
International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.1, July 2017

35

GPU based Suffix Array Pattern Matching

Approach for Big Data

Vinay Katoch
M.Tech,

Dept. of CSE
UIT, RGPV

Bhopal, India

Sanjay Silakari, PhD
Professor

Dept. of CSE
UIT RGPV

Bhopal, India

Uday Chourasia
Assistant Professor

Dept. of CSE
UIT, RGPV

Bhopal, India

ABSTRACT
Big data has been an emerging problem these days. To solve

this problem Hadoop has evolved as a most widely used tool

and adopted by various popular MNCs like Facebook and

Yahoo. To search large number of pattern in big data is a

challenging task. Map/Reduce is used to write codes to

perform pattern matching on big data. In this work OpenCL is

combined with Apache Hadoop to write fast Map/Reduce for

pattern matching in data using suffix arrays.

Keywords
OpenCL, GPU, Hadoop, Map/Reduce.

1. INTRODUCTION
Big data is defined as large quantity of data which have need

of new technologies and architecture to make possible to

extort value from it by capturing and analysis process. New

sources of big data include location specific data which has

arrived from traffic management and from the tracking of

personal devices such as Smartphone’s. Big data has come

into view because we are living in the world which makes

mounting use of data intensive technologies. Due to such

large size of data it becomes very difficult to achieve effective

analysis using existing traditional techniques.

Since Big data is new upcoming technology in the market

which can bring the huge benefits to the business

organizations, it becomes necessary various challenges and

issues associated in bringing and adopting to this technology

are need to be understand. Big data concept means a dataset

which continues grew so much that it becomes difficult to

manage it using existing database models and tools. So at last

Big data is data that exceeds the processing capacity of

conventional database systems. The data is huge sized, moves

too fast, or doesn’t fit the structures of our database

architectures. To gain value from this data, you must choose a

substitute way to process it.

What are the problems?

There are many problems to handle big data like storage,

processing etc.

Data integration – The structure of merging data is not so easy

task with a reasonable cost.

Data volume – The ability to process the volume at a suitable

rate so that the information is available to result analyzers

when they need it.

Skills availability –There are shortage of people. Who have

the proficiency to bring all data mutually, analyze it and

publish the results.

Solution cost –To ensure a positive ROI on a Big Data

project; it is crucial to reduce the cost of the solutions.

What are the solutions?

Big data is very difficult to process and store. Mainly Hadoop

is used to process the big data. Hadoop used HDFS to store

the data efficiently and Map/Reduce framework for

processing the data. MPI is also used to process the big data.

2. TYPES OF BIG DATA
Mainly Big data is divided in 3 types.

Structured data: It concerns all data which stored in the

database in tabular form. Structured data represent only 5 to

10% of all informatics data.

Ex. Relational data.

Semi Structured data: Semi-structured data is information

that does not inhabit in a relational database but that does

have some organizational properties that make it easier to

analyse.

Ex. CSV but XML and JSON documents are semi structured

documents, NoSQL databases are considered as semi

structured.

Unstructured data: Unstructured data is everywhere. In fact,

most individuals and organizations achieve their lives around

free data. Unstructured data represent around 80% of data.

Ex: videos, word processing documents, photos,

presentations, webpages and many other kinds of business

documents, audio files, E-mail messages, Word, PDF, Text,

Media Logs.

3. CHARACTERISTICS
Big data is characterized in 3 terms; figure 2 show the

characteristics of the big data.

Volume: Our personal system might have 500 GB of storage.

But every day Facebook consume 500TB of new data.

Extreme use of smartphone with new tools like sensor which

create additional data like position and former information as

well as videos.

Velocity: The data is created vastly rapid. Like on-line game

is played by millions of users simultaneously, stock trading

algorithm create huge amount of data every second, sensors

are producing the data in real time, ad impression detain user

actions at millions of actions per seconds. So the data are

created at a swift pace and we need efficient tools in order to

deal.

Variety: All the data are of distinct type. Some may be video,

audio, text which may be distinct. It may not be only numbers,

dates and strings.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.1, July 2017

36

4. HADOOP
Hadoop is an Apache open source framework which supports

java and also java code for implementation that allows

distributed processing of large records across clusters of

computers using easy programming models. The Hadoop

framework application moving in an atmosphere that offer

distributed storage and estimation across clusters of

computers. Hadoop is made for level up from single server to

thousands of equipment, each offering local calculation and

storage.

Figure 1: Architecture of Hadoop [17]

Hadoop mainly consist of 2 components.

4.1 Map-Reduce
Map-Reduce applications can precede multiple terabytes of

data in parallel on large clusters in a fault-tolerant manner and

reliable. Map-Reduce is an estimation paradigm in which a

function is divided into self-reliant units of work. Each of

these units of process can be issued on any node in the cluster.

A Map-Reduce job divides the input data into several chunks

that are processed by map jobs in similar way. The framework

arranges the map outputs, which are then input to reduce

tasks. Task’s inputs and outputs are lain up in the file system.

The Map-Reduce framework and the HDFS (Hadoop

Distributed File System) are classically on the same set of

nodes, which allow the structure to schedule tasks on nodes

that hold data.

The Map-Reduce framework having a single key JobTracker

and one secondary Task Tracker per node. The main node

plan for job section tasks, re-executes, and monitors tasks

abortive tasks. The secondary node processes as directed by

the primary node.

Map-Reduce have two phases

i)Map

ii)Reduce

i. The map phase
The map phase is the first part of the data processing sequence

within the Map-Reduce framework. Map functions serve as

worker nodes that can process several smaller snippets of the

entire data set. The Map-Reduce framework is responsible for

dividing the data set input into smaller chunks, and feeding

them to a corresponding map function. When you write a map

function, there is no need to incorporate logic to enable the

function to create multiple maps that can use the distributed

computing architecture of Hadoop. These functions are

oblivious to both data volume and the cluster in which they

are operating. As such, they can be used unchanged for both

small and large data sets (which is most common for those

who are using Hadoop).

ii. The reduce phase
As with the map function, developers also must create a

reduce function. The key/value pairs from map outputs must

correspond to the appropriate reducer partition such that the

final results are aggregates of the appropriately corresponding

data. When the shuffle process is completed and the reducer

copies all of the map task outputs, the reducers can go into

what is known as a merge process. During this part of the

reduce phase, all map outputs can be merged together to

maintain their sort ordering that is established during the map

phase. When the final merge is complete then this reduce task

of consolidating results for every key within the merged

output (and the final result set), is written to the disk on the

HDFS.

4.2 Hadoop Distributed File System (HDFS)
The Hadoop is specialized design file system for storing huge

data set with cluster of commodity hardware with streaming

access pattern. It is highly fault tolerant and designed to be

deployed on low-cost hardware. It provides high throughput

access to application data and is suitable for application

having large datasets.

5. OPEN COMPUTING LANGUAGE

(OPENCL)
OpenCL [7] is a low-level programming model which works

on heterogeneous environment. It is supported by Khronos

Compute Working Group to use it for the implementation for

the GPUs from the various companies like Intel, AMD,

NVIDIA etc. It is built to use all computational resources in a

system like; CPUs, GPUs, APUs, FPGAs etc. OpenCL code

programs also called kernels which run on GPUs and cores of

CPU.

Fig. 2 explains single Compute device consists of multiple

compute units which are consists of multiple processing

elements. A host consists of multiple compute devices. An

OpenCL program runs all the processing elements in parallel

using a single kernel code. So, it provides Inter-Node level

parallelism on processing elements in heterogeneous

environment.

Figure 2: OpenCL Architecture Platform Model

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.1, July 2017

37

5.1 APARAPI
Aparapi [8], a parallel API, an open source tool, developed at

AMD, is used to implement Hadoop with OpenCL. This tool

is used to help in running the Java code on OpenCL devices.

It converts java byte code to OpenCL kernels at run time. It

has a “Kernel” class which has a run() method which runs

parallel on OpenCL device. Since it is built on the top of

OpenCL, it is used to run code on GPUs and cores of CPUs. It

is used to generate OpenCL kernels from java byte code

automatically. It handles Kernel Translation, OpenCL

Memory Allocation, Data Transfer etc.

Figure 3: Integration of Hadoop and OpenCL using

Aparapi

Fig. 3 explains that HADOOPCL is an integration of Hadoop

with OpenCL using Aparapi tool. Hadoop provides Inter-

Node parallelism and OpenCL provides Intra-Node

parallelism.

5.2 HADOOPCL
HadoopCL [5], an integration of Hadoop and OpenCL. The

purpose of HadoopCL is to enable the use of heterogeneous

process in distributed system. It is used to execute user-

written java kernels on heterogeneous devices. It executes

user-written map and reduce computation on all available

devices in a platform. The processing of data is done at

thread-level (Intra-node) at each cluster (Inter- node) of

HadoopCL using OpenCL kernels code. So, these two level

parallelisms produce the result much faster and the

recommendations provided to the users are much faster,

efficiently and more accurately. The utilization of resources is

also improved which hides the hardware complexities from

the users and allows tuning experts to manipulate platform

configuration in order to optimize performance, energy

efficiency and reliability.

6. PREVIOUS WORK
Advances in next generation sequencing technologies in

addition to decreasing wet science lab prices has resulted in

unexampled acquisition of immense genomic knowledge sets.

To translate the promise of that knowledge into new

biological discoveries, innovative machine approaches area

unit needed for timely and economical process and analysis.

Orientating sequences to see similarity is a necessary and

wide used machine procedure for biological sequence analysis

in machine biology and bioinformatics (Quail MA n.d.)A

good vary of machine algorithms are applied to the sequence

alignment challenge, as well as slow, nevertheless correct,

strategies like dynamic programming and quicker however

less correct heuristic or probabilistic strategies. the

fundamental native Alignment Search Tool (BLAST) ,a

heuristic version of the pairwise native alignment Smith

boatman rule, remains the foremost wide used machine

procedure for alignment interrogating biological databases

supported a heuristic version of the pairwise native alignment

Smith boatman rule. It compares the similarity of a reference

super molecule or deoxyribonucleic acid sequence against

data of sequences, higher than a nominative threshold, and

returns similar, statistically important, matches. In spite of its

heuristic approach, it still faces important measurability

challenges associated primarily with the need to go looking

new and ever increasing knowledge base; like UniMES for

met genomic data sets that still expand exponentially as Next

Generation Sequencing (NGS) prices still decline. BLAST,

together with most different bioinformatics algorithms, is

meant to execute domestically i.e. consecutive. However, the

augmented turnout of ordering sequencing has light-emitting

diode to large knowledge generation requiring a big increase

within the speed of execution of those algorithms. the

appearance of cloud computing and massive knowledge

‘‘scale out’’ technologies like Hadoop give value effective

process of T sized knowledge sets therefore it's currently

potential to analyse these immense datasets apace; a very

important demand within the rapidly increasing field of

molecular medicine. Thus, because the size of genomic

knowledge sets increase earlier than native process power and

disk scan speed, it's intuitive to port these naturally parallel

bioinformatics tasks to use the Hadoop Map Reduce

framework. Standard approaches to parallelizing BLAST

mistreatment Hadoop area unit 3 fold: the primary and

commonest approach distributes the input question sequences

amongst a cluster of nodes, the second approach partitions the

data amongst nodes and at last a hybrid approach partitions

each the input sequences and therefore the data. The downside

of the primary approach is that it exhibits restricted

measurability and cargo equalisation doesn't occur with a little

range of input sequences. The second approach needs a

complicated rule to partition the data so as to make sure

measurability and optimum performance. moreover, it ends up

in high disk I/O. the ultimate hybrid approach is desirable

because it handles giant databases yet as an oversize range of

input question sequences, but it's the foremost difficult to

implement and deploy whereas minimizing inter-node

communications and optimizing the partitioning strategies.

DumitrelLoghinet. al. 2015 presents a time–energy

performance analysis of Map-Reduce on heterogeneous

systems with GPUs. To execute Map-Reduce on

heterogeneous systems with GPUs, we introduce a novel lazy

processing technique which simplifies application

development and requires no modifications to the underlying

Hadoop framework. Based on this experiment, the wimpy

(performance improvements in low-power) nodes achieve

similar execution times compared to a single brawny node and

also exhibit energy savings of up to two-thirds.

RazvanNituet. al. 2014 proposes An Improved GPU Map-

Reduce Framework for Data Intensive Applications. This

framework improves the Map-Reduce performance by adding

GPU capabilities by implementing a hybrid CPU-GPU

framework for heterogeneous environments. All the

functionalities regarding GPU programming are already

implemented. The users just have to define the functions

specific to the Map-Reduce paradigm, without having

advanced knowledge about GPU programming. The GPU

tasks are implemented using the OpenCL library. Since

Hadoop is written in Java, we used the JOCL (OpenCL Java

language binding) solution to integrate these two languages.

Can Basaran et.al 2013 present a new Map-Reduce

framework, called Grex (a new GPU-based Map-Reduce

framework), designed to leverage general purpose graphics

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.1, July 2017

38

processing units (GPUs) for parallel data processing. The

experimental results show that our system is up to 12.4× and

4.1× faster than two state-of-the-art GPU-based Map-Reduce

frameworks for the tested applications.

Miao Xinet. al. 2012 presents an approach of Map-Reduce

improvement with GPU acceleration, which is implemented

by Hadoop and OpenCL. As a heterogeneous multi-machine

and multicore architecture, it aims at both data- and compute-

intensive applications. Java language is the best practice in

Hadoop programing, for achieving a better seamless-

integration; we select an OpenCL Java language binding

(JOCL) to integrate these two frameworks together. JOCL use

Java Native Interface (JNI) to call the kernel program that

drives the GPUs. An almost 2 times performance

improvement has been validated, without any farther

optimization.

Wenbin Fang et. al. 2011 proposes Accelerating Map-

Reduce with Graphics Processors: MARS. Mars is a Map-

Reduce runtime system accelerated with graphics processing

units (GPUs).It runs on NVIDIA GPUs, AMD GPUs as well

as multicore CPUs.It is implemented Mars CUDA using

NVIDIA CUDA. The experimental results show that, the

GPU-CPU co-processing of Mars on an NVIDIA GTX280

GPU and an Intel quad-core CPU outperformed Phoenix, the

state-of-the-art Map-Reduce on the multicore CPU with a

speedup of up to 72 times and 24 times on average, depending

on the applications. Additionally, integrating Mars into

Hadoop enabled GPU acceleration for a network of PCs.

7. PROPOSED APPROACH
In suffix array and suffix tree based approach, there given a

pattern and text in which pattern is to be searched.

Sequential_Suffix_tree

{

 1. Fetch the pattern entered by the user.

 2. Form all the suffixes of the pattern entered by the

user.

 3. Arrange all the suffixes formed in alphabetical order.

 4. Form the tree with root element be the smallest in

alphabetical ordered list.

}

Searching will be done by parsing each word of the text in the

tree and if leaf node is reached pattern will be matched.

Parallel_Suffix_tree

{

 1. Fetch all the patterns entered by the user.

 2. Form all the suffixes of the patterns entered by

the user.

 3. Arrange all the suffixes formed in alphabetical order.

 4. Form the tree with root element be the smallest in

alphabetical ordered list.

 5. Split the text into words and initialize equal number of

threads using OpenCL.

 6. Search for all the words by corresponding threads in

the tree formed.

}

8. RESULTS

Table I. Execution Time for Hadoop

EXECUTION TIME ON HADOOP IN MILLISECONDS

Data

(In GB)

Time on

2 nodes

Time on 4

nodes

Time on 6

nodes

Time on 8

nodes

2 912751 736946 576148 212751

5 1625487 1247952 976425 794562

10 2947541 2167190 1801307 1497038

Table II Execution Time for HADOOPCL

EXECUTION TIME ON HADOOPCL IN

MILLISECONDS

Data

(In

GB)

Time on 2

nodes

Time on 4

nodes

Time on 6

nodes

Time on 8

nodes

2 384657 317945 201907 98706

5 619037 507640 390450 210721

10 1376420 783170 576103 310640

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

2 4 6 8

Ex
e

cu
ti

o
n

 t
im

e

No. of nodes

Comparison of execution time for 2 GB
data

2 GB DATA
HADOOP

2 GB
HADOOPCL

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2 4 6 8

Ex
e

cu
ti

o
n

 t
im

e

No. of nodes

Comparison of execution time for 5 GB
data

5 GB
HADOOP

5 GB
HADOOPCL

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.1, July 2017

39

9. CONCLUSION
In this paper it is found as a conclusion of survey that

map/reduce can be accelerated by using the concept of GPUs.

Map-Reduce offers inter node parallelism and when

integrated with GPUs using OpenCL it can offer intra node

parallelism also. In this paper a suffix array algorithm is used

to search pattern in text. This algorithm is analyzed to find

parallelism and implemented using combination of OpenCL

and Apache Hadoop for fast pattern matching.

10. REFERENCES

[1] Cheikh Kacfah Emani, Nadine Cullot and Christophe

Nicolle “Understandable Big Data: A survey” in

Computer Science Review Volume 17, August 2015,

Pages 70–81.

[2] H. Hu, Y. Wen, T.-S. Chua, and X. Li, ‘‘Towards

scalable systems for big data analytics: A technology

tutorial,’’ IEEE Access, vol. 2, pp. 652–687, 2014.

[3] Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F.,

Reitererand, S., Stettinger, M.: Basic approaches in

recommendation systems. In: Robillard, M., Maalej, W.,

Walker, R.J., Zimmermann, T. (eds.) Recommendation

Systems in Software Engineering, Chap. 2. Springer,

Heidelberg (2014).

[4] S. Meng, W. Dou, X. Zhang and J. Chen, "KASR: A

keyword-aware service recommendation method on

Map-Reduce for big data application", IEEE Trans.

Parallel Distrib. Syst., vol. 25, no. 12, pp. 3221-3231,

2014.

[5] M. Grossman, M. Breternitz and V. Sarkar, "HadoopCL:

Map-Reduce on Distributed Heterogeneous Platforms

Through Seamless Integration of Hadoop and OpenCL",

Proceedings of the 2013 IEEE 27th International

Symposium on Parallel and Distributed Processing

Workshops and PhD Forum, pp. 1918-1927.

[6] A. Rabkin and R. H. Katz, "How Hadoop Clusters

Break," IEEE Software, vol. 30, pp. 88-94, 2013.

[7] P. Jaaskelainen, C. Lama, P. Huerta, and J. Takala,

"OpenCL-based design methodology for application-

specific processors," Embedded Computer Systems

(SAMOS), 2010 International Conference, pp. 223- 230,

2010.

[8] Gupta, K.G., Agrawal, N. and Maity, S.K., "Performance

analysis between aparapi (a parallel API) and JAVA by

implementing sobel edge detection Algorithm," in

PARCOMPTECH, Bangalore, Feb. 2013, pp. 1-5.

[9] Niwattanakul S, Singthongchai J, Naenudorn E, Wanapu

S. Using of Jaccard coefficient for keywords similarity.

In: Proc. of the international multi conference of

engineers and computer scientists, vol I; 2013. p. 380–4.

[10] A. Huang, Similarity measures for text document

clustering, in: Proceedings of the Sixth New Zealand

Computer Science Research Student Conference

(NZCSRSC2008), Christchurch, New Zealand, 2008, pp.

49–56.

[11] P. WillettThe Porter stemming algorithm: then and now

Program: Electr Libr Inform Syst, 40 (3) (2006), pp.

219–223.

[12] Wang Jun, Li Lei and Ren Fuji, "An Improved method of

Keywords Extraction Based on Short Technology Text",

International Conference on Natural Language

processing and Knoledge Engineering (NLP-KE), pp. 1-

6.

[13] Adomavicius G., Kwon Y.: New recommendation

techniques for multicriteria rating systems. IEEE Intel.

Syst. 22(3), 48–55 (2007).

[14] X. Zhang, J.-J. Lu, X. Qin and X.-N. Zhao, "A high-level

energy consumption model for heterogeneous data

centers", Simul. Model. Pract. Theory, vol. 39, pp. 41-55,

2013 .

[15] X. Peng and Z. Sai, ``A low-cost power measuring

technique for virtual machine in cloud environments,''

Int. J. Grid Distrib. Comput., vol. 6, no. 3, p. 69, 2013.

[16] Adomavicius, G., Tuzhilin, A.: Context-aware

recommender systems. In: Recommender Systems

Handbook, pp. 217–253 (2011).

[17] Hadoop Architecture. Image Online:

http://ercoppa.github.io/HadoopInternals/HadoopArchite

ctureOverview.html

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

2 4 6 8

Ex
e

cu
ti

o
n

 t
im

e

No. of nodes

Comparison of execution time for 10 GB
data

 10 GB
HADOOP

10 GB
HADOOPCL

IJCATM : www.ijcaonline.org

