
International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

31

An Improved Frame Level Redundancy Scrubbing

Algorithm for SRAM based FPGA

O. E. Haruna

Centre for Satellite Technology
Development, National Space
Research and Development

Agency Abuja, Nigeria.

K. A. Abubilal
Electrical and Computer
Engineering Department,
Ahmadu Bello University

Zaria, Nigeria.

A. T. Salawudeen
Electrical and Computer
Engineering Department,
Ahmadu Bello University

Zaria, Nigeria.

ABSTRACT
The use of Static Random Access Memory (SRAM) based

Field Programmable Gate Array (FPGA) in critical

applications has been considered a solution in space and

avionics domain due to its flexibility in achieving multiple

requirements such as re-programmability and good

performance. However, SRAM-based FPGAs are susceptible

to radiation induced Single Event Upset (SEU) that affects the

functionality of the implemented design. Therefore, an

improved Frame Level Redundancy (FLR) algorithm that uses

Cyclic Redundancy Check (CRC) as an error detection

technique for configuration memory scrubbing, is developed

as a solution to mitigate SEU through upset detection and

correction. Fault injection was performed on FPGA

configuration memory frames on different number of modules

to emulate SEU. The improved FLR algorithm was

implemented and system level simulation was carried out

using MATLAB. The performance of the improved FLR

algorithm was compared with that of the existing FLR

algorithm using error correction time and energy consumption

as metrics. The results of this work showed that the improved

FLR algorithm produced 31.6% improvement in error

correction time and 61.1% improvement in energy

consumption over the existing FLR algorithm.

Keywords
FPGA, SRAM, Scrubbing, FLR, SEU, configuration memory,

logic bit(s).

1. INTRODUCTION
SRAM FPGAs are complementary metal oxide semiconductor

(CMOS) devices with special characteristic of re-

configurability making them desirable for use in systems with

evolving technology [1]. The use of FPGAs have been shown

to provide high computational density and efficiency for many

computing applications by allowing circuits to be customized

to any application of interest. They are attractive to critical

applications due to their high performance, power

consumption, and reconfiguration capability [2], and can be

re-configured in the field, design updates can be performed

while the device is still operational. Compared to application

specific integrated circuits (ASICs), whose functions cannot

be altered after fabrication, SRAM-based FPGAs have the

advantage of being reprogrammed and providing a lower cost

per device in small quantities, therefore, there is great interest

in exploiting these benefits in space and other radiation

environments [3]. Configurable FPGAs are better alternative

for application specific processing in space based applications

because of their flexibility and in-system re-programmability,

also FPGAs are versatile devices that allow a function to be

implemented by mapping it into the FPGA’s pre-existing logic

resources. The mapping is referred to as its configuration [4].

In SRAM based FPGAs, the mapped circuit is totally

controlled by the configuration memory which is composed of

SRAM cells [5]. A modern generation FPGA have tens of

thousands to millions system gates, with hundreds of millions

of configuration bits, dominating the SRAM cells in the

device [6].

While SRAM-based FPGAs offer several advantages for

critical based operations, they are sensitive to SEUs. Thus,

when a fault changes the state of an SRAM cell, this event is

referred as SEU [7]. In other words, SRAM-based FPGAs are

more prone to soft errors since a radiation strike in a

configuration memory has a permanent effect on the

functionality of the mapped design [8]. The SRAM-based

FPGAs are especially sensitive to SEUs within the

configuration memory of the device. The configuration

memory defines the operation of the configurable logic blocks

(CLBs), routing resources, input-output blocks (IOBs), and

other FPGA resources and upsets in the configuration memory

can change the operation of the circuit. To ensure proper

operation SRAM-based FPGA circuit designs must mitigate

against any configuration memory SEU which could alter the

design. Several techniques have been proposed to make

designs reliable in the presence of event upsets. Triple

modular redundancy (TMR) is a technique used to provide

design hardening [9].

The configuration memory of SRAM-based FPGAs is

arranged into segments called “configuration frames”, and this

represents the largest portion of the memory cells in the

device. Some factors that increase the susceptibility to soft

errors are the reduction of the transistor size and the lower

voltage operations of these SRAM memory cells [1].

Technology scaling leads to an increase in memory density as

well as the probability of SEUs and MBUs in adjacent bits due

to particle strike. Soft errors (reversible errors) can be

generally tolerated in consumer electronics, but can have

adverse effects in mission-critical applications using SRAM-

based FPGA [10]. Soft errors in the configuration memory

bits of SRAM based FPGAs have a persistent effect and they

remain until the original configuration is rewritten [1].

The presence of high energy protons, heavy ions, and galactic

cosmic rays in the space and other radiation environment

cause a number of problems for electronics, including FPGAs.

This radiation can induce a number of negative effects

including upsets in the internal state of the device, and can

cause several problems in FPGA-based systems. As

mentioned earlier, SEUs can corrupt the configuration

memory of the device causing the design configured on the

device to operate incorrectly [11]. A commonly used method

to remove configuration errors is by periodic refresh of the

configuration data. This is known as configuration scrubbing.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

32

New technologies provide increasing support for

configuration scrubbing [12]. Soft error mitigation is crucial

for systems operating in harsh environments with high levels

of cosmic radiation. Energetic particles generate charge as

they traverse the semiconducting materials which gets

deposited inducing voltage transients to the interconnected

nodes. [10]. Fault masking techniques such as Triple Modular

Redundancy (TMR) are used to improve the radiation

tolerance of circuits implemented in SRAM-based FPGAs.

Still, it is necessary to avoid bit upset accumulation in the

configuration memory with a correction mechanism to

increase the reliability of the circuit [2].

2. LITERATURE REVIEW
In [2] the authors proposed an FLR scrubbing technique to

mitigate SEU, the technique is based on the principle of TMR,

where the scrubber executes a bit level voting without a

separate scheme to detect SEUs. Authors in [6] proposed a

Duplication With Recovery (DWR) technique to correct soft

error in an FPGA configuration memory for bits meant for

routing resources, which contribute to the majority of soft

errors in FPGAs and are most vulnerable to single event upset

because they consume most area and seventy to ninety percent

of the configuration bits are attributed to the routing resources.

In [8] the authors proposed a scrubbing scheme which

reconstructs erroneous configuration memory frame based on

the concept of erasure codes. The erasure codes recovers the

original frame when some of the bits are flipped. The work

employs a low-cost interleaved two-dimensional (I2D) parity

technique to detect MBUs in the configuration memory

frames of the FPGA, once an error is detected by assuming

that the erroneous frame is erased, its contents are

reconstructed using an erasure code by computing an

exclusive-OR operation of all bits in the temporary block that

was initialize with zero bits by the recovery unit, thus, the

temporary block is written into the erroneous frame. Authors

in [12] presented an approach to build Partial TMR circuits for

FPGAs using approximate logic circuits. The work presented

a TMR circuit where the two redundant copies are built as an

over approximated and under approximated copy of the

original copy, whereby the approximate logic circuit performs

a possibly different but closely related logic function, so that it

can be used as a fault tolerant technique to mask error where it

overlaps with the original circuit. Then, Partial TMR can be

implemented by voting among approximate logic circuits

instead of exact copies of the original circuit. [13] presented

an error detection technique called Duplication with Compare

(DWC) where the FPGA bitstream was duplicated together

with the signal nets for a full duplication operation to provide

the greatest coverage for error detection and the redundant

copy is stored in an external radiation memory, and

comparator insertion for external system was deployed to

compare with the golden copy and if any discrepancy is

detected the comparator signals an error flag. Authors in [14]

proposed an approach that makes FPGA devices able to self-

repair SEU, whereby detection and correction are performed

inside the FPGA chip by exploiting the internal readback port

for an integrity check of the configuration memory using an

error detection and correction (EDAC) Circuit. The EDAC

codes are internally pre-computed and stored in each sensitive

frame and compared to the corresponding golden reference

stored in the EDAC code memory. In [15] the authors

proposed a shifted scrubbing technique whenever an error

occurs the scrubber starts scrubbing the associated partition

where the critical bits in the configuration memory are flipped

after they are been detected. The concept explored in this

work was that scrubbing does not need to start at the first

configuration memory frame since different regions have

different concentrations of critical bits, one can find the

optimum starting frame that has more upset in the region with

high number of critical bits that also minimizes the time to

repair, since the work was partitioned based on the sensitivity

of the bits representing the mapped design. In [16] presented a

technique where a dual redundancy alongside with CRC was

used to mitigate SEU. A reference FPGA was used for

comparison with the test FPGA and the CRC module encodes

and decodes data for error detection purposes.

Authors in [17] proposed a novel hybrid configuration

scrubbing for the Xilinx 7-Series FPGAs by exploiting the on-

chip frame Error Correction Code (ECC). A dedicated non-

configurable logic is built into the FPGA to compute a check

word for each frame during configuration readback process

for single bit error detection where the internal ECC circuitry

computes the location of the error and corrects the upset. To

detect error multi-bit error, a global CRC is provided for the

entire set of frames, and a CRC is recomputed during each full

scan of the configuration memory and compared against an

internal global CRC. If a multi-bit error occurs that is not

detected by the individual frame ECC, the recomputed CRC

will differ from the global CRC signifying that an undetected

error exists somewhere in the configuration memory.

From above it is evident that SEUs in the configuration

memory of SRAM-based FPGA operating in radiation

environment has been a challenge, and meaningful research

attention has been given to mitigate this effect through various

techniques to ensure data integrity. Therefore an improved

FLR scrubbing algorithm for SRAM based FPGA has been

developed. The algorithm reduced the time required to

mitigate SEUs which will lead to quick recovery and reduced

energy consumption. This implies that the algorithm ensures

and guarantee the reliability of the entire system, especially in

critical application such as space technology where reliability

is paramount.

2.1 Single Event Upset
SEU is a form of Single Event Effects (SEE) which are

change of logic states or transients in a device induced by

energetic radiation particles from the environment in which

the device is operated. A single event upset is the change in

state of a digital memory element caused by high energy

particle such as protons, neutrons, or heavy ions. If the

ionizing particle passes from one node to another, and the

charge is greater than the device specific critical charge,

(critical charge is defined as the minimum amount of charge

to flip the data stored in a memory element [18]), this charge

transfer can change the voltage level of critical nodes within

the configuration memory cell of an FPGA such that the

improved voltage level reflects the opposite state of the cell

(that is changing a logic ‘‘1’’ to a logic ‘‘0’’ or a logic ‘‘0’’ to

a logic ‘‘1’’). The feedback nature of static latches will

preserve this new value and the original value will be lost [3].

A single bit flip can have significant consequences on FPGA

functionality and a serious impact on the design itself. For

example, a single bit flip in a flip-flop in the Configurable

Logic Block (CLB) or Look up Table (LUT) can change a

Boolean AND function to a different Boolean function, in

other words any bit-flip in the LUT may cause the logic

implemented by it to produce a faulty output as long as it is

not corrected. A single bit flip can also change the connections

in the FPGA’s routing network. The results of an SEU in an

FPGA’s configuration memory can be unpredictable [19].

Figure 1 demonstrates what may happen to the two-input

‘‘AND’’ gate. When upsets occur in the configuration

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

33

memory, the first configuration upset is a change in the

routing configuration data as shown in Figure 2 that

disconnects one input of the ‘‘AND’’ gate. The second

configuration upset as depicted in Figure 3 is a change in the

look up table content of the ‘‘AND’’ gate and modifies the

operation logic function (it no longer performs the ‘‘AND’’

function rather it now performs an “exclusive OR” function).

In both cases, upsets in the configuration memory change the

behavior of the circuit so that the circuit no longer performs

the function intended by the circuit designer.

0111010100001
0100010101010
1111000010101
1100101010100
0000000001111
0101010101010

1010101010111
0000011111100
0101010101011
1111001010100
0101010101010
1101010101010

01101010
10101010
01000101
11001010

10100101
00110011
11010100
01010100

010101
010101
010101

101011
001100
110011

1
 0

1
 0

LUT

User Flip-flop

Multiplexer

LUT

Multiplexer

User Flip-flop

Fig. 1 Configuration Memory Used to Specify Logic and

Routing [19]

0111010100001
0100010101010
1111000010101
1100101010100
0000000001111
0101010101010

1010101010111
0000011111100
0101010101011
1111001010100
0101010101010
1101010101010

01101010
10101010
01000101
11001010

10100101
00110011
11010100
01010100

010101
010101
010101

101011
001100
110011

1
 0

1
 0

LUT

User Flip-flop

Multiplexer

LUT

Multiplexer

User Flip-flop

Configuration Upset (routing changes)

Fig. 2 Upset in Routing [19]

0111010100001
0100010101010
1111000010101
1100101010100
0000000001111
0101010101010

1010101010111
0000011111100
0101010101011
1111001010100
0101010101010
1101010101010

01101010
10101010
01000101
11001010

10100101
00110011
11010100
01010100

010101
010101
010101

101011
001100
110011

1
 0

LUT

User Flip-flop

Multiplexer

LUT

Multiplexer

User Flip-flop

Configuration Upset (Logic changes)

1
 0

Fig. 3 Upset in Logic [19]

2.2 Cyclic Redundancy Check
Besides transferring data as quickly as possible, storage

systems have to maintain data integrity, assuring correctness

of storage data. Algorithms for data integrity becomes an

important component for such system. CRC as an error

detection mechanism that maintains data integrity and can be

used during readback process on each frame header storing

only the check word rather than the entire frame of the

configuration data [20, 21].

In the encoding process of an r-bit CRC, after selecting a fixed

generator polynomial G(x) having a degree r and M(x) is the

message word or data in the configuration memory. Therefore,

a multinomial is generated having k-bits of the configuration

memory data word with an appended r-bits redundancies. The

following steps are executed (Zhang & Ding, 2011):

A. Generating a multinomial by multiplying
n kX 

 with

 M x to give

 n kx M x
 (1)

B. Dividing  n kx M x
 by  G x results in a

quotient of  Q x and a remainder of  R x .

The degree of  R x must be smaller than the

degree of  G x , that is r.

The result of the division yields:

 

 
 

 

 

n kX M x R x
Q x

G x G x



  (2)

where:

  n kx M x
 is the encoded configuration memory

data

  R x is the remainder which is the CRC value.

  Q x is the quotient

Therefore, the encoded data can be expressed as:

       n kX M x G x Q x R x   (3)

The data in the storage device is the dividend and the

remainder becomes the result. Every bit in the storage device

requires one exclusive-OR (XOR) and one shift operation to

the left by degree of a polynomial minus one bit [22].

2.3 Power Consumption
Configuration memory scrubbing comes with power

consumed by the scrubber circuitry. This is because power

overhead is driven by the scrub or readback rate. Total power

consumption is composed by static and dynamic power. Static

power is related to the transistor leakage current and dynamic

power is related to the switching activity of transistors and its

value depends on the rate of switching. The static power

consumption can be considered negligible and the dynamic

power is the main contributor for the total power

consumption.

The total power consumption (PT) is the sum of the dynamic

power (PD) and Static Power (PS). The total power, static and

dynamic power is given equation 4, 5 and 6 respectively [23]:

 T D SP P P  (4)

S CC CCP V I  (5)

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

34

where:

 CCV is the voltage level

 CCI is the leakage current

2

1

n

D i i CC

i

P C fV


 (6)

where:

 n = number of toggling nodes

 i = switching activity

 iC = load capacitance of the node

 f = clock frequency

 ccV = transistor source voltage

Since all the transistors in an SRAM of an FPGA are turned

on independently to the design synthesized into the

configurable memory, it is expected that the static power of a

design is almost constant when compared to the total power

consumed of the device. In order to estimate the power

overhead of a TMR system implemented in an SRAM-based

FPGA, it is assume that the use of three modules will mainly

impact the dynamic power component [23].

3. DEVELOPED SCHEME
To the best knowledge of the researchers there is no known

single command capable of generating random binary array of

numbers MATLAB. A command (rand) capable of generating

random distribution of numbers with a mean of zero and

deviation of 1 do exist. However, since the FPGA

configuration memory consist of binary numbers (0 and 1) and

based on the numbers of SRAM cells in the FPGA module,

this random command was used with a limiting factor to

formulate an equation capable of generating the configuration

memory containing only random binary logics.

Therefore, the expression used to generate the configuration

memory is written as:

()nM     (7)

where:

 Mn is the modules array (n= 1, 2 and 3).

 is a random number generator (rand) in the range of 0

and 1,  was implemented as rand in the MATLAB script.

 is the FPGA configuration memory module dimension

which is an N by D binary matrix.

 is a limiting factor whose values ranges as 10 

 Higher value of  will lead to a logic matrix with more 1

and smaller value of  will lead to a logic matrix with more

0.

3.1 Fault Injection
With the information about the organization of the

configuration memory of the FPGA and the specific

commands sequence to read and write frames, any bit(s) of the

configuration memory can be flip thus emulating the effect of

SEU when the FPGA is exposed to radiation environment

such as space. For the purpose of this research, the fault

injected module is made user dependent.

3.2 Majority Voting Implementation
This technique relies on the generation of a Triple Modular

Redundancy (TMR) design to enable voting possible and

eliminating a scenario resulting to a split vote where the voter

will be unable to identify the correct bit(s) from the set of

bit(s) in the configuration memory frame. Therefore, majority

is the greater part or more than half of the total bits under

consideration which implies that it is a subset larger than any

other subset. In this work, the voting is realized using the

logical equation.

1 2 3

1 2 1 3length(m)

v 1 2

i 1

1 2 3 1

3 1

M (:,:), M (:,:), M (:,:)

if M (:,:) M (:,:) & M (:,:) M (:,:)

M M (:,:), M (:,:)

if M (:,:) M (:,:) & M (:,:) M (:,:)

then M (:,:) M (:,:)



 
 

 
 
 

  
  
 
  


 (8)

where,

 vM represent the voted module.

  is used for element by element voting.

 (:,:) is used for bit-level operation.

1 2,M M and 3M are the module whose elements needs to

be voted.

3.3 Energy Consumption
Since the energy consumed in the configuration memory

frame during readback and scrubbing rate depends on time,

therefore the following equation is used to compute the energy

[2].

Scrub_frame Scrubbing Scrub rateE P × t (9)

where:

Scrub_ frameE is the energy required to scrub the

configuration memory frames.

ScrubbingP is the power required to scrub the

configuration memory frames.

 Scrub ratet
 is the time taken to scrub the configuration

memory frames.

The power to scrub the configuration memory frame is given

by [2]

Scrubbing core coreP = V × I (10)

where:

 coreV is the internal supply voltage.

 coreI is the maximum current.

Figure 4 shows the implemented improved frame level

redundancy algorithm flow chart.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

35

Start

Generate and
Triplicate

Configuration
Memory

Check Cell in Frame
of the Configuration

Memory

Compute the CRC
for Frames and store

in Header = K

Compute CRC For
Frame of Configuration

memory 1 = J

Is J = k

Goto Frame 1

Round = Round + 1

Is Round Odd?

Round = 0

Is frame number
= Last frame?

Move to the Next Frame

Yes

 No

Yes

 No

Yes

No

Inject Fault to
Configuration

Memory

Perform bit-level
voting

End

4. RESULTS AND DISCUSSIONS

Table 1. Time and Energy Consumption for One Module Fault Injection

Virtex-5 FPGA

Number of module with fault 1

Specification

Voltage (V) 1.0

Current (A) 0.01

Number of

cells

Number

of

frames

Fault

Injection

matrix

Starting

and

Ending

cell

address

Starting

and

Ending

frame

address

Error

detection

time

(µsec.)

Error

correction

time

(µsec.)

Energy

to

scrub

frame(n

joules)

42 13 12,6 1,12 6,11 7.332 2.444 24.441

84 26 24,12 1,24 11,22 7.332 2.933 29.329

Fig. 4 Improved Frame Level Redundancy Scrubbing

Algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

36

126 39 36,18 1,36 16,33 7.332 3.422 34.218

168 52 48,24 1,48 21,44 7.121 3.911 39.106

210 65 60,30 1,60 26,55 7.121 5.377 53.771

252 78 72,36 1,72 31,66 7.333 7.319 73.185

294 91 84,42 1,84 36,77 7.333 8.108 81.076

336 104 96,48 1,96 41,88 7.114 9.288 92.878

378 117 108,54 1,108 46,99 7.114 11.732 117.320

420 130 120,60 1,120 51,110 7.333 13.689 136.870

Table 1 shows the results of error detection time, error

correction time and the energy consumed during the

scrubbing process when fault was injected in only one module

in the FPGA configuration memory for increase number of

frame and cell size of 13 and 42 respectively as well as

varying size location of injected fault. The number of

configuration memory cell was continuously increased by 42,

the configuration memory frame by 13 and fault injection

matrix size by 12,6 for every simulation run as shown in

Table 1 in other to investigate the pattern of the variation. The

voltage and current specification of virtex-5 FPGA was

obtained from FPGAs data sheet. The premise here is that two

or three module will not have fault injected at exactly the

same cell position with the same frame address within a scrub

cycle. For this to effectively hold, then one module only have

to be injected with fault.

Fig. 5 Error Detection Time versus Number of Frames for

One Module Fault Injection.

Figure 5 shows the graph of error detection time against

number of frame in a module, the graph was plotted using

MATLAB simulation environment from the simulation

parameters and results obtained in Table 1.

From Figure 5, it was observed that the time to detect error

(SEU) in the improved FLR was within the range of 7.114

and 7.333 micro seconds irrespective of the number of frames

in a module. As the number of frames increases from 13, 26,

39, 52, and 65 continuously as shown in Table 4.4, so also the

number of cells in a frame increases from 42, 84, 126, 168,

210 continuously, and the time to detect error is within the

range 7.114 and 7.333 micro seconds for a module. This is

because CRC is executed concurrently on the module frames

and a 16-bit CRC executed can sufficiently detect error in a

frame of virtex-5 FPGA. Therefore, irrespective of the

number of frames the detection time is approximately

constant.

Fig. 6 Error Correction time versus Number of Frames

for One Module Fault Injection.

From Figure 6, it can be seen that when the number of cells in

a frame and number of frames in a module increases, the time

taken to correct error also increases. This indicates that the

time it will take to scrub a module is dependent on the number

of injected fault and the size location of the fault injection.

Because as the location of the fault injected increases, the

time to scrub that area size also increases. As it was observed,

for a fault injection matrix size of 12,6 24,12 36,18 48,24

60,30 continuously, the error correction time from simulated

result were 2.444, 2.933, 3.422, 3.911, 5.377 micro seconds

respectively as shown in Table 4.4.

Figure 7, shows the bar chart for the energy consumed versus

number of frames in a module. The graph was plotted using

MATLAB simulation environment from the simulated

parameters and results obtained in Table 1.

Fig. 7 Energy Consumption versus number of frames for

One Module Fault Injection.

Figure 7 is the plot of energy consumed against number of

frames in one module with fault injection. It can be seen from

Figure 6 that as the time to scrub increases with increase in

the number of frames as well as increase in the number of

0 100 200 300 400 500

2

4

6

8

10

12

14

16

18

20

Number of Frames

E
rr

o
r

D
e
te

c
ti

o
n

 T
im

e
 (

µ
s
)

0 100 200 300 400 500
2

4

6

8

10

12

14

Number of Frames

E
rr

o
r

C
o

rr
e

c
ti

o
n

 T
im

e
 (

µ
s

)

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

37

error in one module. Likewise, the energy required to scrub

the modules increases as the number of frames and injected

fault also increases. This indicates that energy is a function of

time at constant power as shown in equation 9. Therefore, the

values obtained from Table 1 for energy to scrub frames is the

product of the error correction time with operating power of

the FPGA, where the power is the product of the FPGA

operating voltage and current as given in Table 1. It was

observed from the plot that as the number of frames in a

module increase from 13, 26, 39, the number of faults injected

also increases as the energy required to scrub also increases

from 24.44, 29.33, 34.22 Nano joules respectively.

However, in order to depict real life scenario, SEU can also

occur in any two modules (module 1 and 2, module 1 and 3,

module 2 and 3) or in all the three modules (module 1, 2 and

3). Therefore, in this work the FPGA keeps in memory the

original configuration of the test module for scenario where

the assumption for a good bit-level voting those not hold (that

is error will not occur in two or all the modules in the same

frame address and at exactly the same cell position in the

same scrub cycle), although this scenario is very unlikely to

occur considering the enormous configuration logic bit in the

FPGA and the stochastic nature of SEU.

Generally, it can be concluded that when fault was injected in

only two modules and in three modules for error detection

time, error correction time and energy consumption against

varying number of frames in a module, the same trend was

observed as when fault is injected in only one module.

However, the magnitude of error correction time and energy

consumption increases as the number of module with fault

increases from two to three. This is because the total number

of injected fault in the FPGA configuration memory

increases.

4.1 Performance Evaluation

Fig. 8 Comparison of Error Correction time versus

Number of frames in a Module for One Module Fault

Injection between Improved FLR and FLR.

In Figure 8, the bar chart shows the error correction time for

varying module size with 13, 26, 39, 52, 65, 78, 91, 104, 117

and 130 number of frames. The bars shows the comparison

between the Improved FLR and the existing FLR. It was

observed that when fault was injected on a module with

varying number of frames there was a reduction in the time

for the Improved FLR scrubbing algorithm to correct the

errors as compared to the FLR scrubbing algorithm. For the

same number of injected fault, the Improved FLR scrubbing

algorithm took 3.422 micro seconds to correct the error for a

module size with 39 frames (which is the module

configuration used by the author in [2]) while the FLR

scrubbing algorithm took 5 micro seconds. The percentage

improvement between Improved FLR and FLR is calculated

to be 31.6% using:

FLR - Improve FLR
Percentage improvement = * 100

FLR
 (11)

This implies that the Improved FLR scrubbing outperformed

the FLR scrubbing algorithm in the time taken to scrub

against SEU by 31.6%. The Improved FLR was also observed

to outperform the FLR for other module size.

Fig. 9 Comparison of Energy Consumption versus

Number of frames in a Module for One Module Fault

Injection between Improved FLR and FLR.

Figure 9 shows the result for comparison in terms of energy

consumption between Improved FLR and FLR scrubbing

algorithm. It is observed that for a module size of 39 frames

there was a reduction in the energy consumed to scrub the

module when Improved FLR scrubbing algorithm was used as

compared to the FLR. The percentage improvement between

Improved FLR and FLR is calculated to be 61.1% using

equation (11). Significant improvement was also achieved

when other module size was examine as it can be clearly seen

in Figure 8.

5. CONCLUSION
SEU has become a challenge in the configuration memory of

SRAM-based FPGA. How fast this problem is resolved is

critical in some applications as the process also impacts on the

energy consumed. In other to mitigate the challenge of SEU,

an improved FLR scrubbing algorithm has been developed

using Cyclic Redundancy Check (CRC) as an error detection

technique. This was developed on a MATLAB simulation

environment. The result obtained shows that when fault is

injected in one configuration memory module, the improved

FLR performed better than the FLR in terms of error

correction time and energy consumption by 31.6% and 61.1%

respectively. Further work can be focused on mitigating SEU

in the application layer as error in some logic resources may

propagate to the application layer without being detected by

the configuration memory readback.

6. ACKNOWLEDGEMENTS
The authors are grateful to the Computer and Control research

group of Ahmadu Bello University Zaria for their technical

and professional advice in the course of this work. Also, the

lead author wishes to thank his Organization National Space

Research and Development Agency for the opportunity to

obtain a Master’s Degree.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

38

7. REFERENCES
[1] Jorge, T., Kastensmidt, F., & Ricardo, R. (2015).

Analyzing the Effectiveness of a Frame-Level

Redundancy Scrubbing Technique for SRAM-based

FPGAs. IEEE Transactions on Nuclear Science, 62(6),

3080-3087.

[2] Tonfat, J., Fenanda, L. K., Paolo, R., & Ricardo, R.

(2015). Energy efficient frame-level redundancy

scrubbing technique for SRAM-based FPGAs. IEEE

Transactions on Nuclear Science, 62(6), 3080-3087.

[3] Wirthlin, M. (2015). High-Reliability FPGA-Based

Systems: Space, High-Energy Physics, and Beyond.

Proceedings of the IEEE, 103(3), 379-389.

[4] Berg, M., Poivey, C., Petrick, D., Espinosa, D., Lesea,

A., LaBel, K., . . . Phan, A. (2008). Effectiveness of

internal vs. external SEU scrubbing mitigation strategies

in a Xilinx FPGA: Design, test, and analysis. 1-8.

[5] Reorda, M. S., Sterpone, L., & Violante, M. (2005).

Efficient estimation of SEU effects in SRAM-based

FPGAs. Paper presented at the 11th IEEE International

On-Line Testing Symposium, IOLTS 2005 54-59.

[6] Jing, N., Zhou, J., Jiang, J., Chen, X., He, W., & Mao, Z.

(2015). Redundancy based Interconnect Duplication to

Mitigate Soft Errors in SRAM-based FPGAs. Paper

presented at the Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design,

764-769.

[7] Tambara, L. A., Tarrillo, J., Kastensmidt, F. L., &

Sterpone, L. (2016). Fault-Tolerant Manager Core for

Dynamic Partial Reconfiguration in FPGAs FPGAs and

Parallel Architectures for Aerospace Applications (pp.

121-133): Springer.

[8] Rao, P., Ebrahimi, M., Seyyedi, R., & Tahoori, M. B.

(2014). Protecting SRAM-

[9] Using erasure codes. Paper presented at the IEEE

Design Automation Conference (DAC), 2014 51st

ACM/EDAC, 1-6.

[10] Graham, P. S., Rollins, N., Wirthlin, M. J., & Caffrey,

M. P. (2003). Evaluating TMR Techniques in the

Presence of Single Event Upsets. 1-7.

[11] Eftaxiopoulos, N., Axelos, N., & Pekmestzi, K. (2016).

Low latency radiation tolerant self-repair reconfigurable

SRAM architecture. Microelectronics Reliability, 56,

202-211.

[12] Wirthlin, M. J., Keller, A. M., McCloskey, C., Ridd, P.,

Lee, D., & Draper, J. (2016). SEU Mitigation and

Validation of the LEON3 Soft Processor Using Triple

Modular Redundancy for Space Processing. Paper

presented at the Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays, 205-214.

[13] Sanchez, C. A., Entrena, L., & Garcia-Valderas, M.

(2015). Partial TMR in FPGAs Using Approximate

Logic Circuits. Paper presented at the 2015 15th

European Conference on Radiation and Its Effects on

Components and Systems (RADECS), Spain, 1-4.

[14] Jonathan, J., Howes, W., Wirthlin, M., McMurtrey, D.

L., Caffrey, M., Graham, P., & Morgan, K. (2008).

Using duplication with compare for on-line error

detection in FPGA-based designs. Paper presented at the

Aerospace Conference, 2008 IEEE 1-11.

[15] Lanuzza, M., Zicari, P., Frustaci, F., Perri, S., &

Corsonello, P. (2010). Exploiting self-reconfiguration

capability to improve SRAM-based FPGA robustness in

space and avionics applications. ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 4(1),

1-22.

[16] Nazar, G. L., Santos, L. P., & Carro, L. (2013).

Accelerated FPGA repair through shifted scrubbing.

Paper presented at the 2013 23rd International

Conference on Field Programmable Logic and

Applications (FPL), 1-6.

[17] Wang, P., Jiang, C., Li, Z., Xue, Q., & Tian, Y. (2014).

SEU Mitigation for SRAM Based on Dual Redundancy

Check Method. International Journal of Hybrid

Information Technology, 7(5), 191-200.

[18] Wirthlin, M., & Harding, A. (2016). Hybrid

Configuration Scrubbing for Xilinx 7-Series FPGAs.

FPGAs and Parallel Architectures for Aerospace

Applications (pp. 91-101): Springer.

[19] Jacobs, A., Cieslewski, G., George, A. D., Gordon-Ross,

A., & Lam, H. (2012). Reconfigurable fault tolerance: A

comprehensive framework for reliable and adaptive

FPGA-based space computing. ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 5(4),

1-30.

[20] Harward, N. A., Gardiner, M. R., Hsiao, L. W., &

Wirthlin, M. J. (2016). A fault injection system for

measuring soft processor design sensitivity on Virtex-5

FPGAs FPGAs and Parallel Architectures for Aerospace

Applications (pp. 61-74): Springer.

[21] Akagic, A., & Amano, H. (2012). A study of adaptable

co-processors for cyclic redundancy check on an FPGA.

Paper presented at the 2012 International Conference on

Field-Programmable Technology (FPT), 119-124.

[22] Battezzati, N., Sterpone, L., & Violante, M. (2011).

Reconfigurable Field Programmable Gate Arrays for

Mission-Critical Applications. New York: Springer.

[23] Akagić, A., & Amano, H. (2011). High speed CRC with

64-bit generator polynomial on an FPGA. ACM

SIGARCH Computer Architecture News, 39(4), 72-77.

[24] Tarrillo, J., & Kastensmidt, F. L. (2016). Power Analysis

in nMR Systems in SRAM-Based FPGAs. FPGAs and

Parallel Architectures for Aerospace Applications, 103-

119.

IJCATM : www.ijcaonline.org

