
International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.2, July 2017

24

Android-based Simulator to Support Tomasulo

Algorithm Teaching and Learning

Dimitris Kehagias

Department of Informatics
T.E.I. of Athens

Greece

V. Douskas-Bertlviser
Department of Informatics

T.E.I. of Athens
Greece

ABSTRACT

Tomasulo’s algorithm is a dynamic instruction scheduling

algorithm that allows out-of-order execution, to minimize

“Read-After-Write” (RAW) hazards and by register renaming

to reduce “Write-After-Read” (WAR) and “Write-After-

Write” (WAW) hazards. This paper describes an Android

based simulator that shows how dynamic scheduling is

obtained using Tomasulo's Algorithm. The simulator is

configurable, while the simulation can be operated in a step

by step mode and with animation in order to help students

comprehend the concepts of dynamic scheduling anytime,

anywhere.

General Terms

Computer Simulation, Algorithms, Hardware, Applied

Computing.

Keywords

Tomasulo’s algorithm, Simulator, Computer architecture,

Interactive animation.

1. INTRODUCTION
Pipelining is extensively used in modern processors in order

to achieve instruction level parallelism and improve

performance. In a conventional pipelined processor there are

5-pipe stages, namely Instruction Fetch (IF), Instruction

Decode (ID), Execute (EX), Memory (MEM) and Write Back

(WB) [9]. In the IF stage the program counter is used to get

the instruction from instruction memory and put into the

Instruction Register. In the ID stage, the instruction sent from

the IR is decoded. The instructions are executed in the EX

stage. The load/store instructions access memory during the

MEM stage and in the last stage (WB) the results come from

data memory or the ALU are written into the register file.

However, it is not always possible to run the pipeline at full

capacity because of control, structural or data hazards. Data

hazards - RAW, WAR or WAW - exist when reads and writes

of data occur in a different order in the pipeline than in the

program code.

Rearranging the execution sequence of instructions that

belong to the same code segment can reduce data hazards and

improve the performance. Dynamic scheduling algorithms

such as Tomasulo and Scoreboard are examples of

implementing the algorithms in hardware.

Tomasulo’s algorithm was developed by R. Tomasulo at IBM

in 1967 [3] and first used in the IBM System/360 Model 91

floating point unit. There are many variations on this

algorithm in modern processors, although the key concepts of

tracking instruction dependences to allow execution as soon

as operands are available and renaming registers to avoid

WAR and WAW hazards are common characteristics [1, 11].

1.1 Motivation
For students in an undergraduate advanced computer

architecture course, implementing dynamic scheduling using

Tomasulos’ algorithm is often confusing as it is not that

distinct. That’s why Tomasulo simulation tools are used to

support learning [13, 14].

Our intention to build a Tomasulo simulator was motivated by

the fact that many students, in the undergraduate advanced

computer architecture course offered by the Informatics

department of the Technological Educational Institute (T.E.I.)

of Athens [12], exhibit difficulties fully understand what

Tomasulo’s algorithm is doing clock cycle per clock cycle

and how it is used to minimize data hazards.

1.2 Objectives
The main objective of the work presented in this paper was to

create a suitable tool to support “dynamic scheduling”

teaching and learning in the context of an “Advanced

Computer Architecture” course and especially in the

“Computer Architecture” and “Advanced Computer

Architecture” courses, offered by the Informatics department

of the Technological Educational Institute (T.E.I.) of Athens.

This simulator is an indispensable tool to clarify some

important issues in these courses:

 How dynamic scheduling allows independent

instructions behind a stall to proceed

 How an instruction can begin execution as soon as its

operands are available

 How dynamic scheduling allows instructions to execute

and complete out of order

 Register renaming

And it seeks to help students:

 Better understand hardware scheduling techniques for

exploiting instruction-level parallelism

 To see how Tomasulo’s algorithm implements dynamic

scheduling

 Better understand the concept of reservation station

 To see visual representation of each stage of the

algorithm (issue, execute and write back)

 To see how instructions are completed out of order

 To see how the algorithm eliminates WAW/WAR

hazards

 To see how register renaming is provided by reservation

stations

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.2, July 2017

25

The rest of the paper is organized as follows. Section II

provides a brief overview on the most relevant educational

simulators. Section III explains the Tomasulo’s algorithm.

Section IV presents an overview of simulator implementation,

its functioning and its features. Section V concludes the paper.

2. RELATED WORK
Various standalone tools exist to explain how dynamic

scheduling is obtained using the Tomasulo's Algorithm. The

most relevant ones are presented in the following lines:

In [5] a HASE simulation model, which closely follows the

design of the IBM system 360/91 floating-point unit, has been

built in order to demonstrate dynamically the Tomasulo's

algorithm.

The simulator in [6] simulates Tomasulo's algorithm for a

floating-point MIPS-like instruction pipeline, demonstrating

out-of-order execution.

[7] and [4] present two web-based tools that have been

developed for students to understand the concepts of the

Tomasulo's algorithm used for dynamic scheduling.

However, none of them includes all the features that our

proposal offers. These features include operation in a step by

step mode, animation, written explanations in every animation

step, configurable execution core, variable issue rate, variable

latency per instruction class. Also, allows the user (i) to see

memory contents during simulation, (ii) to show or hide

animations, (iii) to move to the cycle in which some visible

action occurs and get help during simulation. In addition, the

android version of our simulator makes it a useful and unique

tool, considering how android applications becoming very

popular [8].

3. TOMASULO’S ALGORITHM
Figure 1 [1] shows the basic structure of a Tomasulo based

processor. The major components of the processor are as

follows [10]:

Reservation stations: these units receive an instruction from

the instruction unit, wait for source operand data to be ready

before starting the execution of the instruction and broadcast

the result of the instruction on the Common Data Bus (CDB)

when the result is ready.

Functional units: these are the circuits that perform the

execution steps for an instruction. Example functional units

are FP adders, FP multipliers, integer ALUs, shifters, and so

on.

Register File: Contains the data produced by the functional

units.

The CDB: connects the output of the functional units to all

components expecting those results.

Load and store buffers: hold data and addresses for memory

access.

Each instruction in Tomasulo’s algorithm has 3 main stages.

These are issue, execute and write back. In the issue stage, the

next instruction from the top of the instruction queue is sent to

an appropriate free reservation station with its operant values

if they are available in the register file. If the operands are not

in the register file, the instruction keeps track of the functional

unit that is going to produce it. In effect, this stage renames

registers. When all operands are available for an instruction, it

will proceed the execute stage; otherwise, it waits for the

operands to be available. That means the execution of

instructions may be out of order. Once an instruction has

finished executing, it enters the write back stage, where it will

write its result to the CDB. Any instruction as well as registers

waiting for this specific result will collect it from the CDB.

Figure 1[1]: The basic structure of a MIPS floating-point unit using Tomasulo’s algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.2, July 2017

26

4. TOMASULO SIMULATOR

4.1 Functional Description
The code segment to be simulated can be changed by adding

or deleting instructions of the segment. For each instruction,

the destination and the source registers must be specified. The

supported instructions are ADDD, SUBD, MULD, DIVD, LD

and SD. Each type of instruction can have its own latency,

ranging from 1 to 50. The ADDD and SUBD instructions are

executed in the integer execution units, while MULD and

DIVD are executed in the multi-cycle execution units. There

are also load and store buffers to hold data and addresses for

memory accesses. The number of units is also configurable,

and can be set to 1, 2 or 3 units of each class. The simulation

can be operated in all at once mode or in a step by step mode.

The instructions to be processed reside in an instruction

queue, in the order entered by the user, waiting to be executed

in first-in, first-out order. There are four stages an instruction

goes through in order to complete its execution. These stages

are issue, dispatch, execute and broadcast:

Issue: During the issue stage the next -in program order-

instruction is taken from the instruction queue and placed into

a reservation station of correct kind. In the case of load/store

instructions, they are placed in a load/store queue. No

instruction is issued if all the reservation stations or the

load/store queues are occupied. An issued instruction to a

reservation station is followed with its operands values if

available or with associated tags indicating the reservation

station that will produce the operands. In the issue stage an

instruction monitors the CDB to see if it broadcasts the values

it is waiting for, by comparing the tags it is waiting on with

the tags of the instruction producing the result.

Dispatch: An instruction can be dispatched to a functional

unit to start execution, when its source operands are ready and

the corresponding functional unit is free. When an instruction

is dispatched, its reservation station is freed.

Execute: Dispatched instructions get executed after a certain

amount of time determined by the specific functional unit’s

delay, defined during initialization process.

Broadcast: Once a functional unit has finished executing an

instruction outputs its result with the associated tag to the

CDB for broadcasting. When a load instruction comes back

from memory, the value that has been read is also broadcasted

on the CDB. During broadcast: (a) the waiting instructions in

reservation stations and in the store buffers get these results

only if their operand entries match the tag of the instruction

producing the result, (b) the appropriate register will be

updated in the register file, and (c) the register allocation table

entry that matches the broadcasted tag will be cleared. During

this stage if there is more than one functional unit asking for

the CDB in the same cycle, priority is given to the one which

has completed an instruction with the highest execution

latency. If in the same cycle the completed instructions have

the same execution latency, they are broadcasted arbitrary.

4.2 Overview of Simulator Implementation
The simulator is implemented using Java in the Eclipse

(Kepler) development environment. Genymotion [2] Android

emulation has been used during the development of the

application for testing. As a starting point for our work, we

have made the following assumptions:

 Each instruction completes execution after successively

passed the stages of issue, dispatch, execute and

broadcast. In a single cycle, under normal circumstances,

an instruction may be passed through stages issue and

dispatch or dispatch and execute but not by the stages

issue and execute.

 In each cycle only one instruction can pass by the

broadcast stage. If multiple instructions are ready for

broadcast, then priority is given to the one with the

highest latency.

 A load instruction must wait before entering the execute

stage, if an older store instruction with the same data

memory address is also ready to enter the execute stage.

 A store instruction must wait before entering the execute

stage, if an older load or store instruction with the same

data memory address is also ready to enter the execute

stage.

Classes used in simulator:

Each screen of the application is accompanied by an

appropriate class that extends the Android Activity class,

which supports the development of interfaces and activities.

For each of these classes, the screen layout is defined by a

corresponding xml file that includes all the necessary

elements for describing the appearance of the interface in the

user's mobile device. Also, for every activity there are several

auxiliary classes that support user interaction with the

simulation. Figure 2 shows the interconnection of classes of

the application.

Verification:

During the development process we have made exhaustive

tests to verify the correctness, functional behavior, and

appearance of the application.

Initially the application was installed on many different

mobile devices of different screen sizes, to improve and adapt

the appearance of the various components in a way that there

are no deviations from one device to another. Thus, the

consistency in the appearance of the application on different

devices was achieved with appropriate sharing of the space

required by each component of the interface in conjunction

with the animated parts during simulation.

The execution of the application was tested in order to

properly implement the simulation of the algorithm, not led to

a collapse, to handle exceptions that may arise during

execution of the code and finally to be backward-compatible

to mobile applications.

4.3 The User Interface
As shown in Figure 3, the application includes multiple

interconnected screens. To ensure consistency in terms of

graphical layout across the application, landscape orientation

was chosen. The individual screens are: (a) Language

selection screen: Upon starting the simulator, a user has the

option to select between Greek or English language. (b) Help

screen: it displays instructions for how to use the simulator,

including description of various components of the simulation

screen, and implementation assumptions that have been made

during the designing phase. (c) Main screen: on this screen a

user can choose from among several options, including

entering code to be processed, starting simulation, configuring

hardware, going back to starting screen, and reading the help

text. (d) Code entering screen: This screen enables the user to

enter instructions to be processed and initial values into

registers and memory locations. A drop down list has been
provided to select the required instruction. Each instruction is

followed by three fields to choose the registers or memory

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.2, July 2017

27

Figure 2: Interconnection of classes

Figure 3: Arrangement of various screens

location relevant to each instruction selected. The initial

values given in registers and memory locations are checked

for validity. (e) Hardware configuration screen: On this screen

the user defines the simulated execution environment,

including the size of load/store buffers, the number of

reservation stations, the number of execution cycles

(latencies) taken by the functional units, and the number of

functional units. (f) Memory contents screen: On this screen a

user can view the contents of memory locations as they are

formed during the execution of the algorithm. (g) Simulation

screen (Figure 4): This screen is where simulation takes place.

Its description follows in the next section.

4.3.1 The simulation screen
The simulation screen (Figure 4) has a very rich and friendly
visual interface. It illustrates the movement of instructions to

the reservation stations and the movement of results from the

functional units. It consists with the following components:

RAT: Register Alias Table is a structure for performing

register renaming. It maintains the mappings between

reservation stations and destination registers of instructions.

LOAD Q / STORE Q: Load and store buffers for LD and SD

instructions. They hold data and addresses for memory access.

INST Q: The “INST Q” component is a queue that contains

the instructions in the order entered by the user. The

instructions are issued into the reservation stations in first-in,

first-out order.

REGS: The “REGS” component implements the Floating-

point (F) and integer (R) register file. The registers contain

values entered by the user during the configuration process, or

broadcasted since instructions complete their execution. These

values that are already in registers, meaning the values that are

present and ready for execution, are entered to reservation

stations.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.2, July 2017

28

Figure 4: Simulation screen

ADD RS / MUL RS: There are two types of reservation

stations “ADD RS” and “MUL RS”. One is for ADDD and

SUBD instructions, while the second is for MULTD and

DIVD instructions. Each reservation station is made up of

three fields. The first field in a row holds the opcode for the

pending instruction in the form of an arithmetic symbol (+,-

,*,/, for ADDD, SUBD, MULTD and DIVD instructions

respectively) and the other two fields hold either operand

values, or names of reservation stations or load/store buffers

that will provide them.

ALU ADD / ALU MUL: Functional Units (FUs) to

accomplish the execution step of instructions. The “ALU

ADD” FUs are floating point adders which execute ADDD

and SUBD instructions while the “ALU MUL” is floating

point multipliers which execute MULTD and DIVD

instructions. The FUs receive instruction and operand packets

from the RSs and send operand result packets to the common

data bus. The number of clock cycles required to execute an

instruction is a parameter read from the hardware
configuration activity at the start of a simulation.

All the above mentioned components are interconnected with

a common data bus (CDB), which is used to broadcast result

from the adder, multiplier and the load buffer to the

reservation stations, the register file and the store buffers.

The simulation screen provides the user with several choices,

including:

ISSUE: During the issue process the next -in program order-

instruction is taken from the instruction queue and putted into

a free reservation station of correct kind (ADD RS or MUL

RS).

DISPATCH: The process of sending an instruction to

execution from a reservation station to a functional unit (ADD

RS to ALU ADD or MUL RS to ALU MUL).

EXECUTE: Is the phase during which a functional unit (ALU

ADD or ALU MUL) operates on ready operands of an

instruction.

BROADCAST: When an instruction finishes execution

broadcasts its results on a common data bus and from there

into registers and reservation stations.

NEXT EVENT: Allows the user to move to the cycle in which

some visible action occurs.

MEMORY CONTENTS: Memory contents can be seen

during simulation.

ANIMS: Show or hide animations.

5. CONCLUSION
A tool to aid students and teachers in an undergraduate

advanced computer architecture course was presented. This

tool, an Android based simulator, shows how dynamic

scheduling is obtained using Tomasulo's Algorithm. Each

stage of the simulation is represented with animation and with

reference to flying information messages in order to give a

clear and detail picture of the whole process. Different

configurations of the simulator can be created, each with a

different performance/resource ratio. Initial use of the

simulator has shown learning effectiveness. The students were

helped to better recognize the process of register renaming. In

near future the simulator will be evaluated in the classroom

through student surveys.

6. REFERENCES
[1] Hennessy J. L. and Patterson D. A., “Computer

Architecture: A Quantitative Approach”. Morgan

Kaufmann, 5th Edition, 2012.

[2] Genymotion Android Emulator. Available at:

https://www.genymotion.com/account/login. Accessed

on Oct. 2016.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.2, July 2017

29

[3] Tomasulo R.M., “An efficient algorithm for exploiting

multiple arithmetic units”. IBM Journal of Research and

Development, 11(1):25–33, 1967.

[4] “Tomasulo’s Algorithm for Dynamic Scheduling”.

Available at:

http://dark.eit.lth.se/darklab/tomasulo/script/tomasulo.ht

m. Accessed on Feb. 2017.

[5] “Tomasulo’s Algorithm. University of Edinburgh”.

Available at:

http://www.icsa.inf.ed.ac.uk/research/groups/hase/model

s/tomasulo/index.html. Accessed on Feb. 2017.

[6] Typanski N., “Tomasulo algorithm simulator

(prototype)”. Available at:

http://nathantypanski.github.io/tomasulo-simulator/

Accessed on Feb. 2017.

[7] University of Massachusetts at Amherst. “Dynamic

Scheduling Using Tomasulo's Algorithm”. Available at:

http://www.ecs.umass.edu/ece/koren/architecture/.

Accessed on Feb. 2017.

[8] Butler M., “Android: Changing the Mobile Landscape”.

IEEE Pervasive Computing, vol. 10, no. 1, pp. 4 – 7,

January-March 2011.

[9] Patterson D. A. and Hennessy J. L., “Computer

Organization and Design - The Hardware/Software

Interface”. 5th ed., Morgan Kaufmann, 2014.

[10] "CSE P548 - Tomasulo", washington.edu. Washington

University. 2006. Accessed on Feb. 2017.

[11] Hwang K. and Jotwani N., “Advanced Computer

Architecture-Parallelism, Scalability, Programmability”.

3rd ed., McGraw Hill, 2016.

[12] “Advanced Computer Architecture”. Available at:

http://www.cs.teiath.gr/?page_id=6450.

[13] Hatfield B. and Rieker M., “Incorporating simulation

and implementation into teaching computer

organization and architecture”. 35th ASEE/IEEE

Frontiers in Education Conf, Indianapolis, USA, pp:

FIG-18, 2005.

[14] Carpinelli J. D., and Jaramillo F., “Simulation tools for

digital design and computer organization and

architecture”. Paper presented at the 31st ASEE/ IEEE

Frontiers in Education Conference, Reno, NV, 2001.

IJCATM : www.ijcaonline.org

