
International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.10, July 2017

6

Experiment of Query Optimization Techniques to get the

Efficient Query

Luqman Hakim
Master of Informatics
AMIKOM University,

Yogyakarta, Indonesia

Suryanto Nugroho
Master of Informatics
AMIKOM University,

Yogyakarta, Indonesia

Sigit Hadi Waluyo
Master of Informatics
AMIKOM University,

Yogyakarta, Indonesia

ABSTRACT

Optimization of a database query becomes one of the critical

phases in data processing handling. Database optimization is

needed to make a structured query language more concise and

efficient. This study aims to conduct experiments with

structured query language modifications compared to

structured query language examples commonly used in the

manufacture of software. This study uses a database with a

record large enough to try to implement its SQL. The results

of the experiments of all modified query writing are more

efficient than the queries used by the information system in

the database regarding data processing time.

General Terms

Database, Structured Query Language

Keywords

Database Relation, Structured Query Language, Database

Optimization, Database Management System.

1. INTRODUCTION
The development of technology in the world of information so

fast and rapidly in various fields. This development of course

in addition to requiring adequate human resources also

required the existence of new solutions to create something

that allows users to perform activities associated with it. One

of the most indispensable solutions in the world of

information technology is the provision of accurate data, as

well as real-time so that that data changes can be processed

quickly.

Companies with large data transactions in addition to

requiring fast data access also require data analysis that

contains information related to their activities. A manufacturer

or trading company needs analysis for some information, such

as analysis of sales trends and supply of goods. Information,

also, to be fast and reliable also required an attractive interface

and easy to understand that will facilitate the business

processes that occur in it.

In finding a solution, one thing that should not be forgotten is

the cost requirements used to apply the solution. A solution

that benefits one side should not incur losses on the other. For

example, there is a solution to connect to the database but

must be accompanied by the addition of devices with high

qualifiers and high prices. The decision to add devices does

solve the problem on one side, but from the financial side will

cause costs that may be detrimental to the company.

Query optimization is required to improve the speed in

database processing. This query optimization is needed by a

developer or a database administrator (DBA), as this is one of

the necessary skills a developer or database administrator

must have in managing the database [1]. Also, developers or

database administrators can also create a query execution plan

well if doing database optimization [2].

Information systems with complex problems and involving

multiple tables will be a separate issue when linked to the

relation between tables in the database will require a long

query time. Real-time data processing also becomes the

demands of an information system to improve data processing

so that it can be used accurately and on time. According to

Habimana [2], knowledge of database optimization and query

writing is required to obtain maximum query results. The best

way to improve performance is to try to write your query in

some different ways. And compare their reading and

execution plans. In this paper we will try various techniques

that you can use to try to optimize your database query.

2. BASIC THEORY

2.1 DATABASE
The understanding database is an organized collection of data.

Such data are usually held to be able to model the aspects of

reality in a way that supports the process in need. According

to Gordon C. Everest [3] A database is a collection or data

collection that is mechanical, shared, formally defined and

also centrally controlled within an organization.

2.2 SRUCTURED QUERY LANGUAGE
SQL (Structured Query Language) is a standard language or

programming for RDBMS (Relational Database Management

System). Although called language, it may be a bit awkward

when we call the SQL programming language, more familiar

if those sounds are programming C, Visual Basic, Java,

Delphi, and so on [4]. The following languages are included

in the imperative programming; the simplest is the language

in the form of core instructions. Whereas, SQL is involved in

declarative programming, which is more in sentence form or

statement. SQL has at least two kinds of commands used to

manage and organize databases:

1. Data Definition Language (DDL)

The commands used by database administrators (DBA) to

define the schema into the DBMS. The scheme is a complete

description of table structure, recording and data relationships

in the database. DDL is also used to define subschema.

Subschemes are views for database users that are subsets of

the schema. When an item is not listed in a user's schema, the

item is not available to the user. Subschema can be a security

mechanism of the base system data, namely by setting the

right accessing items in the database. DDL is also used to

create, modify and delete databases [4].

2. Data Manipulation Language (DML)

Are the commands used to change, manipulate and retrieve

data in the database? Actions like deleting, converting and

retrieving data become part of DML. DML is mainly divided

into two:

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.10, July 2017

7

A. Procedural, which requires the user to determine what data

is needed and how to get it.

B. Nonprocedural, which requires the user to specify what

data is required, but no need to mention how to get it [4].

3. PAST RESEARCH
Wenjiao Ban et al. [1] conducts research on query

optimization on distributed databases using genetic algorithms

and max-min ant systems; both theories will be parallelly

combined to obtain efficient queries. The results of the

experiments performed by the proposed algorithm for multi-

join query processing.

Sebastian Haas et al. [5] conducts research by integrating

specialized hardware and enables the processing of energy-

efficient queries and query optimization by applying

selectivity estimation techniques. Our chip measurements

show a 1000x energy boost in selected database operators

compared to the current system.

S.Venkata Lakshmi and Valli Kumari Vatsavayi [6]

Conducted research on query optimization on distributed

databases using genetic algorithms. . Experimental Analysis

The proposed methodology is performed on 100 different

queries distributed in 20 different locations that have 8

relations in each query. This compares to DB2 distributed

optimization and achieves increased reliability and high

performance with respect to query optimization and query

costs in a distributed database. The proposed technique

provides efficient performance in different environments.

4. DISCUSSION
This research is simpler than the reference paper. This study

uses query modification as a comparison in terms of time

effectiveness. Optimization can be done in various ways, by

understanding tuning performance in the database. Some

techniques and methods may require different special

treatment, depending on the database used. For example,

performance improvements can be made from the

administration of databases such as file configuration and

updating of services or security packs, which of course each

database has its uniqueness and technique. There is a set of

methods and techniques commonly applied to RDBMS,

perhaps not all of them can be implemented because they

depend heavily on their respective application environments,

but at least can be used as guides and references to form the

best system according to the conditions at hand.

Optimization through SQL command also plays a role that is

not less important. The core of SQL itself is the authority to

perform retrieval, insertion, updating, and deletion of data,

accompanied by administrative support and database

management functions.

In this discussion will be tested by comparing the original

query with a modified query. Some tips will be tested and

compared data processing time to be done to see the

efficiency of query modification.

Experiment #1

Use Column Name instead of * in SELECT statement

If you select only a few columns from the table, there is no

need to use SELECT *. While it's easier to write the query,

more time for the database to complete the query. By

selecting only the columns you need, you reduce the size of

the results table, reduce network traffic and also improve

overall query performance [2].

Query example

SELECT * FROM KUNJUNGANPASIEN

Query modification

SELECT KPKD_PASIENN FROM

KUNJUNGANPASIEN

Fig 1: Query Example Select *

Fig 2: Query Modification Select Column name

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.10, July 2017

8

In Figure 1 shows the query result in the example query, In

the example SQL, it takes 40 seconds to execute 162,804 lines

of query results whereas in Figure 2 for SQL modification it

takes 9 seconds to run 162.817 lines so that query

modification is more efficient than the query example.

Experiment #2

Avoid using HAVING in SELECT statements

The HAVING clause is used to filter rows after all rows are

selected and used as filters. A clause like This is not very

useful in a SELECT statement. It works by passing the final

result table of a query that parses a row that does not meet the

HAVING condition [2].

Query Contoh

SELECT

K.KPKD_PASIEN,count(K.KPKD_PASIEN)

FROM KUNJUNGANPASIEN K

GROUP BY K.KPKD_PASIEN

HAVING K.KPKD_PASIEN != '0168751' AND

K.KPKD_PASIEN != '0276988';

Query Modifikasi

SELECT

K.KPKD_PASIEN,count(K.KPKD_PASIEN)

FROM KUNJUNGANPASIEN K

GROUP BY K.KPKD_PASIEN

WHERE K.KPKD_PASIEN != '0168751' AND

K.KPKD_PASIEN != '0276988';

Fig 3: Query Example Using Having

Fig 4: Query Modification does not use having

In Figure 3 shows the query result in the sample query, the

sample query takes 11 seconds to execute 211,526 lines of

query results while in Figure 4 for the modification query

takes 10 seconds to run 211,529 lines so that the query

modification is more efficient than the query example.

Experiment #3

Consider using the IN predicate when performing an

indexed column query.

The IN predicate can be exploited for index retrieval, and

also, optimization can sort the list of INs to match the order of

the index sequences, leading to more efficient recovery. Note

that IN only contains constants, or a constant value for one

execution of the query block [2].

Query Example

SELECT K.* FROM KUNJUNGANPASIEN K

WHERE K.KPKD_POLY = 'PK005' OR

K.KPKD_POLY = 'PK008';

Query Modification

SELECT K.* FROM KUNJUNGANPASIEN K

WHERE K.KPKD_POLY IN

('PK005','PK008');

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.10, July 2017

9

Fig 6: Query Example Without IN

Fig 6: Query Modification With IN

In Figure 5 shows the query result in the query example, it

takes 14 seconds to execute 226,191 rows of query result

while in figure 6 for query modification it takes 5 seconds to

run 226.191 rows so that query modification is more efficient

than query example.

Experiment #4

Eliminate DISTINCT Unnecessary Conditions
Considering the following example case, DISTINCT keyword

in the original query is not necessary because table_name

contains the primary key, which is part of the result set [2].

Query Example

SELECT DISTINCT * FROM

KUNJUNGANPASIEN K

JOIN POLIKLINIK P

ON K.KPKD_POLY= P.FMPKLINIK_ID

WHERE P.FMPPENUNJANG2 = 0;

Query Modification

SELECT * FROM KUNJUNGANPASIEN K

JOIN POLIKLINIK P

ON K.KPKD_POLY= P.FMPKLINIK_ID

WHERE P.FMPPENUNJANG2 = 0;

Fig 7: Query Example Using Distinct

Fig 7: Query Modification Without Distinct

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.10, July 2017

10

Figure 7 shows the query result in the query example takes 28

seconds to execute 592,814 lines of query results while in

figure 8 for the query modification it takes 18 seconds to run

592.815 lines so that the query modification is more efficient

than the query example.

The results of this study shows that the modification query

can reduce the query execution time, the results can be seen in

Table 1

Experiment Query Example Time Query Modification Time Percentage reduction of time

Experiment #1 40 seconds 9 seconds 77.5 %

Experiment #2 11 seconds 10 seconds 9%

Experiment #3 14 seconds 5 seconds 64.2 %

Experiment #4 28 seconds 18 seconds 35.7%

Table 1: Precentage Reduction of Time Comparison

From table 1 we can see that the modification query takes less

time in querying than the query example. We can see in the

first experiment can reduce data processing time by 77.5 %, in

the second experiment can reduce data processing time by

9%, in the third experiment can reduce data processing time

by 64.2%, and in the fourth experiment can reduce data

processing time by 35.7%. We can see the time required for

query modification is more efficient than the query example.

5. CONCLUSION
Query optimization is a common task performed by database

administrators and application designers to improve the

overall performance of the database system. The purpose of

this paper is to provide SQL scenarios to serve as a quick and

easy reference guide for the development and maintenance of

database queries. Even if you have an excellent infrastructure,

its performance can be significantly degraded by inefficient

demand.

Query optimization has a great impact on DBMS compliance

and continues to evolve with more sophisticated new

optimization strategies. So, we should try following the

general tip as mentioned above to get a better query

performance. Optimization can be achieved with some effort

if we make it a standard practice to follow the rules.

The experimental results show a time reduction through a

significant modification query when applied.

6. ACKNOWLEDGMENTS
We express gratitude to God Almighty, Parents, Family, PJJ

Aptikom Batch 5 and friends who helped and support so that

this work can be completed.

7. REFERENCES
[1] Wenjiao, B, Jiming, L, Jichao, T & LI, S. Query

Optimization of Distributed Database Based on Parallel

Genetic Algorithm and Max-Min Ant System. 2015 8th

International Symposium on Computational Intelligence

and Design, 2015.

[2] Habimana, J. 2015. Query Optimization Techniques -

Tips For Writing Efficient And Faster SQL Queries.

International Journal Of Scientific & Technology

Research, 4, 22-26.

[3] Gordon C. Everest. 2005 Fundamentals of Database

System Benyamin Tokyo.

[4] ARIPIN 2010. Meningkatkan Efektifitas Pengelolaan

Database Dengan Optimasi SQL. Techno.Com, 9.

[5] Haas, S., Arnold, O., Scholzey, S., H¨Oppnery, S.,

Ellguthy, G., Andreas Dixiusy, Ungeth¨Umz, A., Mierz,

E., N¨Othen, B., Mat´Uˇs, E., Schiefery, S.,

Cederstroemy, L., Pilzx, F., Mayry, C., Sch¨Uffnyy, R.

E., Lehnerz, W. & Fettweis , G. P. 2016. A Database

Accelerator For Energy-Efficient Query Processing And

Optimization.

[6] Lakshmi, S. V. & Vatsavayi, V. K. Query Optimization

Using Clustering And Genetic Algorithm For Distributed

Databases. 2016 International Conference On Computer

Communication And Informatics (Iccci -2016), 2016

Coimbatore, India.

IJCATM : www.ijcaonline.org

