existing goal. At this step, developer is required to assign some

goals to newly captured tasks.

(ii) Mapping of goals to USCs:

 f Tm but h .

Equation (1.2) implies that new goals have been seized in

ACs. At this step, developer is required to conduct a workshop

with users so that USCs can be updated according to these new

additional goals.

The consistency and completeness in the requirements

document can be ensured by the following procedure:

 Compare Gj of ACr with all the goals of USCs.

 ACr obtain the value of GEr

GEr is a one bit Goal Equality indicator that can be defined as:

 r ACr f of ACr is mapped to
 goals of h

 r for any ACr f any is not
 any of goals of h
In a similar manner, GEr is calculated for all ACr. For

verifying consistency and completeness of the final

requirements document, Equation (2) is used. Obtain

Validation Factor (VF) by the following formula:

 p

p

Fig 6: Validating requirements through reverse mapping

VF=1 will ensure condition (1) which implies that every task

in all ACs and subsequently all goals are mapped to all USCs.

VF=0 will lead to condition (1.1) or (1.2) that implies that

there is some inconsistency in the user-requirements obtained

using USCs and goals accumulated in ACs. This indicates

generation of additional goals and tasks during fabrication of

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.9, July 2017

26

ACs. Developer cannot proceed further unless these goals and

tasks are approved by users. Developer is required to conduct

a workshop with users to take their consent before

approaching to next phase of RE. This process is continued

till the value of VF is obtained as 1. Value of VF as 1 ensures

validation of all goals and tasks.

2.4 Requirements Specification
The requirements specification entails the complete behavior

of the system that act as a contract between the system

developers and users. The methodology proposes that when

the value of VF comes out as 1 for all ACs; that is when all

the goals of ACs are mapped to all USCs, then the USCs and

their corresponding ACs act as a complete document for

requirements specification.

The proposed approach bridges the gap between user and

developer by facilitating ACs to capture additional goals/tasks

and a reverse mapping is employed to ensure completeness

and consistency in the final requirements document.

3. CASE STUDY
To see the application of the method, a case study of Material

Management Multi Agent System (MM MAS) is performed.

MM MAS is composed of User Interface Agent, Goal

Oriented Agent, Monitoring Agent, Security Agent and

Communicative Agent as explained in section II. This case

study is aimed to focus on the requirements of different agents

captured in the form of USCs, propagated in the form of ACs

and validated through a reverse mapping process. MM MAS

comprises following activities:

--Material planning and purchasing

--Inventory control

--Receiving and accounting

--Store keeping

--Disposal of surplus store

Table 1. Various Agent Types in MMMAS Iteration Wise

■ indicates agents to be handled for recent iteration

© indicates changes to be handled in subsequent iterations.

TABLE I illustrates that Material Interface Agent dealing

with interface and input output related aspects; Material

Security Agent dealing with security issues ; Material

Monitoring Agent coping with registration and deregistration

of agents should start with first iteration and continue to carry

out for successive iterations as well.

Goal Oriented Agents such as Inventory Analyst, Inventory

Controller and Store Receiver Agent are processed in the first

iteration to make one functional release of MM MAS.

The remaining agents including Indent Receiver, Disposal

Agent and Communicative Agents are treated in subsequent

iterations assisting successive releases.

This paper discusses implication of proposed requirements

model on the Goal Oriented agents associated with Inventory

Control only and similarly same process can be extended for

other agents attributed to other activities.

Implication of proposed Requirement Methodology on

inventory control activity of MM MAS involves the following

steps:

3.1 Requirements Elicitation
 (i) Acquiring USCs:

To deal with requirements of Inventory control activity,

various users enter their requirements in the above mentioned

user story template (a):

1) As an Inventory Analyst, I Want to classify items as ‘high

value’, ‘medium value’ and ‘low value’ So That I could

control the ‘high value’ and ‘medium value’ items strictly.

2) As an Inventory Controller, I want to get report for items

which are at reorder level So That order can be placed.

3) As an Inventory Controller, I want to get report on

economic quantity So That I know how much quantity

should be ordered.

4) As an Inventory Analyst, I want to know the list of non

moving items So That these can be disposed off.

5) As a Stock handler, I want to retrieve the stock So That I

know the level of stock at a given point of time.

6) As a Inventory handler, I want to manage the stock So That

I can control the inventory.

7) As a Stock handler, I want to receive and issue the stock So

That I can maintain stock.

All these user stories are written on physical cards (and later

on can be stored in some electronic cards) or directly USCs

mentioned in Fig. 1 can be used to facilitate the users to feed

stories and related parameters (like date, user story title, story

points, execution time etc.).

The above requirements associated with various User stories

can be finally placed in respective USCs as shown below:

USC1: Classify among high, medium and low value

USC2: Get report for items which are at reorder level

USC3: Get report on economic quantity

USC4: Obtain list of non moving items

USC5: Retrieve the stock

USC6: Manage stock

USC7: Receive and issue stock

(ii) Expansion of Requirements

User Story piled up with USC1 after having a dialogue with

users is intensified into a number of related requirements

according to their semantic meanings. The USC1 is expanded

into the requirements R1, R2, R3, R4, R5 given as below:

Fig 7: Expanded requirements associated with USC1

 Iterations I II III IV

 Agent Type Agent Role

User Interface
Agent

Material Interface
Agent

■

©

©

©

Goal Oriented
Agents

Indent Receiver ■ © ©

Inventory Analyst ■ © © ©
Inventory Controller ■ © © ©

Store Receiver Agent ■ © © ©

Disposal Agent ■

Monitoring Agent Material Monitoring
Agent

■

©

©

©

Security Agent Material Security
Agent

■ © © ©

Communicative
Agents

Purchase Agent ■ © ©

Store Agent ■ © ©

Surplus Agent ■ ©

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.9, July 2017

27

In a similar manner, USC2, USC3, USC4, USC5, USC6, and

USC7 can be expanded as shown below:

USC2:

R6:- Extract maximum quantity consumed per day during last

one year.

R7:- Find out ROL (Reorder Level) as:

 ROL= (maximum quantity consumed per day) * max-

lead-time

R8:- Get report for items which are at reorder level.

USC3:

R1:-View last year consumption report (Redundant

requirement)

R9:- Get last year consumption value (S) of the items.

R10:- Compute ordering cost (O) and carrying cost (C)

R11:- Get report on economic quantity computed by formula:

USC4:

R12:- Display the last issue dates item wise.

R13:- Implicate a check constraint whether last issue date is the

date of previous year.
R14:- Display list of non moving items.

USC5:
R15:- Retrieve stock entries.

USC6:

R15:- Retrieve stock entries (Redundant requirement)

R16:- Update stock

R17:- Add stock

R18:- Delete stock

USC7:

R19:- Receive stock

R20:- Issue Stock

R21:- Create pallets

R22:- Process serial numbers

R23:- Receive release order from purchase agent

3.2 Requirements Definition
In this step, developer carries out mapping from USCs to

requirement R to have an accurate impression of unique

requirements pertaining to different USCs. Additionally, this

mapping facilitates the developer to revive his goals in

subsequent phases as well as assists developer in

documentation.

As a result of mapping USCsR developer comes across the

piece of information that R1 is associated with USC1 as well as

to USC3. Likewise R15 is associated with USC5 and USC6.

This consolidated list of USCs and requirements assists the

developer to remove redundant requirements.

The developer extracts requirements from the USCs and

assigns to various agent roles. All through this course of

action, developer procures the requirements one by one from

the list and allocates the functionality in terms of goals, tasks

to numerous agent roles. Relation Ar leads to identification of

following agent roles w.r.t. AC1, AC2, AC3, AC4 and their

associated requirements:

Agent role: Requirements

Inventory Controller (AC1) R6, R7, R8, R1, R9, R10,
R11, R15, R16, R17, R18

Inventory Analyst (AC2) R1, R2, R3, R4, R5, R12,
R13, R14

Store Receiver Agent (AC3) R15, R17, R19, R20, R21,
R22

Store Agent (AC4) R23

Relation Ur and Ar facilitate developer to achieve mapping Ua

to have a view of consolidated association of USCs and ACs in

the following manner:

ACs Associated USCs

AC1: USC1, USC2, USC3, USC6
AC2: USC1, USC4
AC3: USC6, USC7
AC4: USC7

Fig 8: Captured requirements w.r.t. Inventory Controller

Above association helps in defining requirements by

facilitating a pertinent and unambiguous list of captured USCs

so as to lead in fabrication of ACs. In above association USC5

is not mapped to any of ACs. This means that this USC5 is

having only redundant requirements such as R15 which already

has been covered up by some other user story card (USC6).

Thus this mapping helps to eradicate USCs having redundant

requirements.

During this entire course of action, developer captures

additional requirements from his experience. For inventory

control system, following Goal Oriented agent role and

additionally captured requirements are worked out:

Developer associates the requirements R6, R7, R8, R1, R9, R10,

R11, R15, R16, R17, R18 taken from USC2, USC3, USC5, USC6

leading to goals G1, G2,G3 w.r.t. agent role Inventory

Controller (linked with AC1) as:

G1: Get report for reorder level

G2: Get report on economic quantity

G3: Manage stock

Now additional requirements C1, C2, C3, C4, C5, C6, C7 are

captured which otherwise are overlooked in initial stage of

requirements elicitation.

C1:- In equation (3), when C happens to be zero, developer

decides to set the action as “ nput value of C other than zero”

C2:- Reorder level should always be greater than minimum

level.

C3:- Run a series of inventory reports daily, weekly or

monthly.

C4:- Retrieve stock, date wise in sorted order.

C5:- Receive ABC analysis report from inventory analyst.

C6:- Perpetual updation of equipment records.

C7:- Maintain location files.

In a similar manner, developer extends the process of ACs for

other Agent Roles such as Inventory Analyst (linked with

AC2) and Store Receiver Agent (linked with AC3) selected for

the recent iteration so as to release one functional version.

Additional requirement R22 associated with Store Agent is kept

with red mark in agent catalogue for later processing.

3.3 Requirements Validation
As prescribed in proposed methodology, a reverse mapping is

processed to achieve completeness and consistency in the

goals of ACs and USCs in following manner:

C1 C2 C3 C4 C5 C6 C7

R6 R7 R8 R1R9 R10 R11R15R16R17R18

Previously

captured

requirements

More captured

requirements by

developer during

fabrication of ACs

Inventory Controller

International Journal of Computer Applications (0975 – 8887)

Volume 169 – No.9, July 2017

28

For AC1, number of tasks corresponding to associated

requirements are designated as: T1: R1, T2: R6, T3: R7, T4:R8,

T5: R9, T6:R10, T7:R11, T8:R15, T9:R16, T10: R17, T11:R18, T12:C1,

T13:C2, T14:C3, T15:C4, T16:C5, T17:C6, T18:C7

Check condition (1) for AC1, as condition (1) is turned out to

be false, then for condition (1.1):

For AC1:

No. of mapped tasks=11

No. of non-mapped tasks=7

For every task of AC1, there is not corresponding goal. At this

point developer from his own understanding assigns goals to

non mapped tasks as below:

Non mapped Tasks Assigned Goals

 T12: Exceptional and Functional Constraints
 T13:

 T14: Aspects related to Inventory Report
 T15:

 T16:
 T17: Manage Inventory Data
 T18:

Now as equation (1.1) comes out to be true, developer checks

for condition (1.2) by comparing each and every goal of AC1

to the initially elicited goals in USCs:

For AC1:

Subsequently developer extends the same process for AC2 and

AC3 linked with Inventory Analyst and Store Receiver Agent

respectively. And if for atleast one AC, value of GE comes out

as 0 subsequently leading to the value of VF(Validation

Factor) as 0, developer is required to conduct a workshop with

users so that USCs can be updated according to these new

captured requirements with the consent of users. This process

is iteratively executed till all users and developers are satisfied

and value of VF comes out as 1. This way, a complete,

consistent, unambiguous and unique list of requirements

results as a baseline for the system.

4. CONCLUSIONS
This work extends Agent-Oriented approach to requirements

engineering using USCs and ACs. Methodology presented in

this work captures user-requirements in the form of USCs that

are mapped to ACs. Representing requirements in the form of

USCs is a user oriented view of requirements engineering,

while ACs is a developer oriented view of requirements

definition. By incorporating ACs, this methodology assists the

developer to obtain complete, unambiguous, as well as

consistent requirements and also ensures that users’

expectations are truly reflected in the final requirements

document. The system that is developed on these requirements

is more close to users’ expectation and will eventually result in

their satisfaction. Further study is required to prove that the

system built using the proposed methodology results in higher

users’ satisfaction.

5. FUTURE DIRECTIONS
This works applies reverse mapping from ACs to USCs for

validating the requirements. However its complement activity

namely verification would be considered for future study.

6. REFERENCES
[1] Singh,Y. Gosain,A. Kumar,M. Evaluation of Agent

Oriented Requirements Engineering Frameworks,

IEEEVolume:2, pp. 33-38

[2] Regev, G.; Wegmann, A., Where do goals come from:

the underlying principles of goal-oriented requirements

engineering, 2005. Proceedings. IEEE,pp.353-362

[3] A M Sen, S K Jain, An Agile Technique for Agent Based

Goal Refinement to Elicit Soft Goals in Goal Oriented

Requirements Engineering, ADCOM 2007.International

Conference IEEE, pp.41-47

[4] Luiz Marcio Cysneiros, Requirements Engineering for

Large-Scale Multi-Agent Systems, LNC, Vol. 2603,

2003, PP.77-148

[5] Paolo Donzelli, REF: A Practical Agent-Based

Requirement Engineering Framework, Springer, 2003,

pp.217-228

[6] Ruben Fuentes, Requirement Elicitation for Agent Based

se Cases based Requirements validation With

Scenarios, 2005, IEEE, pp. 465- 466

[7] Michael j Rees, A Feasible User Story Tool for Agile

Software Development, IEEE ,pp 22, 2002

[8] Mike Cohn, Agile Estimating and Planning, Pearson

Education, 2006, ISBN 978-81-317-0548-3

[9] Connolly, D., Keenan, Tag Oriented Agile Requirements

Identification, ECBS 2008. IEEE, pp:497 – 498

[10] PABRE: Pattern-Based Requirements Elicitation, IEEE

[11] Eliciting and Specifying Requirements with Use Cases

for Embedded Systems, 2002, IEEE

[12] Computer Assisted and Customer-Oriented

Requirements Elicitation,2005, IEEE

[13] A New Approach for Software Requirements Elicitation,

2005, IEEE

[14] The Value Gap Model: Value-Based Requirements

Eliciation,2007 IEEE

[15] A. Duran, B.Bernardez “A Requirements licitation

Approach Based in Templates and Patterns”. n

Proceedings 2nd Workshop on Requirements

 ngineering W R’99 , 999

[16] Gaur, Vibha, AnujaSoni and PunamBedi. 2010. An

agent-oriented approach to requirements engineering. In

proceedings 2010, IEEE, 449-454.

IJCATM : www.ijcaonline.org

