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ABSTRACT 
Big data has been an emerging problem these days. To solve 

this problem Hadoop has evolved as a most widely used tool 

and adopted by various popular MNCs like Facebook and 

Yahoo. To search large number of pattern in big data is a 

challenging task. Map/Reduce is used to write codes to 

perform pattern matching on big data. In this work OpenCL is 

combined with Apache Hadoop to write fast Map/Reduce for 

pattern matching in data using suffix arrays. 
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1. INTRODUCTION 
Big data is defined as large quantity of data which have need 

of new technologies and architecture to make possible to 

extort value from it by capturing and analysis process. New 

sources of big data include location specific data which has 

arrived from traffic management and from the tracking of 

personal devices such as Smartphone’s. Big data has come 

into view because we are living in the world which makes 

mounting use of data intensive technologies. Due to such 

large size of data it becomes very difficult to achieve effective 

analysis using existing traditional techniques.  

Since Big data is new upcoming technology in the market 

which can bring the huge benefits to the business 

organizations, it becomes necessary various challenges and 

issues associated in bringing and adopting to this technology 

are need to be understand. Big data concept means a dataset 

which continues grew so much that it becomes difficult to 

manage it using existing database models and tools. So at last  

Big data is data that exceeds the processing capacity of 

conventional database systems. The data is huge sized, moves 

too fast, or doesn’t fit the structures of our database 

architectures. To gain value from this data, you must choose a 

substitute way to process it. 

What are the problems? 

There are many problems to handle big data like storage, 

processing etc. 

Data integration – The structure of merging data is not so easy 

task with a reasonable cost. 

Data volume – The ability to process the volume at a suitable 

rate so that the information is available to result analyzers 

when they need it.  

Skills availability –There are shortage of people. Who have 

the proficiency to bring all data mutually, analyze it and 

publish the results. 

Solution cost –To ensure a positive ROI on a Big Data 

project; it is crucial to reduce the cost of the solutions. 

What are the solutions? 

Big data is very difficult to process and store. Mainly Hadoop 

is used to process the big data. Hadoop used HDFS to store 

the data efficiently and Map/Reduce framework for 

processing the data. MPI is also used to process the big data. 

2. TYPES OF BIG DATA 
Mainly Big data is divided in 3 types. 

Structured data: It concerns all data which stored in the 

database in tabular form. Structured data represent only 5 to 

10% of all informatics data.  

Ex. Relational data. 

Semi Structured data: Semi-structured data is information 

that does not inhabit in a relational database but that does 

have some organizational properties that make it easier to 

analyse.  

Ex. CSV but XML and JSON documents are semi structured 

documents, NoSQL databases are considered as semi 

structured. 

Unstructured data: Unstructured data is everywhere. In fact, 

most individuals and organizations achieve their lives around 

free data. Unstructured data represent around 80% of data. 

Ex: videos, word processing documents, photos, 

presentations, webpages and many other kinds of business 

documents, audio files, E-mail messages, Word, PDF, Text, 

Media Logs.  

3. CHARACTERISTICS 
Big data is characterized in 3 terms; figure 2 show the 

characteristics of the big data. 

Volume:  Our personal system might have 500 GB of storage. 

But every day Facebook consume 500TB of new data. 

Extreme use of smartphone with new tools like sensor which 

create additional data like position and former information as 

well as videos. 

Velocity: The data is created vastly rapid. Like on-line game 

is played by millions of users simultaneously, stock trading 

algorithm create huge amount of data every second, sensors 

are producing the data in real time, ad impression detain user 

actions at millions of actions per seconds. So the data are 

created at a swift pace and we need efficient tools in order to 

deal.  

Variety: All the data are of distinct type. Some may be video, 

audio, text which may be distinct. It may not be only numbers, 

dates and strings. 
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4. HADOOP 
Hadoop is an Apache open source framework which supports 

java and also java code for implementation that allows 

distributed processing of large records across clusters of 

computers using easy programming models. The Hadoop 

framework application moving in an atmosphere that offer 

distributed storage and estimation across clusters of 

computers. Hadoop is made for level up from single server to 

thousands of equipment, each offering local calculation and 

storage. 

 

Figure 1: Architecture of Hadoop [17] 

Hadoop mainly consist of 2 components. 

4.1 Map-Reduce 
Map-Reduce applications can precede multiple terabytes of 

data in parallel on large clusters in a fault-tolerant manner and 

reliable. Map-Reduce is an estimation paradigm in which a 

function is divided into self-reliant units of work. Each of 

these units of process can be issued on any node in the cluster.  

A Map-Reduce job divides the input data into several chunks 

that are processed by map jobs in similar way. The framework 

arranges the map outputs, which are then input to reduce 

tasks. Task’s inputs and outputs are lain up in the file system. 

The Map-Reduce framework and the HDFS (Hadoop 

Distributed File System) are classically on the same set of 

nodes, which allow the structure to schedule tasks on nodes 

that hold data. 

The Map-Reduce framework having a single key JobTracker 

and one secondary Task Tracker per node. The main node 

plan for job section tasks, re-executes, and monitors tasks 

abortive tasks. The secondary node processes as directed by 

the primary node. 

Map-Reduce have two phases 

i)Map 

ii)Reduce 

i. The map phase 
The map phase is the first part of the data processing sequence 

within the Map-Reduce framework. Map functions serve as 

worker nodes that can process several smaller snippets of the 

entire data set. The Map-Reduce framework is responsible for 

dividing the data set input into smaller chunks, and feeding 

them to a corresponding map function. When you write a map 

function, there is no need to incorporate logic to enable the 

function to create multiple maps that can use the distributed 

computing architecture of Hadoop. These functions are 

oblivious to both data volume and the cluster in which they 

are operating. As such, they can be used unchanged for both 

small and large data sets (which is most common for those 

who are using Hadoop). 

ii. The reduce phase 
As with the map function, developers also must create a 

reduce function. The key/value pairs from map outputs must 

correspond to the appropriate reducer partition such that the 

final results are aggregates of the appropriately corresponding 

data. When the shuffle process is completed and the reducer 

copies all of the map task outputs, the reducers can go into 

what is known as a merge process. During this part of the 

reduce phase, all map outputs can be merged together to 

maintain their sort ordering that is established during the map 

phase. When the final merge is complete then this reduce task 

of consolidating results for every key within the merged 

output (and the final result set), is written to the disk on the 

HDFS. 

4.2 Hadoop Distributed File System (HDFS) 
The Hadoop is specialized design file system for storing huge 

data set with cluster of commodity hardware with streaming 

access pattern. It is highly fault tolerant and designed to be 

deployed on low-cost hardware. It provides high throughput 

access to application data and is suitable for application 

having large datasets.  

5. OPEN COMPUTING LANGUAGE 

(OPENCL) 
OpenCL [7] is a low-level programming model which works 

on heterogeneous environment. It is supported by Khronos 

Compute Working Group to use it for the implementation for 

the GPUs from the various companies like Intel, AMD, 

NVIDIA etc. It is built to use all computational resources in a 

system like; CPUs, GPUs, APUs, FPGAs etc. OpenCL code 

programs also called kernels which run on GPUs and cores of 

CPU. 

Fig. 2 explains single Compute device consists of multiple 

compute units which are consists of multiple processing 

elements. A host consists of multiple compute devices. An 

OpenCL program runs all the processing elements in parallel 

using a single kernel code. So, it provides Inter-Node level 

parallelism on processing elements in heterogeneous 

environment. 

 

Figure 2: OpenCL Architecture Platform Model 
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5.1 APARAPI 
Aparapi [8], a parallel API, an open source tool, developed at 

AMD, is used to implement Hadoop with OpenCL. This tool 

is used to help in running the Java code on OpenCL devices. 

It converts java byte code to OpenCL kernels at run time. It 

has a “Kernel” class which has a run() method which runs 

parallel on OpenCL device. Since it is built on the top of 

OpenCL, it is used to run code on GPUs and cores of CPUs. It 

is used to generate OpenCL kernels from java byte code 

automatically. It handles Kernel Translation, OpenCL 

Memory Allocation, Data Transfer etc. 

 

Figure 3: Integration of Hadoop and OpenCL using 

Aparapi 

Fig. 3 explains that HADOOPCL is an integration of Hadoop 

with OpenCL using Aparapi tool. Hadoop provides Inter-

Node parallelism and OpenCL provides Intra-Node 

parallelism. 

5.2 HADOOPCL 
HadoopCL [5], an integration of Hadoop and OpenCL. The 

purpose of HadoopCL is to enable the use of heterogeneous 

process in distributed system. It is used to execute user-

written java kernels on heterogeneous devices. It executes 

user-written map and reduce computation on all available 

devices in a platform. The processing of data is done at 

thread-level (Intra-node) at each cluster (Inter- node) of 

HadoopCL using OpenCL kernels code. So, these two level 

parallelisms produce the result much faster and the 

recommendations provided to the users are much faster, 

efficiently and more accurately. The utilization of resources is 

also improved which hides the hardware complexities from 

the users and allows tuning experts to manipulate platform 

configuration in order to optimize performance, energy 

efficiency and reliability. 

6. PREVIOUS WORK 
Advances in next generation sequencing technologies in 

addition to decreasing wet science lab prices has resulted in 

unexampled acquisition of immense genomic knowledge sets. 

To translate the promise of that knowledge into new 

biological discoveries, innovative machine approaches area 

unit needed for timely and economical process and analysis. 

Orientating sequences to see similarity is a necessary and 

wide used machine procedure for biological sequence analysis 

in machine biology and bioinformatics (Quail MA n.d.)A 

good vary of machine algorithms are applied to the sequence 

alignment challenge, as well as slow, nevertheless correct, 

strategies like dynamic programming and quicker however 

less correct heuristic or probabilistic strategies. the 

fundamental native Alignment Search Tool (BLAST) ,a 

heuristic version of the pairwise native alignment Smith 

boatman rule, remains the foremost wide used machine 

procedure for alignment interrogating biological databases 

supported a heuristic version of the pairwise native alignment 

Smith boatman rule. It compares the similarity of a reference 

super molecule or deoxyribonucleic acid sequence against 

data of sequences, higher than a nominative threshold, and 

returns similar, statistically important, matches. In spite of its 

heuristic approach, it still faces important measurability 

challenges associated primarily with the need to go looking 

new and ever increasing knowledge base; like UniMES for 

met genomic data sets that still expand exponentially as Next 

Generation Sequencing (NGS) prices still decline. BLAST, 

together with most different bioinformatics algorithms, is 

meant to execute domestically i.e. consecutive. However, the 

augmented turnout of ordering sequencing has light-emitting 

diode to large knowledge generation requiring a big increase 

within the speed of execution of those algorithms. the 

appearance of cloud computing and massive knowledge 

‘‘scale out’’ technologies like Hadoop give value effective 

process of T sized knowledge sets therefore it's currently 

potential to analyse these immense datasets apace; a very 

important demand within the rapidly increasing field of 

molecular medicine. Thus, because the size of genomic 

knowledge sets increase earlier than native process power and 

disk scan speed, it's intuitive to port these naturally parallel 

bioinformatics tasks to use the Hadoop Map Reduce 

framework. Standard approaches to parallelizing BLAST 

mistreatment Hadoop area unit 3 fold: the primary and 

commonest approach distributes the input question sequences 

amongst a cluster of nodes, the second approach partitions the 

data amongst nodes and at last a hybrid approach partitions 

each the input sequences and therefore the data. The downside 

of the primary approach is that it exhibits restricted 

measurability and cargo equalisation doesn't occur with a little 

range of input sequences. The second approach needs a 

complicated rule to partition the data so as to make sure 

measurability and optimum performance. moreover, it ends up 

in high disk I/O. the ultimate hybrid approach is desirable 

because it handles giant databases yet as an oversize range of 

input question sequences, but it's the foremost difficult to 

implement and deploy whereas minimizing inter-node 

communications and optimizing the partitioning strategies. 

DumitrelLoghinet. al. 2015 presents a time–energy 

performance analysis of Map-Reduce on heterogeneous 

systems with GPUs. To execute Map-Reduce on 

heterogeneous systems with GPUs, we introduce a novel lazy 

processing technique which simplifies application 

development and requires no modifications to the underlying 

Hadoop framework. Based on this experiment, the wimpy 

(performance improvements in low-power) nodes achieve 

similar execution times compared to a single brawny node and 

also exhibit energy savings of up to two-thirds.  

RazvanNituet. al. 2014 proposes An Improved GPU Map-

Reduce Framework for Data Intensive Applications.  This 

framework improves the Map-Reduce performance by adding 

GPU capabilities by implementing a hybrid CPU-GPU 

framework for heterogeneous environments. All the 

functionalities regarding GPU programming are already 

implemented. The users just have to define the functions 

specific to the Map-Reduce paradigm, without having 

advanced knowledge about GPU programming. The GPU 

tasks are implemented using the OpenCL library. Since 

Hadoop is written in Java, we used the JOCL (OpenCL Java 

language binding) solution to integrate these two languages. 

Can Basaran et.al 2013 present a new Map-Reduce 

framework, called Grex (a new GPU-based Map-Reduce 

framework), designed to leverage general purpose graphics 
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processing units (GPUs) for parallel data processing. The 

experimental results show that our system is up to 12.4× and 

4.1× faster than two state-of-the-art GPU-based Map-Reduce 

frameworks for the tested applications. 

Miao Xinet. al. 2012 presents an approach of Map-Reduce 

improvement with GPU acceleration, which is implemented 

by Hadoop and OpenCL. As a heterogeneous multi-machine 

and multicore architecture, it aims at both data- and compute-

intensive applications. Java language is the best practice in 

Hadoop programing, for achieving a better  seamless-

integration; we select an OpenCL Java language binding 

(JOCL) to integrate these two frameworks together. JOCL use 

Java Native Interface (JNI) to call the kernel program that 

drives the GPUs. An almost 2 times performance 

improvement has been validated, without any farther 

optimization. 

Wenbin Fang et. al. 2011 proposes Accelerating Map-

Reduce with Graphics Processors: MARS.  Mars is a Map-

Reduce runtime system accelerated with graphics processing 

units (GPUs).It runs on NVIDIA GPUs, AMD GPUs as well 

as multicore CPUs.It is implemented Mars CUDA using 

NVIDIA CUDA. The experimental results show that, the 

GPU-CPU co-processing of Mars on an NVIDIA GTX280 

GPU and an Intel quad-core CPU outperformed Phoenix, the 

state-of-the-art Map-Reduce on the multicore CPU with a 

speedup of up to 72 times and 24 times on average, depending 

on the applications. Additionally, integrating Mars into 

Hadoop enabled GPU acceleration for a network of PCs. 

7. PROPOSED APPROACH 
In suffix array and suffix tree based approach, there given a 

pattern and text in which pattern is to be searched. 

Sequential_Suffix_tree 

{ 

   1. Fetch the pattern entered by the user. 

   2. Form all the suffixes of the pattern entered by          the 

user. 

   3. Arrange all the suffixes formed in alphabetical order. 

   4. Form the tree with root element be the smallest in 

alphabetical ordered list. 

} 

 

Searching will be done by parsing each word of the text in the 

tree and if leaf node is reached pattern will be matched. 

Parallel_Suffix_tree 

{ 

   1. Fetch all the patterns entered by the user. 

   2. Form all the suffixes of the patterns entered by          

the user. 

   3. Arrange all the suffixes formed in alphabetical order. 

   4. Form the tree with root element be the smallest in 

alphabetical ordered list.  

   5. Split the text into words and initialize equal number of 

threads using OpenCL. 

   6. Search for all the words by corresponding threads in 

the tree formed. 

} 

 

8. RESULTS 

Table I. Execution Time for Hadoop  

EXECUTION TIME ON HADOOP IN MILLISECONDS 

Data 

(In GB) 

Time on 

2 nodes 

Time on 4 

nodes 

Time on 6 

nodes 

Time on 8 

nodes 

2 912751 736946 576148 212751 

5 1625487 1247952 976425 794562 

10 2947541 2167190 1801307 1497038 

 

Table II Execution Time for HADOOPCL 

EXECUTION TIME ON HADOOPCL IN 

MILLISECONDS 

Data 

(In 

GB) 

Time on 2 

nodes 

Time on 4 

nodes 

Time on 6 

nodes 

Time on 8 

nodes 

2 384657 317945 201907 98706 

5 619037 507640 390450 210721 

10 1376420 783170 576103 310640 
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9. CONCLUSION 
In this paper it is found as a conclusion of survey that 

map/reduce can be accelerated by using the concept of GPUs. 

Map-Reduce offers inter node parallelism and when 

integrated with GPUs using OpenCL it can offer intra node 

parallelism also. In this paper a suffix array algorithm is used 

to search pattern in text. This algorithm is analyzed to find 

parallelism and implemented using combination of OpenCL 

and Apache Hadoop for fast pattern matching. 
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