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ABSTRACT 
The use of Static Random Access Memory (SRAM) based 

Field Programmable Gate Array (FPGA) in critical 

applications has been considered a solution in space and 

avionics domain due to its flexibility in achieving multiple 

requirements such as re-programmability and good 

performance. However, SRAM-based FPGAs are susceptible 

to radiation induced Single Event Upset (SEU) that affects the 

functionality of the implemented design. Therefore, an 

improved Frame Level Redundancy (FLR) algorithm that uses 

Cyclic Redundancy Check (CRC) as an error detection 

technique for configuration memory scrubbing, is developed 

as a solution to mitigate SEU through upset detection and 

correction. Fault injection was performed on FPGA 

configuration memory frames on different number of modules 

to emulate SEU. The improved FLR algorithm was 

implemented and system level simulation was carried out 

using MATLAB. The performance of the improved FLR 

algorithm was compared with that of the existing FLR 

algorithm using error correction time and energy consumption 

as metrics. The results of this work showed that the improved 

FLR algorithm produced 31.6% improvement in error 

correction time and 61.1% improvement in energy 

consumption over the existing FLR algorithm. 

Keywords 
FPGA, SRAM, Scrubbing, FLR, SEU, configuration memory, 

logic bit(s). 

1.  INTRODUCTION  
SRAM FPGAs are complementary metal oxide semiconductor 

(CMOS) devices with special characteristic of re-

configurability making them desirable for use in systems with 

evolving technology [1]. The use of FPGAs have been shown 

to provide high computational density and efficiency for many 

computing applications by allowing circuits to be customized 

to any application of interest. They are attractive to critical 

applications due to their high performance, power 

consumption, and reconfiguration capability [2], and can be 

re-configured in the field, design updates can be performed 

while the device is still operational. Compared to application 

specific integrated circuits (ASICs), whose functions cannot 

be altered after fabrication, SRAM-based FPGAs have the 

advantage of being reprogrammed and providing a lower cost 

per device in small quantities, therefore, there is great interest 

in exploiting these benefits in space and other radiation 

environments [3]. Configurable FPGAs are better alternative 

for application specific processing in space based applications 

because of their flexibility and in-system re-programmability, 

also FPGAs are versatile devices that allow a function to be 

implemented by mapping it into the FPGA’s pre-existing logic 

resources. The mapping is referred to as its configuration [4]. 

In SRAM based FPGAs, the mapped circuit is totally 

controlled by the configuration memory which is composed of 

SRAM cells [5]. A modern generation FPGA have tens of 

thousands to millions system gates, with hundreds of millions 

of configuration bits, dominating the SRAM cells in the 

device [6].  

While SRAM-based FPGAs offer several advantages for 

critical based operations, they are sensitive to SEUs. Thus, 

when a fault changes the state of an SRAM cell, this event is 

referred as SEU [7]. In other words, SRAM-based FPGAs are 

more prone to soft errors since a radiation strike in a 

configuration memory has a permanent effect on the 

functionality of the mapped design [8]. The SRAM-based 

FPGAs are especially sensitive to SEUs within the 

configuration memory of the device. The configuration 

memory defines the operation of the configurable logic blocks 

(CLBs), routing resources, input-output blocks (IOBs), and 

other FPGA resources and upsets in the configuration memory 

can change the operation of the circuit. To ensure proper 

operation SRAM-based FPGA circuit designs must mitigate 

against any configuration memory SEU which could alter the 

design. Several techniques have been proposed to make 

designs reliable in the presence of event upsets. Triple 

modular redundancy (TMR) is a technique used to provide 

design hardening [9]. 

The configuration memory of SRAM-based FPGAs is 

arranged into segments called “configuration frames”, and this 

represents the largest portion of the memory cells in the 

device. Some factors that increase the susceptibility to soft 

errors are the reduction of the transistor size and the lower 

voltage operations of these SRAM memory cells [1]. 

Technology scaling leads to an increase in memory density as 

well as the probability of SEUs and MBUs in adjacent bits due 

to particle strike. Soft errors (reversible errors) can be 

generally tolerated in consumer electronics, but can have 

adverse effects in mission-critical applications using SRAM-

based FPGA [10]. Soft errors in the configuration memory 

bits of SRAM based FPGAs have a persistent effect and they 

remain until the original configuration is rewritten [1]. 

The presence of high energy protons, heavy ions, and galactic 

cosmic rays in the space and other radiation environment 

cause a number of problems for electronics, including FPGAs. 

This radiation can induce a number of negative effects 

including upsets in the internal state of the device, and can 

cause several problems in FPGA-based systems. As 

mentioned earlier, SEUs can corrupt the configuration 

memory of the device causing the design configured on the 

device to operate incorrectly [11]. A commonly used method 

to remove configuration errors is by periodic refresh of the 

configuration data. This is known as configuration scrubbing. 
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New technologies provide increasing support for 

configuration scrubbing [12]. Soft error mitigation is crucial 

for systems operating in harsh environments with high levels 

of cosmic radiation. Energetic particles generate charge as 

they traverse the semiconducting materials which gets 

deposited inducing voltage transients to the interconnected 

nodes. [10]. Fault masking techniques such as Triple Modular 

Redundancy (TMR) are used to improve the radiation 

tolerance of circuits implemented in SRAM-based FPGAs. 

Still, it is necessary to avoid bit upset accumulation in the 

configuration memory with a correction mechanism to 

increase the reliability of the circuit [2]. 

2.  LITERATURE REVIEW 
In [2] the authors proposed an FLR scrubbing technique to 

mitigate SEU, the technique is based on the principle of TMR, 

where the scrubber executes a bit level voting without a 

separate scheme to detect SEUs. Authors in [6] proposed a 

Duplication With Recovery (DWR) technique to correct soft 

error in an FPGA configuration memory for bits meant for 

routing resources, which contribute to the majority of soft 

errors in FPGAs and are most vulnerable to single event upset 

because they consume most area and seventy to ninety percent 

of the configuration bits are attributed to the routing resources. 

In [8] the authors proposed a scrubbing scheme which 

reconstructs erroneous configuration memory frame based on 

the concept of erasure codes. The erasure codes recovers the 

original frame when some of the bits are flipped. The work 

employs a low-cost interleaved two-dimensional (I2D) parity 

technique to detect MBUs in the configuration memory 

frames of the FPGA, once an error is detected by assuming 

that the erroneous frame is erased, its contents are 

reconstructed using an erasure code by computing an 

exclusive-OR operation of all bits in the temporary block that 

was initialize with zero bits by the recovery unit, thus, the 

temporary block is written into the erroneous frame. Authors 

in [12] presented an approach to build Partial TMR circuits for 

FPGAs using approximate logic circuits. The work presented 

a TMR circuit where the two redundant copies are built as an 

over approximated and under approximated copy of the 

original copy, whereby the approximate logic circuit performs 

a possibly different but closely related logic function, so that it 

can be used as a fault tolerant technique to mask error where it 

overlaps with the original circuit. Then, Partial TMR can be 

implemented by voting among approximate logic circuits 

instead of exact copies of the original circuit. [13] presented 

an error detection technique called Duplication with Compare 

(DWC) where the FPGA bitstream was duplicated together 

with the signal nets for a full duplication operation to provide 

the greatest coverage for error detection and the redundant 

copy is stored in an external radiation memory, and 

comparator insertion for external system was deployed to 

compare with the golden copy and if any discrepancy is 

detected the comparator signals an error flag. Authors in [14] 

proposed an approach that makes FPGA devices able to self-

repair SEU, whereby detection and correction are performed 

inside the FPGA chip by exploiting the internal readback port 

for an integrity check of the configuration memory using an 

error detection and correction (EDAC) Circuit. The EDAC 

codes are internally pre-computed and stored in each sensitive 

frame and compared to the corresponding golden reference 

stored in the EDAC code memory. In [15] the authors 

proposed a shifted scrubbing technique whenever an error 

occurs the scrubber starts scrubbing the associated partition 

where the critical bits in the configuration memory are flipped 

after they are been detected. The concept explored in this 

work was that scrubbing does not need to start at the first 

configuration memory frame since different regions have 

different concentrations of critical bits, one can find the 

optimum starting frame that has more upset in the region with 

high number of critical bits that also minimizes the time to 

repair, since the work was partitioned based on the sensitivity 

of the bits representing the mapped design. In [16] presented a 

technique where a dual redundancy alongside with CRC was 

used to mitigate SEU. A reference FPGA was used for 

comparison with the test FPGA and the CRC module encodes 

and decodes data for error detection purposes.  

Authors in [17] proposed a novel hybrid configuration 

scrubbing for the Xilinx 7-Series FPGAs by exploiting the on-

chip frame Error Correction Code (ECC). A dedicated non-

configurable logic is built into the FPGA to compute a check 

word for each frame during configuration readback process 

for single bit error detection where the internal ECC circuitry 

computes the location of the error and corrects the upset. To 

detect error multi-bit error, a global CRC is provided for the 

entire set of frames, and a CRC is recomputed during each full 

scan of the configuration memory and compared against an 

internal global CRC. If a multi-bit error occurs that is not 

detected by the individual frame ECC, the recomputed CRC 

will differ from the global CRC signifying that an undetected 

error exists somewhere in the configuration memory.  

From above it is evident that SEUs in the configuration 

memory of SRAM-based FPGA operating in radiation 

environment has been a challenge, and meaningful research 

attention has been given to mitigate this effect through various 

techniques to ensure data integrity. Therefore an improved 

FLR scrubbing algorithm for SRAM based FPGA has been 

developed. The algorithm reduced the time required to 

mitigate SEUs which will lead to quick recovery and reduced 

energy consumption. This implies that the algorithm ensures 

and guarantee the reliability of the entire system, especially in 

critical application such as space technology where reliability 

is paramount. 

2.1 Single Event Upset 
SEU is a form of Single Event Effects (SEE) which are 

change of logic states or transients in a device induced by 

energetic radiation particles from the environment in which 

the device is operated. A single event upset is the change in 

state of a digital memory element caused by high energy 

particle such as protons, neutrons, or heavy ions. If the 

ionizing particle passes from one node to another, and the 

charge is greater than the device specific critical charge, 

(critical charge is defined as the minimum amount of charge 

to flip the data stored in a memory element [18]), this charge 

transfer can change the voltage level of critical nodes within 

the configuration memory cell of an FPGA such that the 

improved voltage level reflects the opposite state of the cell 

(that is changing a logic ‘‘1’’ to a logic ‘‘0’’ or a logic ‘‘0’’ to 

a logic ‘‘1’’). The feedback nature of static latches will 

preserve this new value and the original value will be lost [3]. 

A single bit flip can have significant consequences on FPGA 

functionality and a serious impact on the design itself. For 

example, a single bit flip in a flip-flop in the Configurable 

Logic Block (CLB) or Look up Table (LUT) can change a 

Boolean AND function to a different Boolean function, in 

other words any bit-flip in the LUT may cause the logic 

implemented by it to produce a faulty output as long as it is 

not corrected. A single bit flip can also change the connections 

in the FPGA’s routing network. The results of an SEU in an 

FPGA’s configuration memory can be unpredictable [19]. 

Figure 1 demonstrates what may happen to the two-input 

‘‘AND’’ gate. When upsets occur in the configuration 
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memory, the first configuration upset is a change in the 

routing configuration data as shown in Figure 2 that 

disconnects one input of the ‘‘AND’’ gate. The second 

configuration upset as depicted in Figure 3 is a change in the 

look up table content of the ‘‘AND’’ gate and modifies the 

operation logic function (it no longer performs the ‘‘AND’’ 

function rather it now performs an “exclusive OR” function). 

In both cases, upsets in the configuration memory change the 

behavior of the circuit so that the circuit no longer performs 

the function intended by the circuit designer. 
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Fig. 1 Configuration Memory Used to Specify Logic and 

Routing [19] 
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Fig. 2 Upset in Routing [19] 
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Fig. 3 Upset in Logic [19] 

2.2 Cyclic Redundancy Check 
Besides transferring data as quickly as possible, storage 

systems have to maintain data integrity, assuring correctness 

of storage data. Algorithms for data integrity becomes an 

important component for such system. CRC as an error 

detection mechanism that maintains data integrity and  can be 

used during readback process on each frame header storing 

only the check word rather than the entire frame of the 

configuration data [20, 21]. 

In the encoding process of an r-bit CRC, after selecting a fixed 

generator polynomial G(x) having a degree r and M(x) is the 

message word or data in the configuration memory. Therefore, 

a multinomial is generated having k-bits of the configuration 

memory data word with an appended r-bits redundancies. The 

following steps are executed (Zhang & Ding, 2011): 

A. Generating a multinomial by multiplying 
n kX 

 with 

 M x  to give 

 n kx M x
                             (1) 

B. Dividing  n kx M x
 by   G x  results in a 

quotient of   Q x  and a remainder of  R x . 

The degree of   R x  must be smaller than the 

degree of  G x , that is r. 

The result of the division yields: 

 

 
 

 

 

n kX M x R x
Q x

G x G x



                         (2)                                                                                        

where:  

             n kx M x
 is the encoded configuration memory 

data 

              R x  is the remainder which is the CRC value. 

              Q x  is the quotient 

Therefore, the encoded data can be expressed as: 

       n kX M x G x Q x R x                       (3)                                                               

The data in the storage device is the dividend and the 

remainder becomes the result. Every bit in the storage device 

requires one exclusive-OR (XOR) and one shift operation to 

the left by degree of a polynomial minus one bit [22]. 

2.3 Power Consumption 
Configuration memory scrubbing comes with power 

consumed by the scrubber circuitry. This is because power 

overhead is driven by the scrub or readback rate. Total power 

consumption is composed by static and dynamic power. Static 

power is related to the transistor leakage current and dynamic 

power is related to the switching activity of transistors and its 

value depends on the rate of switching. The static power 

consumption can be considered negligible and the dynamic 

power is the main contributor for the total power 

consumption. 

The total power consumption (PT) is the sum of the dynamic 

power (PD) and Static Power (PS). The total power, static and 

dynamic power is given equation 4, 5 and 6 respectively [23]: 

 T D SP P P                                             (4)  

S CC CCP V I                                         (5)  
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where: 

        CCV   is the voltage level 

      CCI  is the leakage current 

2

1

n

D i i CC

i

P C fV


                                   (6)                                                                                               

where: 

           n  = number of toggling nodes 

         i  = switching activity 

         iC  = load capacitance of the node 

         f  = clock frequency 

        ccV  = transistor source voltage 

Since all the transistors in an SRAM of an FPGA are turned 

on independently to the design synthesized into the 

configurable memory, it is expected that the static power of a 

design is almost constant when compared to the total power 

consumed of the device. In order to estimate the power 

overhead of a TMR system implemented in an SRAM-based 

FPGA, it is assume that the use of three modules will mainly 

impact the dynamic power component [23]. 

3. DEVELOPED SCHEME 
To the best knowledge of the researchers there is no known 

single command capable of generating random binary array of 

numbers MATLAB. A command (rand) capable of generating 

random distribution of numbers with a mean of zero and 

deviation of 1 do exist. However, since the FPGA 

configuration memory consist of binary numbers (0 and 1) and 

based on the numbers of SRAM cells in the FPGA module, 

this random command was used with a limiting factor to 

formulate an equation capable of generating the configuration 

memory containing only random binary logics. 

Therefore, the expression used to generate the configuration 

memory is written as: 

( )nM                                               (7)                                                     

where: 

        Mn is the modules array (n= 1, 2 and 3). 

  is a random number generator (rand) in the range of 0      

and 1,   was implemented as rand in the MATLAB script. 

 is the FPGA configuration memory module dimension 

which is an N by D binary  matrix. 

   is a limiting factor whose values ranges as 10   

 Higher value of   will lead to a logic matrix with more 1 

and smaller value of   will lead to a logic matrix with more 

0. 

3.1 Fault Injection 
With the information about the organization of the 

configuration memory of the FPGA and the specific 

commands sequence to read and write frames, any bit(s) of the 

configuration memory can be flip thus emulating the effect of 

SEU when the FPGA is exposed to radiation environment 

such as space. For the purpose of this research, the fault 

injected module is made user dependent. 

3.2 Majority Voting Implementation 
This technique relies on the generation of a Triple Modular 

Redundancy (TMR) design to enable voting possible and 

eliminating a scenario resulting to a split vote where the voter 

will be unable to identify the correct bit(s) from the set of 

bit(s) in the configuration memory frame. Therefore, majority 

is the greater part or more than half of the total bits under 

consideration which implies that it is a subset larger than any 

other subset. In this work, the voting is realized using the 

logical equation. 

 

1 2 3

1 2 1 3length(m)

v 1 2

i 1

1 2 3 1

3 1

M (:,:), M (:,:), M (:,:)

if M (:,:) M (:,:) & M (:,:) M (:,:)

M M (:,:), M (:,:)

if M (:,:) M (:,:) & M (:,:) M (:,:)

then M (:,:) M (:,:)



 
 

 
 
 

  
  
 
  


 (8)      

where,  

 vM  represent the voted module. 

   is used for element by element voting. 

 (:,:) is used for bit-level operation. 

1 2,M M  and 3M  are the module whose elements needs to 

be voted. 

3.3 Energy Consumption 
Since the energy consumed in the configuration memory 

frame during readback and scrubbing rate depends on time, 

therefore the following equation is used to compute the energy 

[2]. 

Scrub_frame Scrubbing Scrub rateE P  ×  t                (9)   

where:  

 
Scrub_ frameE  is the energy required to scrub the    

configuration memory frames. 

 
ScrubbingP  is the power required to scrub the 

configuration memory frames. 

            Scrub ratet
 is the time taken to scrub the configuration 

memory frames. 

The power to scrub the configuration memory frame is given 

by [2] 

 
Scrubbing core coreP = V  ×  I                                (10)                                                                                                 

where: 

 coreV is the internal supply voltage. 

 coreI  is the maximum current.  

Figure 4 shows the implemented improved frame level 

redundancy algorithm flow chart. 
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4. RESULTS AND DISCUSSIONS 

 

 

Table 1. Time and Energy Consumption for One Module Fault Injection 

 

Virtex-5 FPGA 

Number of module with fault 1 

 

Specification 

Voltage (V) 1.0 

Current (A) 0.01 

 

Number of 

cells 

 

Number 

of 

frames 

 

Fault 

Injection 

matrix 

Starting 

and 

Ending 

cell 

address 

Starting 

and 

Ending 

frame 

address 

Error 

detection 

time 

(µsec.) 

Error 

correction 

time 

(µsec.) 

Energy 

to 

scrub 

frame(n 

joules) 

42 13 12,6 1,12 6,11 7.332 2.444 24.441 

84 26 24,12 1,24 11,22 7.332 2.933 29.329 

Fig. 4 Improved Frame Level Redundancy Scrubbing 

Algorithm. 
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126 39 36,18 1,36 16,33 7.332 3.422 34.218 

168 52 48,24 1,48 21,44 7.121 3.911 39.106 

210 65 60,30 1,60 26,55 7.121 5.377 53.771 

252 78 72,36 1,72 31,66 7.333 7.319 73.185 

294 91 84,42 1,84 36,77 7.333 8.108 81.076 

336 104 96,48 1,96 41,88 7.114 9.288 92.878 

378 117 108,54 1,108 46,99 7.114 11.732 117.320 

420 130 120,60 1,120 51,110 7.333 13.689 136.870 

 

Table 1 shows the results of error detection time, error 

correction time and the energy consumed during the 

scrubbing process when fault was injected in only one module 

in the FPGA configuration memory for increase number of 

frame and cell size of 13 and 42 respectively as well as 

varying size location of injected fault. The number of 

configuration memory cell was continuously increased by 42, 

the configuration memory frame by 13 and fault injection 

matrix size by 12,6 for every simulation run as shown in 

Table 1 in other to investigate the pattern of the variation. The 

voltage and current specification of virtex-5 FPGA was 

obtained from FPGAs data sheet. The premise here is that two 

or three module will not have fault injected at exactly the 

same cell position with the same frame address within a scrub 

cycle. For this to effectively hold, then one module only have 

to be injected with fault. 

 

Fig. 5 Error Detection Time versus Number of Frames for 

One Module Fault Injection. 

Figure 5 shows the graph of error detection time against 

number of frame in a module, the graph was plotted using 

MATLAB simulation environment from the simulation 

parameters and results obtained in Table 1.  

From Figure 5, it was observed that the time to detect error 

(SEU) in the improved FLR was within the range of 7.114 

and 7.333 micro seconds irrespective of the number of frames 

in a module. As the number of frames increases from 13, 26, 

39, 52, and 65 continuously as shown in Table 4.4, so also the 

number of cells in a frame increases from 42, 84, 126, 168, 

210 continuously, and the time to detect error is within the 

range 7.114 and 7.333 micro seconds for a module. This is 

because CRC is executed concurrently on the module frames 

and a 16-bit CRC executed can sufficiently detect error in a 

frame of virtex-5 FPGA. Therefore, irrespective of the 

number of frames the detection time is approximately 

constant.  

 

Fig. 6 Error Correction time versus Number of Frames 

for One Module Fault Injection. 

From Figure 6, it can be seen that when the number of cells in 

a frame and number of frames in a module increases, the time 

taken to correct error also increases. This indicates that the 

time it will take to scrub a module is dependent on the number 

of injected fault and the size location of the fault injection. 

Because as the location of the fault injected increases, the 

time to scrub that area size also increases. As it was observed, 

for a fault injection matrix size of 12,6  24,12  36,18  48,24  

60,30 continuously, the error correction time from simulated 

result were 2.444, 2.933, 3.422, 3.911, 5.377 micro seconds 

respectively as shown in Table 4.4. 

Figure 7, shows the bar chart for the energy consumed versus 

number of frames in a module. The graph was plotted using 

MATLAB simulation environment from the simulated 

parameters and results obtained in Table 1. 

 

Fig. 7 Energy Consumption versus number of frames for 

One Module Fault Injection. 

Figure 7 is the plot of energy consumed against number of 

frames in one module with fault injection. It can be seen from 

Figure 6 that as the time to scrub increases with increase in 

the number of frames as well as increase in the number of 
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error in one module. Likewise, the energy required to scrub 

the modules increases as the number of frames and injected 

fault also increases. This indicates that energy is a function of 

time at constant power as shown in equation 9. Therefore, the 

values obtained from Table 1 for energy to scrub frames is the 

product of the error correction time with operating power of 

the FPGA, where the power is the product of the FPGA 

operating voltage and current as given in Table 1. It was 

observed from the plot that as the number of frames in a 

module increase from 13, 26, 39, the number of faults injected 

also increases as the energy required to scrub also increases 

from 24.44, 29.33, 34.22 Nano joules respectively.  

However, in order to depict real life scenario, SEU can also 

occur in any two modules (module 1 and 2, module 1 and 3, 

module 2 and 3) or in all the three modules (module 1, 2 and 

3). Therefore, in this work the FPGA keeps in memory the 

original configuration of the test module for scenario where 

the assumption for a good bit-level voting those not hold (that 

is error will not occur in two or all the modules in the same 

frame address and at exactly the same cell position in the 

same scrub cycle), although this scenario is very unlikely to 

occur considering the enormous configuration logic bit in the 

FPGA and the stochastic nature of SEU. 

Generally, it can be concluded that when fault was injected in 

only two modules and in three modules for error detection 

time, error correction time and energy consumption against 

varying number of frames in a module, the same trend was 

observed as when fault is injected in only one module. 

However, the magnitude of error correction time and energy 

consumption increases as the number of module with fault 

increases from two to three. This is because the total number 

of injected fault in the FPGA configuration memory 

increases. 

4.1 Performance Evaluation 

 

Fig. 8 Comparison of Error Correction time versus 

Number of frames in a Module for One Module Fault 

Injection between Improved FLR and FLR. 

In Figure 8, the bar chart shows the error correction time for 

varying module size with 13, 26, 39, 52, 65, 78, 91, 104, 117 

and 130 number of frames. The bars shows the comparison 

between the Improved FLR and the existing FLR. It was 

observed that when fault was injected on a module with 

varying number of frames there was a reduction in the time 

for the Improved FLR scrubbing algorithm to correct the 

errors as compared to the FLR scrubbing algorithm. For the 

same number of injected fault, the Improved FLR scrubbing 

algorithm took 3.422 micro seconds to correct the error for a 

module size with 39 frames (which is the module 

configuration used by the author in [2]) while the FLR 

scrubbing algorithm took 5 micro seconds. The percentage 

improvement between Improved FLR and FLR is calculated 

to be 31.6% using: 

FLR - Improve FLR
Percentage improvement =  * 100

FLR
       (11) 

This implies that the Improved FLR scrubbing outperformed 

the FLR scrubbing algorithm in the time taken to scrub 

against SEU by 31.6%. The Improved FLR was also observed 

to outperform the FLR for other module size. 

 

Fig. 9 Comparison of Energy Consumption versus 

Number of frames in a Module for One Module Fault 

Injection between Improved FLR and FLR. 

Figure 9 shows the result for comparison in terms of energy 

consumption between Improved FLR and FLR scrubbing 

algorithm. It is observed that for a module size of 39 frames 

there was a reduction in the energy consumed to scrub the 

module when Improved FLR scrubbing algorithm was used as 

compared to the FLR. The percentage improvement between 

Improved FLR and FLR is calculated to be 61.1% using 

equation (11). Significant improvement was also achieved 

when other module size was examine as it can be clearly seen 

in Figure 8. 

5. CONCLUSION 
SEU has become a challenge in the configuration memory of 

SRAM-based FPGA. How fast this problem is resolved is 

critical in some applications as the process also impacts on the 

energy consumed.  In other to mitigate the challenge of SEU, 

an improved FLR scrubbing algorithm has been developed 

using Cyclic Redundancy Check (CRC) as an error detection 

technique. This was developed on a MATLAB simulation 

environment. The result obtained shows that when fault is 

injected in one configuration memory module, the improved 

FLR performed better than the FLR in terms of error 

correction time and energy consumption by 31.6% and 61.1% 

respectively. Further work can be focused on mitigating SEU 

in the application layer as error in some logic resources may 

propagate to the application layer without being detected by 

the configuration memory readback. 
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