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ABSTRACT 

Tomasulo’s algorithm is a dynamic instruction scheduling 

algorithm that allows out-of-order execution, to minimize 

“Read-After-Write” (RAW) hazards and by register renaming 

to reduce “Write-After-Read” (WAR) and “Write-After-

Write” (WAW) hazards. This paper describes an Android 

based simulator that shows how dynamic scheduling is 

obtained using Tomasulo's Algorithm. The simulator is 

configurable, while the simulation can be operated in a step 

by step mode and with animation in order to help students 

comprehend the concepts of dynamic scheduling anytime, 

anywhere.   
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1. INTRODUCTION 
Pipelining is extensively used in modern processors in order 

to achieve instruction level parallelism and improve 

performance. In a conventional pipelined processor there are 

5-pipe stages, namely Instruction Fetch (IF), Instruction 

Decode (ID), Execute (EX), Memory (MEM) and Write Back 

(WB) [9]. In the IF stage the program counter is used to get 

the instruction from instruction memory and put into the 

Instruction Register. In the ID stage, the instruction sent from 

the IR is decoded. The instructions are executed in the EX 

stage. The load/store instructions access memory during the 

MEM stage and in the last stage (WB) the results come from 

data memory or the ALU are written into the register file.  

However, it is not always possible to run the pipeline at full 

capacity because of control, structural or data hazards. Data 

hazards - RAW, WAR or WAW - exist when reads and writes 

of data occur in a different order in the pipeline than in the 

program code.  

Rearranging the execution sequence of instructions that 

belong to the same code segment can reduce data hazards and 

improve the performance. Dynamic scheduling algorithms 

such as Tomasulo and Scoreboard are examples of 

implementing the algorithms in hardware.  

Tomasulo’s algorithm was developed by R. Tomasulo at IBM 

in 1967 [3] and first used in the IBM System/360 Model 91 

floating point unit. There are many variations on this 

algorithm in modern processors, although the key concepts of 

tracking instruction dependences to allow execution as soon 

as operands are available and renaming registers to avoid 

WAR and WAW hazards are common characteristics [1, 11].  

1.1 Motivation 
For students in an undergraduate advanced computer 

architecture course, implementing dynamic scheduling using 

Tomasulos’ algorithm is often confusing as it is not that 

distinct. That’s why Tomasulo simulation tools are used to 

support learning [13, 14].   

Our intention to build a Tomasulo simulator was motivated by 

the fact that many students, in the undergraduate advanced 

computer architecture course offered by the Informatics 

department of the Technological Educational Institute (T.E.I.) 

of Athens [12], exhibit difficulties fully understand what 

Tomasulo’s algorithm is doing clock cycle per clock cycle 

and how it is used to minimize data hazards. 

1.2 Objectives 
The main objective of the work presented in this paper was to 

create a suitable tool to support “dynamic scheduling” 

teaching and learning in the context of an “Advanced 

Computer Architecture” course and especially in the 

“Computer Architecture” and “Advanced Computer 

Architecture” courses, offered by the Informatics department 

of the Technological Educational Institute (T.E.I.) of Athens.  

This simulator is an indispensable tool to clarify some 

important issues in these courses: 

 How dynamic scheduling allows independent 

instructions behind a stall to proceed 

 How an instruction can begin execution as soon as its 

operands are available 

 How dynamic scheduling allows instructions to execute 

and complete out of order 

 Register renaming 

And it seeks to help students: 

 Better understand hardware scheduling techniques for 

exploiting instruction-level parallelism 

 To see how Tomasulo’s algorithm implements dynamic 

scheduling 

 Better understand the concept of reservation station 

 To see visual representation of each stage of the 

algorithm (issue, execute and write back) 

 To see how instructions are completed out of order 

 To see how the algorithm eliminates WAW/WAR 

hazards 

 To see how register renaming is provided by reservation 

stations 
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The rest of the paper is organized as follows. Section II 

provides a brief overview on the most relevant educational 

simulators. Section III explains the Tomasulo’s algorithm. 

Section IV presents an overview of simulator implementation, 

its functioning and its features. Section V concludes the paper. 

2. RELATED WORK 
Various standalone tools exist to explain how dynamic 

scheduling is obtained using the Tomasulo's Algorithm. The 

most relevant ones are presented in the following lines: 

In [5] a HASE simulation model, which closely follows the 

design of the IBM system 360/91 floating-point unit, has been 

built in order to demonstrate dynamically the Tomasulo's 

algorithm. 

The simulator in [6] simulates Tomasulo's algorithm for a 

floating-point MIPS-like instruction pipeline, demonstrating 

out-of-order execution.  

[7] and [4] present two web-based tools that have been 

developed for students to understand the concepts of the 

Tomasulo's algorithm used for dynamic scheduling. 

However, none of them includes all the features that our 

proposal offers. These features include operation in a step by 

step mode, animation, written explanations in every animation 

step, configurable execution core, variable issue rate, variable 

latency per instruction class. Also, allows the user (i) to see 

memory contents during simulation, (ii) to show or hide 

animations, (iii) to move to the cycle in which some visible 

action occurs and get help during simulation. In addition, the 

android version of our simulator makes it a useful and unique 

tool, considering how android applications becoming very 

popular [8]. 

3. TOMASULO’S ALGORITHM 
Figure 1 [1] shows the basic structure of a Tomasulo based 

processor. The major components of the processor are as 

follows [10]:  

Reservation stations: these units receive an instruction from 

the instruction unit, wait for source operand data to be ready 

before starting the execution of the instruction and broadcast 

the result of the instruction on the Common Data Bus (CDB) 

when the result is ready. 

Functional units: these are the circuits that perform the 

execution steps for an instruction. Example functional units 

are FP adders, FP multipliers, integer ALUs, shifters, and so 

on. 

Register File: Contains the data produced by the functional 

units. 

The CDB: connects the output of the functional units to all 

components expecting those results.  

Load and store buffers: hold data and addresses for memory 

access. 

Each instruction in Tomasulo’s algorithm has 3 main stages. 

These are issue, execute and write back. In the issue stage, the 

next instruction from the top of the instruction queue is sent to 

an appropriate free reservation station with its operant values 

if they are available in the register file. If the operands are not 

in the register file, the instruction keeps track of the functional 

unit that is going to produce it. In effect, this stage renames 

registers. When all operands are available for an instruction, it 

will proceed the execute stage; otherwise, it waits for the 

operands to be available. That means the execution of 

instructions may be out of order. Once an instruction has 

finished executing, it enters the write back stage, where it will 

write its result to the CDB. Any instruction as well as registers 

waiting for this specific result will collect it from the CDB.

Figure 1[1]: The basic structure of a MIPS floating-point unit using Tomasulo’s algorithm.
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4. TOMASULO SIMULATOR 

4.1 Functional Description 
The code segment to be simulated can be changed by adding 

or deleting instructions of the segment. For each instruction, 

the destination and the source registers must be specified. The 

supported instructions are ADDD, SUBD, MULD, DIVD, LD 

and SD. Each type of instruction can have its own latency, 

ranging from 1 to 50. The ADDD and SUBD instructions are 

executed in the integer execution units, while MULD and 

DIVD are executed in the multi-cycle execution units. There 

are also load and store buffers to hold data and addresses for 

memory accesses.  The number of units is also configurable, 

and can be set to 1, 2 or 3 units of each class. The simulation 

can be operated in all at once mode or in a step by step mode. 

The instructions to be processed reside in an instruction 

queue, in the order entered by the user, waiting to be executed 

in first-in, first-out order. There are four stages an instruction 

goes through in order to complete its execution. These stages 

are issue, dispatch, execute and broadcast: 

Issue: During the issue stage the next -in program order- 

instruction is taken from the instruction queue and placed into 

a reservation station of correct kind. In the case of load/store 

instructions, they are placed in a load/store queue. No 

instruction is issued if all the reservation stations or the 

load/store queues are occupied. An issued instruction to a 

reservation station is followed with its operands values if 

available or with associated tags indicating the reservation 

station that will produce the operands. In the issue stage an 

instruction monitors the CDB to see if it broadcasts the values 

it is waiting for, by comparing the tags it is waiting on with 

the tags of the instruction producing the result. 

Dispatch: An instruction can be dispatched to a functional 

unit to start execution, when its source operands are ready and 

the corresponding functional unit is free. When an instruction 

is dispatched, its reservation station is freed. 

Execute: Dispatched instructions get executed after a certain 

amount of time determined by the specific functional unit’s 

delay, defined during initialization process. 

Broadcast: Once a functional unit has finished executing an 

instruction outputs its result with the associated tag to the 

CDB for broadcasting. When a load instruction comes back 

from memory, the value that has been read is also broadcasted 

on the CDB. During broadcast: (a) the waiting instructions in 

reservation stations and in the store buffers get these results 

only if their operand entries match the tag of the instruction 

producing the result, (b) the appropriate register will be 

updated in the register file, and (c) the register allocation table 

entry that matches the broadcasted tag will be cleared. During 

this stage if there is more than one functional unit asking for 

the CDB in the same cycle, priority is given to the one which 

has completed an instruction with the highest execution 

latency. If in the same cycle the completed instructions have 

the same execution latency, they are broadcasted arbitrary. 

4.2 Overview of Simulator Implementation 
The simulator is implemented using Java in the Eclipse 

(Kepler) development environment. Genymotion [2] Android 

emulation has been used during the development of the 

application for testing. As a starting point for our work, we 

have made the following assumptions: 

 Each instruction completes execution after successively 

passed the stages of issue, dispatch, execute and 

broadcast. In a single cycle, under normal circumstances, 

an instruction may be passed through stages issue and 

dispatch or dispatch and execute but not by the stages 

issue and execute. 

 In each cycle only one instruction can pass by the 

broadcast stage. If multiple instructions are ready for 

broadcast, then priority is given to the one with the 

highest latency. 

 A load instruction must wait before entering the execute 

stage, if an older store instruction with the same data 

memory address is also ready to enter the execute stage.  

 A store instruction must wait before entering the execute 

stage, if an older load or store instruction with the same 

data memory address is also ready to enter the execute 

stage. 

Classes used in simulator: 

Each screen of the application is accompanied by an 

appropriate class that extends the Android Activity class, 

which supports the development of interfaces and activities. 

For each of these classes, the screen layout is defined by a 

corresponding xml file that includes all the necessary 

elements for describing the appearance of the interface in the 

user's mobile device. Also, for every activity there are several 

auxiliary classes that support user interaction with the 

simulation. Figure 2 shows the interconnection of classes of 

the application.  

Verification: 

During the development process we have made exhaustive 

tests to verify the correctness, functional behavior, and 

appearance of the application. 

Initially the application was installed on many different 

mobile devices of different screen sizes, to improve and adapt 

the appearance of the various components in a way that there 

are no deviations from one device to another. Thus, the 

consistency in the appearance of the application on different 

devices was achieved with appropriate sharing of the space 

required by each component of the interface in conjunction 

with the animated parts during simulation. 

The execution of the application was tested in order to 

properly implement the simulation of the algorithm, not led to 

a collapse, to handle exceptions that may arise during 

execution of the code and finally to be backward-compatible 

to mobile applications. 

4.3 The User Interface 
As shown in Figure 3, the application includes multiple 

interconnected screens. To ensure consistency in terms of 

graphical layout across the application, landscape orientation 

was chosen. The individual screens are: (a) Language 

selection screen: Upon starting the simulator, a user has the 

option to select between Greek or English language. (b) Help 

screen: it displays instructions for how to use the simulator, 

including description of various components of the simulation 

screen, and implementation assumptions that have been made 

during the designing phase. (c) Main screen: on this screen a 

user can choose from among several options, including 

entering code to be processed, starting simulation, configuring 

hardware, going back to starting screen, and reading the help 

text. (d) Code entering screen: This screen enables the user to 

enter instructions to be processed and initial values into 

registers and memory locations. A drop down list has been 
provided to select the required instruction. Each instruction is 

followed by three fields to choose the registers or memory 
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Figure 2: Interconnection of classes 

 

Figure 3: Arrangement of various screens 

location relevant to each instruction selected. The initial 

values given in registers and memory locations are checked 

for validity. (e) Hardware configuration screen: On this screen 

the user defines the simulated execution environment, 

including the size of load/store buffers, the number of 

reservation stations, the number of execution cycles 

(latencies) taken by the functional units, and the number of 

functional units. (f) Memory contents screen: On this screen a 

user can view the contents of memory locations as they are 

formed during the execution of the algorithm. (g) Simulation 

screen (Figure 4): This screen is where simulation takes place. 

Its description follows in the next section. 

4.3.1 The simulation screen 
The simulation screen (Figure 4) has a very rich and friendly 
visual interface. It illustrates the movement of instructions to 

the reservation stations and the movement of results from the 

functional units. It consists with the following components: 

RAT: Register Alias Table is a structure for performing 

register renaming. It maintains the mappings between 

reservation stations and destination registers of instructions. 

LOAD Q / STORE Q: Load and store buffers for LD and SD 

instructions. They hold data and addresses for memory access. 

INST Q: The “INST Q” component is a queue that contains 

the instructions in the order entered by the user. The 

instructions are issued into the reservation stations in first-in, 

first-out order. 

REGS: The “REGS” component implements the Floating-

point (F) and integer (R) register file. The registers contain 

values entered by the user during the configuration process, or 

broadcasted since instructions complete their execution. These 

values that are already in registers, meaning the values that are 

present and ready for execution, are entered to reservation 

stations. 
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Figure 4: Simulation screen

ADD RS / MUL RS: There are two types of reservation 

stations “ADD RS” and “MUL RS”. One is for ADDD and 

SUBD instructions, while the second is for MULTD and 

DIVD instructions. Each reservation station is made up of 

three fields. The first field in a row holds the opcode for the 

pending instruction in the form of an arithmetic symbol (+,-

,*,/, for ADDD, SUBD, MULTD and DIVD instructions 

respectively) and the other two fields hold either operand 

values, or names of reservation stations or load/store buffers 

that will provide them. 

ALU ADD / ALU MUL: Functional Units (FUs) to 

accomplish the execution step of instructions. The “ALU 

ADD” FUs are floating point adders which execute ADDD 

and SUBD instructions while the “ALU MUL” is floating 

point multipliers which execute MULTD and DIVD 

instructions. The FUs receive instruction and operand packets 

from the RSs and send operand result packets to the common 

data bus. The number of clock cycles required to execute an 

instruction is a parameter read from the hardware 
configuration activity at the start of a simulation.  

All the above mentioned components are interconnected with 

a common data bus (CDB), which is used to broadcast result 

from the adder, multiplier and the load buffer to the 

reservation stations, the register file and the store buffers. 

The simulation screen provides the user with several choices, 

including: 

ISSUE: During the issue process the next -in program order- 

instruction is taken from the instruction queue and putted into 

a free reservation station of correct kind (ADD RS or MUL 

RS). 

DISPATCH: The process of sending an instruction to 

execution from a reservation station to a functional unit (ADD 

RS to ALU ADD or MUL RS to ALU MUL). 

EXECUTE: Is the phase during which a functional unit (ALU 

ADD or ALU MUL) operates on ready operands of an 

instruction.  

BROADCAST: When an instruction finishes execution 

broadcasts its results on a common data bus and from there 

into registers and reservation stations. 

NEXT EVENT: Allows the user to move to the cycle in which 

some visible action occurs. 

MEMORY CONTENTS: Memory contents can be seen 

during simulation. 

ANIMS: Show or hide animations. 

5. CONCLUSION 
A tool to aid students and teachers in an undergraduate 

advanced computer architecture course was presented. This 

tool, an Android based simulator, shows how dynamic 

scheduling is obtained using Tomasulo's Algorithm. Each 

stage of the simulation is represented with animation and with 

reference to flying information messages in order to give a 

clear and detail picture of the whole process. Different 

configurations of the simulator can be created, each with a 

different performance/resource ratio. Initial use of the 

simulator has shown learning effectiveness. The students were 

helped to better recognize the process of register renaming. In 

near future the simulator will be evaluated in the classroom 

through student surveys. 
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