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ABSTRACT
This article shows an easy and simple approach to recognize char-
acters in CAPTCHA images, where the k-NN (k nearest neigh-
bor) algorithm is employed. This proposal to recognize characters
in CAPTCHA images has the objective of autofill these compo-
nents in order to support automation of access to systems. The
main aim of this article is to show the steps involved in the pro-
posed process about automatic filling CAPTCHAs since the im-
age’s handling until the classification of the characters through a
simple and low-cost (implementation) technique of pattern recog-
nition. Experimental results and an error distribution about the
characters’ classification are showed, where it is demonstrated the
possibility of application in real cases of the proposal presented.

General Terms
Completely Automated Public Turing test to tell Computers and Humans
Apart (CAPTCHA)

Keywords
CAPTCHA, pattern recognition, classification, automation, charac-
ter recognition

1. INTRODUCTION
The growth of the world wide web also raised the web bots, gen-
erating the necessity of develop mechanisms of security to web-
sites. Websites security involves many mechanisms to protect them
against malicious users. One technique that is widely used to
prevent such attacks is the use of CAPTCHA. The proposal of
CAPTCHA methodology was presented by von Ahnn et al. [17],
where it was employed in the real world application for first time
in the Yahoo website. Since its creation, the CAPTCHA method-
ology has been used for many website and a multitude of Internet
services. Nowadays, CAPTCHA is a common strategy for websites
to prevent attacks from anyone who try to have an automatic inter-
action with these websites, for example soft robots for automatic
information extraction [16, 10].

There are many situations where the use of CAPTCHA is strongly
recommended, as for example: on line pools, free email services,
search engine boots, worms and Spam prevent dictionary attacks,
among others [17]. The most common CAPTCHA’s model used
basically consist in a set of ordered characters, distorted by some
technique to make unclear the whole message, which the human
brain can understand, but be more difficult to a machine decipher
it.
Although the CAPTCHA is applied to improve the security of the
Internet services, there is an daily expectation about 200 millions of
CAPTCHAs written in the cybernetic space [10]. If an Internet user
take about 10 seconds to understand and write the CAPTCHA code,
in the statistical sense, many year-people of work are thrown away
per day only with the CAPTCHA human resolve. In the economic
sense, an automatic system to resolve the CAPTCHA will bring a
cost reduction, at least in lawful Internet transactions.
In order to try to find out the characters that compose the
CAPTCHA is necessary to use some classification or recognize al-
gorithm, generally for images or characters. There are some pro-
posals in the literature about techniques to discover CAPTCHA
using some classification algorithm, among them it is possible to
mention: Support Vector Machine (SVM) [7], k nearest neighbor
(k-NN) [2], deep learning [16] and many others [13].
Strategies to auto-fill CAPTCHAs are not something necessarily
new. The need to automatize the access to system have been mov-
ing many researches for create strategies to decipher CAPTCHAs.
For example, in 2008 was detected a span sent by Windows Live ac-
counts trying to sign up in the Microsoft’s email service. However
these span was getting a success rate in decipher the CAPTCHA
only about 30% [19]. Bursztein et al. [2] used non-parametric tech-
nique (SVM) to decipher text based CAPTCHAs of many web-
sites, among then Baidu, eBay, Blizzard, with a success rate of
24%, 10% and 50% respectively, these authors also recommend
the use of k-NN for its nice stability properties. Gao et al [6] effec-
tively deciphered many CAPTCHAs from Google, Microsoft, Ya-
hoo and Amazon with a success rate ranging from 5% to 77% using
a sophisticated technique to get the components of the CAPTCHA
and then classifying them with k-NN algorithm. Hussain et al [9]
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used a simple image processing techniques and recognition of the
characters by using neural network. They got a success rate about
50.48%, 49.69% and 97.5% against CAPTCHAs from eBay, JD
and news.cn respectively. Hussain et al. [8] used techniques as
thresholding, thinning and pixel count to discover the characters
in CAPTCHAs from Taobao, MSN and Ebay along with neural
networks achieving an overall precision about 51.3%, 27.1% and
53.2% respectively. There are also other technique of CAPTCHAs
that are being adopted based in images like the case of Asirra
CAPTCHA [5] that ask to the user to chose between images of
cats and dogs. Golle’s work [7] shows the use of SVM (support
vector machines) to classify the images from Asirra CAPTCHA
and he got a success rate of 82.7%. Sivakorn [16] used deep learn-
ing techniques to decipher images associates to the new model of
CAPTCHA called reCAPTCHA getting good success rate 70.78%
to the CAPTCHAs in the reCAPTCHA website and 83.5% in the
CAPTCHAs from Facebook.
Therefore, with the sophistication of the CAPTCHA methodology,
new and more complex algorithms are proposed to automatiza-
tion the systems access. However, development and implementa-
tion cost of these new algorithms also are improved when com-
pared with simple algorithms. In special, the k nearest neighbor
algorithm, or simply k-NN, is an algorithm with low complexity
and low run time in computational sense. This algorithm has been
applied to discover the characters which compound the CAPTCHA
if there is an information database of CAPTCHA images [2]. Fur-
thermore Gao et al. [6] says that most of the proposal to decipher
CAPTCHAs are limited to some specific schemes and just a few
can resolve a security mechanism as a whole. Hence, the general
proposal of this article is show that given a website where the
CAPTCHA needs be resolved, a simple procedure can be applied to
create a database of CAPTCHA images, where a simple k-NN can
be applied to classify the new images and resolves the CAPTCHA
code. This approach might be helpful to automatized systems that
need to fill a CAPTCHA to get a specific information or enable a
service in a lawful solicitation.
This paper is structured as follows. Section 2 talks about the the-
oretical foundation of the article addressing CAPTCHA and the
general theory about k-NN. Section 3 shows the details about the
methodology used in this article to find and classify the characters
in CAPTCHA images. Section 4 shows the results obtained by the
proposed approach. Finally, Section 5 has the conclusion of the ar-
ticle.

2. THEORETICAL FOUNDATION
In this Section is described the theoretical foundation for the
methodology applied to the proposed approach. It is important to
highlight that CAPTCHA is a sequence of objects formed by a fi-
nite set of symbols (or alphabet). In general, this sequence must be
recognized by a human as a requirement for some process. In this
article, will be assumed that the sequence of objects is a sequence
of characters, where the k-NN algorithm was used to cluster and
recognize those characters in the CAPTCHA.

2.1 CAPTCHA
Perhaps one of the first articles to talk about identification by “Tur-
ing test” was the Naor’s article [12]. The article propose a test that
a human can easily solve, but a program will fail in the most of
the attempts. This is the basic idea about CAPTCHA operation.
CAPTCHA is an acronym to Completely Automated Public Tur-
ing tests to tell Computers and Humans Apart, they are also called

“reverse Turing test” because they aim to allow a computer to de-
terminate from a response if it comes from a computer or a human
[2].
CAPTCHA is one of the most widely used mechanics of defense
used by websites against undesirable or malicious Internet bot pro-
grams [19]. Many commercial websites uses CAPTCHA, as for
example: Google, Yahoo and Microsoft. Also some governmental
agencies as the Brazilian Ministry of Education1 uses this kind of
mechanism to protect the information of the users against hackers’
attack. CAPTCHA is almost a standard in information security and
many studies propose new methodologies to design CAPTCHAs in
order to avoid automatized systems decipher them [2]. In fact, due
the developing of the CAPTCHA’s design, today there are many
kind of CAPTCHAs used by websites. These models are divided
between visual and non-visual CAPTCHAs [14]. Furthermore, the
types of CAPTCHAs are based mostly on: text, image, audio, video
and puzzle [15]. The most common of these CAPTCHAs are based
in visual components, usually these components are based in an
identification of a sequence of characters.
The text-based CAPTCHA are the most widely used CAPTCHA’s
scheme. These kind of CAPTCHAs are based on a sophisticated
distortion of characters that are set in a grid, so that most of the
humans can decipher it intuitively. This scheme has its popularity
due to the fact that it is intuitive to think about associate an image to
Roman character for a big amount of users world-wide [3]. A good
CAPTCHA should be human friendly whereas be robust enough
to resist to the most algorithms which try to decipher it [18]. The
Figure 1 shows some examples of text-based CAPTCHAs used by
websites.

Fig. 1: Example of some text-based CAPTCHAs used by websites

These model of CAPTCHA has many failure models. However, de-
signers learned from previous attacks and developed CAPTCHAs
much more sophisticated than the earlier generations [6]. There are
many resistance techniques that text-based CAPTCHA uses against
attacks. Some of these techniques are: same color letters in the
background, background noise, random lines, character collaps-
ing, text distortion, multiples fonts and random strings [9]. Even
with the use of these techniques the based text CAPTCHAs present
some weak-points points as for example: complex text which the
user might can not understand and pattern recognition techniques
can recognize the text in the CAPTCHA [1].

1This website, at the date of this article, provides information about a gov-
ernmental program which supply a student credit to high level students in
Brazil http://sisfiesaluno.mec.gov.br/seguranca/principal.
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2.2 K-NN
Classification algorithms aim to automatically categorize some data
in a class by a feature vector [4]. Among those algorithms there
is a class denominated nonparametric algorithms, what means that
they do not have parameters to make their classification. Some ex-
amples of nonparametric algorithm are Density Estimation, Parzen
Windows and k-NN [4]. The k-NN (k nearest neighbor) is an al-
gorithm to classify some element in a class depending on the dis-
tance of this element to its neighbors. The k-NN is classified as
lazy learning algorithm because all the computation is differed un-
til the classification of some element. This algorithm is also one
of the simplest machine learn algorithm. The k-Nearest Neighbor
algorithm is an widely used technique and many articles propose
modification in the algorithm in order to improve its efficient and
accuracy to their specific classification, as an example Muralindha-
ran [11] and Zhang [20]. Here, the algorithm used is the standard
version of the k-NN.
Let n be an arrangement of all the elements in the universe U where
each element belongs to one class Ci (i = 1, 2, . . . ,W , where
there are W classes). The W classes are defined a priori and con-
tains elements that have similar traits. Now, suppose that there is an
element x and it is inserted in the universe U , the algorithm k-NN
try to classify x in one of the class W comparing the traits of x
with the other elements present in U (the n elements). For this, the
k-NN algorithm measures the distance between x and the k neigh-
bors and check which class these k neighbors belongs to classify x.
The Figure 2 shows a distribution of the n elements in the Cartesian
axis representing the universe U for three distinct classes and the
element x with the k neighbors delimited by the dashed circle.
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Fig. 2: Example of delimiting the neighborhood in a k-NN classification.
The image was generated in the software Matlab version R2015a.

Each element x has its own characteristics (or traits) and to measure
the distance D between this element and other element incident in
the universe U is possible use a large set of different metrics. In
particular, here will be used the Minkowski Metric [21]:

D(x,Ci) =

(
ni∑
v=1

|x− xv|p
)1/p

(1)

where ni is the number of elements in the class Ci. Therefore, the
Equation (1) is a measure of distance between the element x and
all elements of the class Ci. The most common distances used in
k-NN classification are the Euclidean Distance (when p = 2) and
the Manhattan or city block when (p = 1) [21]. Finally, the class
which the element x belongs will be considered the class that the
most of elements among the k neighbors belong
After the classification, when it is known a priori which class the
element x belongs, we can make a measure of error about the al-
gorithm, this measure can be a confusion table for example. The
idea is to show the two types of error that the classification algo-
rithm have presented. The first type of error (Error Type I – false
positive, incorrect rejection of a true null hypothesis) is when the
algorithm classified an element of a given class as not belonging to
this class, and the second type (Error Type II – false negative, incor-
rect not rejection of a false null hypothesis) is when the algorithm
classify an element as belonging to a given class, but in reality this
element does not pertain to this class. For example, suppose you
have an arrangement of 100 elements to classify and 50 elements
of this arrange belongs to the class Wx. The other half belong to
other classes in the universe U . Suppose that the algorithm classify
40 elements (of the 50 elements of the class Wx) that belong to the
class Wx and 10 other elements to other class. The other elements
that do not belong to the class Wx the algorithm classifieds 45 to
others class in the universe U and 5 to the class Wx. A confusion
table for this classification is presented in the Table 1.

Table 1. : Confusion Table for the showing the error about a classification
using k-NN algorithm.

Classified Data

Wx Wx

Real Data Wx 40 10

Wx 5 45

According to the Table 1 the error type II (false negative) was
10/100 or 10%, what means the classifications that the algorithm
did for the other class Wx, but the elements in fact belonged to the
class Wx . The error type I (false positive) for this example was
5/100 or 5%, what means the number of elements classified as Wx

that does not belongs to this class divided by the amount of ex-
periments. The total error of this example is the sum of the error
type I and the error type II, what is 15/100 or 15% of error in the
classification.

3. METHODOLOGY
This article shows an approach to autofill CAPTCHA from
some website following a set of steps. These steps are: collect
CAPTCHA images from the target website, processing the image,
make a clusterization dividing similar characters into clusters, give
a label to each cluster and then correctly classify the characters
in the CAPTCHA in order to autofill this component for automate
some process.
To demonstrate how the methodology of this proposal works it will
be shown an example of CAPTCHA auto-fill through the steps in-
volved in this approach. The website used in this example has law-
ful transactions where anyone can have access only providing a
correct key. Initially the algorithm download many CAPTCHA im-
ages to define the CAPTCHA alphabet, this images are in the way

3



International Journal of Computer Applications (0975 - 8887)

Volume 170 - No.2, July 2017

(a) fig I (b) fig II

(c) fig III (d) fig IV

Fig. 3: Steps of image’s pre-processing.

that the user visualize when the website is charged. The Figure 3.(I)
is an example of image that was download from this website. In or-
der to discover how many charterers this CAPTCHA present was
download around 2000 CAPTCHAs. After processing these images
the algorithm find the number of elements in the CAPTCHA and
the alphabet. For the analyzed studied case, the algorithm find out
that the CAPTCHA always had four elements and the elements be-
longs to an alphabet of 19 characters, they are: 2, 3, 4, 5, 6, 7, 8, b,
c, d, e, f, g, m, n, p, w, x and y. When the algorithm establishes the
alphabet it make a cluster to each element and start to increase the
database processing the images and adding elements to the clusters
of the characters. As much character the cluster have, better is the
algorithm classification. However, if there is too many characters
in the clusters it is possible that the algorithm run slowly. For these
experiment each cluster had around 100 examples of the characters.
The process for auto-fill CAPTCHA has two main phase: the pro-
cessing and the classification. The processing phase has four steps:
take the image, convert in gray scale, remove blank spaces and slice
the image (here, the number os CAPTCHA elements is discovered).
The Figure 3 shows the results of the steps to this phase.
The Figure 3.(I) shows how the target CAPTCHA is when it is
download from the website. The first effort in order to process the
image is put it in gray scale. Initially, the algorithm converts the
image to jpg format where each pixel of the image has one value
between 0 and 255 for one shade of red, green and blue (RGB). Af-
ter convert this image, the algorithm change the value of the RGB
for each pixels from the image following the rule: for any value of
green, red or blue which is greater than 60 this pixel is converted
in white pixels, in other words its RGB is converted to (255, 255,
255); otherwise, this pixel is converted in a black pixel and its RGB
will be (0, 0, 0). This first transformation can be noticed in the Fig-
ure 3.(II), where in a short comparative the gray background and
the lines that difficult the visualization of the image were removed.
After the image be converted in gray scale, the algorithm aim to
remove, the blank spaces of the gray background. It is important
remove these spaces because the objective is to check the charac-
ters that are present in the image and these blank spaces does not
provide any relevant information. In order to do that it is made a
horizontal search in the image to find the first horizontal pixel that
is not white, it means the first pixel with RGB distinct to (255,
255, 255), so it is established the first pixel of the new image. This
process is repeated backwards and is obtained the last horizontal
picture of the image. A similar process is used in the vertical way
of the image, first vertical top to down and is set the new start point
of the image and after backwards to get the last vertical point of the
image. With these new points is necessary just an execution of a
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Fig. 4: Histogram of the withe pixels in the vertical lines of the typical
treated CAPTCHA image.

cut function passing the new start points as parameters to have the
image with no blank spaces as showed in Figure 3.(III).
The last step is slice the image. This step is the most complex in
the process. Usually, in text-based CAPTCHAs, the characters are
not spaced in the same regions, and sometimes they are overwriting
other characters. The basic idea is adopt an heuristic that look for
the concentration of white points in each vertical line of the image.
Therefore, the concentration of white points in each vertical line
of the image is stored in a vector. With this vector, it is possible
to make a histogram of the withe pixels where each vertical line
is a bin. Therefore, analyzing the maximums of this histogram and
the distance between two adjacent maximums is possible infer the
number of CAPTCHA elements and where is the localization of
each line division between two consecutive elements. In the exam-
ple of the Figure 3, the target CAPTCHA has four elements and
tree division lines. The three bigger points in this vector histogram
indicate a huge concentration of white pixels which leads to a great
probability that this line is a space between two characters (or ele-
ments). With the three larger points in this vector is possible to split
the Figure 3.(III) in four characters as showed in the Figure 3.(IV).
The distribution of the white pixels of the Figure 3.(III) is:

vector = [[40, 34, 35, 32, 28, 31, 33, 32, 32, 33, 32,
32, 33, 34, 34, 25, 18, 18, 18, 19, 30, 40, 42, 42, 42,
42, 40, 36, 30, 31, 33, 34, 33, 33, 34, 33, 35, 34, 33,
31, 34, 38, 38, 37, 34, 32, 29, 33, 33, 34, 33, 34, 34,
33, 34, 33, 32, 33, 32, 31, 34, 30, 31, 32, 31, 30, 32,
38, 41, 42, 42, 42, 42, 42, 42, 42, 42, 41, 40, 37, 35,
34, 35, 36, 32, 32, 32, 31, 29, 29, 25, 26, 35, 37]

where the three underlined numbers are used to cut the image.The
histogram of the vector can be viewed in the Figure 4, where the
dashed lines indicate where the image was cut, defining each one
of the CAPTCHA elements.
However, due the variant number of blank lines separating two
characters, this heuristic sometimes does not works. The key point
in this step is after get the first cut point, the next one should be
at least 10% of the picture’s size more forward than the previous
cut point. This additional rule avoid take two cut points close in
the vector. The selected cut points for the Figure 3.(III) are the po-
sitions 23, 42 and 70 of vector. Adopting this strategy over 80%
of the target CAPTCHAs are sliced in the right space, generating
to this specific CAPTCHA four images each one with only one
character. Lastly, each generated image is processed into a resize
algorithm for all of them have the same dimension.
The other phase to autofill the CAPTCHA is classify the character
using the k-NN algorithm. The k-NN algorithm was chosen among
the classification algorithms because its simple implementation
associated to its fast run time. In the algorithm’s execution, first
the k-Means algorithm [4] was applied to create the clusters of
the processed CAPTCHA elements images. For each one of these
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Table 2. : Error rate for different values of k

K value Total Hits for each interaction - Test set Mean Classification

1 2 3 4 5 6 7 8 9 10 Error Rate

88 121 119 126 137 123 125 135 118 126 125 0.3394

44 133 134 126 146 131 139 144 137 142 134 0.2810

22 145 149 146 157 146 146 154 145 154 146 0.2168

10 160 157 154 164 154 158 163 152 152 166 0.1684

8 163 161 156 171 159 159 166 158 157 165 0.1500

7 159 157 157 173 161 159 165 160 155 164 0.1526

5 161 156 161 169 164 164 160 156 152 164 0.1542

2 173 163 167 177 168 173 169 156 166 167 0.1163

1 180 173 174 183 175 184 178 171 173 179 0.0684

clusters is associated a representing character. Each cluster has
around 100 examples of characters image. All these clusters will be
the universe of the k-NN. Once the universe was established, the
number k of neighbors is defined. The number k was set initially
as
√

(100 ∗ 19) ' 44, according some authors recommendations
[4]. Subsequently the character that is being classified is measured
with all the other elements in the universe by the Euclidean
distance (p = 2 in the Equation (1)). The 44 elements that have the
smallest distance are going to be the neighborhood of the character
which is being classified. Finally, the element is classified to the
class that appear more in the neighborhood. Taking an example to
try classified the character g in the Figure 3.(IV) using the same
parameters and the Euclidean distance, the neighborhood of the g
is: neighborhood(g) = [4, 4, 4, 6, 6, 6, 6, c, c, d, d, d, d, d, d, d, d,
d, e, e, e, f, g, g, g, g, g, g, g, g, g, g, g, g, g, g, g, g, n, n, n, n, n, p]

For this vector is possible to notice that the dominant class is g with
around 36% of occurrence in all the vector. Therefore for this char-
acter and under these conditions the algorithm correctly classified
the character.

4. EXPERIMENT
In order to evaluate the algorithm’s efficiency was performed an ex-
periment for classify some characters collected in the same website
analysed in the Section 3. The universe of the experiment con-
tain 19 classes, each one representing one character in the alpha-
bet of the target CAPTCHA. For each class were collected 100
examples of characters. The value of the k was chosen by an ex-
periment where was verified which value minimize the error rate
of the algorithm. In this experiment were tried 9 different values
of k for 10 different experiments, where the method of resampling
called bagging was applied. The bagging [4], whose name is de-
rived from bootstrap aggregation, uses multiple versions of a train-
ing set. Here, the characters images set has 1900 members (100
images for each character). It was created randomly 10 training
subsets from this original set, where each training subset was com-
posed by 90% of the images for each character, totalizing 1710 im-
ages (90 images for each character). For each one of theses 10 sub-
set, the respective 10% of data not used were employed to test the
classification performance of the classifier. The idea about take the
average of the error rate comes from bagging experiments, where it
is expected that more than one sample will conduct to a result more
accurate once. The Table 2 shows the total hits associate to differ-
ent values for k in the 10 experiments and the mean classification
error associate to each value of k for the test set (190 images, 10
images for each one character).

According with the Table 2 is possible to verify that the value of
k achieves the minimum error rate when it is equal to 1. When k
is equal to 1, the k-NN algorithm is a special case called Parzen
Window, according to Duda [4]. This error rate is obtained by the
average of errors of all the experiments. The average error in the
10 experiments was approximately 6.8% when k = 1. This clas-
sification error is for a single character. Therefore, since the target
CAPTCHA has 4 characters, the probability to classify correctly
a sequence of 4 characters is (1 − (6.8/100))4 ∗ 100 = 75, 31 ≈
75%, i.e. on average, for each 4 attempts to resolve the CAPTCHA,
3 attempts obtain success. With this classification error rate, the
proposed methodology has a classification performance similar to
many others classification methods applied to CAPTCHA recog-
nize. However, the proposed methodology is much simpler when
compared with those papers (Section 1), presenting a computa-
tional cost in time very low and a quick computational implemen-
tation.
As informed in Section 3, the metric used to check the distance be-
tween the points were the Euclidean distance (p = 2 in the Equa-
tion (1)). The experimental configuration, like the division of 90%
– 10% of the data to training and testing, the experiments num-
bers (10 experiments), were chosen after some investigation of arti-
cles in the literature about decipher CAPTCHAs. Having this prior
knowledge the experiment was planned to try classify 10 characters
of each class obtained from the target CAPTCHA (the test set). For
this experiment, all the 10 characters were randomly chosen as the
target website provide it. These steps basically consist in use the k-
NN algorithm to classify each character and classify to which class
this character belongs. The Table 3 shows the confusion table of the
generated classifier based on k-NN algorithm, where the real data
are in the lines and the classified data are in the columns, in same
sense of the Table 1.

Table 3. : Confusion table about the error of the algorithm

2 3 4 5 6 7 8 b c d e f g m n p w x y

2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 0 0 0 0 8 1 0 0 0 0 1 0 0 0 0 0

c 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0

d 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0 2 0 8 0 0 0 0 0 0 0 0

f 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0

g 0 0 0 0 0 2 0 0 0 1 0 0 7 0 0 0 0 0 0

m 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0

n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0

p 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0

w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0

x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

y 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 8

From the Table 3 is possible to check the error of the classifica-
tion by grouping the misclassification that appears in the line of the
characters that does not make part of the same class. For example
taking the character e, in this simulation, the algorithm classified 8
for the actual class that the elements belong and classified others
2 to other class. These information leads us to know that the error
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associated with the algorithm to the character e is the misclassifica-
tion divided by the total number of classifications what for this case
is 2/10 = 20%. Furthermore, it is observed that 13 of the 19 char-
acters were optimally classified. Thus, there are misclassification
only in 6 characters, or 31,6% of the CAPTCHA generator alpha-
bet. The average error associate to the classification algorithm to
all the characters is 6.8%, as reported previously, implying that the
algorithm proposed hits, approximately, about three CAPTCHAs
in each four attempts. The experiment was conducted in a standard
computer (with a 2.2GHz Intel Core i5 CPU and 4 GB RAM). The
total time to run the processing and the classification was in average
16 seconds for each attempt to decipher the target CAPTCHA.

5. CONCLUSION
This article showed an automatized process to fill a CAPTCHA of
any website used often by someone, which presents: low comput-
ing cost, fast implementation and an equivalent classification error
when compared with many others articles.
Based on the results of the experiments, was exposed that it is pos-
sible to automatize a system that can use a simple machine learning
algorithm and classify with a good margin of error the character.
The algorithm correctly decipher about 75% of the CAPTCHAs,
what is a good hit rate when compared with results of previews
works, as for example Gao et al. [6] and Hussain et al. [8].
As observed in the Table 3, the confusion table of the proposed
classifier, some characters have an individual classification error
and other characters have not misclassification. However, during
the execution of the experiments was also observed that this con-
figuration of which character has or has not misclassification is de-
pendent of the k value. In this way, as further work, an investigation
is necessary, in order to decrease the classification error, to propose
a methodology to combine distinct classification models based on
k-NN algorithm.
Due the simplicity and the fast run time of the algorithm associated
with the use in an automatized system, this approach can be well
applied in a context of trial and error to get information. Many ap-
plications need information, sometimes in real time, from websites
and some of these web services uses some security mechanisms as
CAPTCHAs. Therefore to all these applications which try to have
an automatic interaction with websites the presented approach is
well recommended.
Finally, as an ethic consensus, the proposed approach is dedicated
to system that needs to automate a lawful operation. The target
website, used in the example allows the access of the content. The
information in this website is of public domain. Therefore, these
ethics conditions were employed for the work proposed here, where
there was no illegal action during the article’s production. Finally
is expected that the information in this article can support anyone
who need a simple and efficient way to auto-fill CAPTCHAs.

Acknowledgements
The authors would like to thank UFRPE (Universidade Federal Ru-
ral de Pernambuco) for provide the necessary physical support to
this research’s developing. Also we would like to thank FACEPE
(Fundação de Amparo a Ciência no Estado de Pernambuco) for the
financial support to produce this research.

6. REFERENCES

[1] Karmand Abdalla and Mehmet Kaya. An evaluation of dif-
ferent types of captcha: Effectiveness, user-friendliness and

limitations. International Journal of Scientific Research in In-
formation Systems and Engineering (IJSRISE), 2(3), 2017.

[2] Elie Bursztein, Matthieu Martin, and John Mitchell. Text-
based captcha strengths and weaknesses. In Proceedings of
the 18th ACM conference on Computer and communications
security, pages 125–138. ACM, 2011.

[3] Kumar Chellapilla, Kevin Larson, Patrice Y Simard, and
Mary Czerwinski. Building segmentation based human-
friendly human interaction proofs (hips). In 2nd Interna-
tional Workshop on Human Interactive Proofs, pages 1–26.
Springer, 2005.

[4] Richard O Duda, Peter E Hart, and David G Stork. Pattern
classification. John Wiley & Sons, 2012.

[5] Jeremy Elson, John R Douceur, Jon Howell, and Jared Saul.
Asirra: a captcha that exploits interest-aligned manual image
categorization. In ACM Conference on Computer and Com-
munications Security, volume 7, pages 366–374, 2007.

[6] Haichang Gao, Jeff Yan, Fang Cao, Zhengya Zhang, Lei Lei,
Mengyun Tang, Ping Zhang, Xin Zhou, Xuqin Wang, and Ji-
awei Li. A simple generic attack on text captchas. In Net-
work and Distributed System Security Symposium (NDSS),
San Diego, USA, 2016.

[7] Philippe Golle. Machine learning attacks against the asirra
captcha. In Proceedings of the 15th ACM conference on Com-
puter and communications security, pages 535–542. ACM,
2008.

[8] Rafaqat Hussain, Hui Gao, and Riaz Ahmed Shaikh. Segmen-
tation of connected characters in text-based captchas for in-
telligent character recognition. Multimedia Tools and Appli-
cations, pages 1–15, 2016.

[9] Rafaqat Hussain, Kamlesh Kumar, Hui Gao, and Imran Khan.
Recognition of merged characters in text based captchas.
In Computing for Sustainable Global Development (INDIA-
Com), 2016 3rd International Conference on, pages 3917–
3921. IEEE, 2016.

[10] H. KardanMoghaddam. Proposing an algorithm for convert-
ing published and handwritten texts to captcha by using image
processing. In 2016 Eighth International Conference on In-
formation and Knowledge Technology (IKT), pages 170–176,
Sept 2016.

[11] R Muralidharan and C Chandrasekar. Object recognition us-
ing svm-knn based on geometric moment invariant. Interna-
tional Journal of Computer Trends and Technology-July to
Aug, (2011):215–220, 2011.

[12] Moni Naor. Verification of a human in the loop or identifi-
cation via the turing test. Unpublished draft from http://www.
wisdom. weizmann. ac. il/˜ naor/PAPERS/human abs. html,
1996.

[13] Sonal Paliwal, Rajesh Shyam Singh, and Mandoria H. L. A
survey on various text detection and extraction techniques
from videos and images. International Journal of Computer
Science Engineering and Information Technology Research
(IJCSEITR), 6:1–10, 2016.

[14] V Premanand, A Meiappane, and V Arulalan V Arulalan. Sur-
vey on captcha and its techniques for bot protection. Interna-
tional Journal of Computer Applications, 109(5):1–4, 2015.

[15] Ved Prakash Singh and Preet Pal. Survey of different types
of captcha. International Journal of Computer Science and
Information Technologies, 5(2):2242–2245, 2014.

6



International Journal of Computer Applications (0975 - 8887)

Volume 170 - No.2, July 2017
[16] S. Sivakorn, I. Polakis, and A. D. Keromytis. I am robot:

(deep) learning to break semantic image captchas. In 2016
IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 388–403, March 2016.

[17] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John
Langford. Captcha: Using hard ai problems for security. In
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 294–311. Springer, 2003.

[18] Jeff Yan and Ahmad Salah El Ahmad. Breaking visual
captchas with naive pattern recognition algorithms. In Com-
puter Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 279–291. IEEE, 2007.

[19] Jeff Yan and Ahmad Salah El Ahmad. A low-cost attack on
a microsoft captcha. In Proceedings of the 15th ACM confer-
ence on Computer and communications security, pages 543–
554. ACM, 2008.

[20] Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra
Malik. Svm-knn: Discriminative nearest neighbor classifica-
tion for visual category recognition. In 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’06), volume 2, pages 2126–2136. IEEE, 2006.

[21] Wolfhart Zimmermann. The power counting theorem
for minkowski metric. Communications in Mathematical
Physics, 11(1):1–8, 1968.

7


	Introduction
	Theoretical foundation
	CAPTCHA
	K-NN

	Methodology
	Experiment
	Conclusion
	References

