
International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

8

A Survey on Trending Algorithms for Software

Code Clone Detection

Rashmi Sharma
Department of Computer Engineering,

Punjabi University, Punjab
Patiala, India

Brahmaleen Kaur Sidhu
Department of Computer Engineering,

Punjabi University, Punjab
Patiala, India

ABSTRACT
Most of the developers indulged in the coding phase of

SDLC, try to copy the code that occurs again and again in

the code, hence it becomes difficult to maintain the cloned

data. If two functions or templates from a single source

code are similar then it would be referred as “code clones”.

Cloning in the code can lead to the obstacles in the

maintenance phase of the software. It also increases the

probability corresponding to the occurrence of bugs in the

software. When a code is reused by copy-paste, then it

referred as “software clone”. In order to detect the clone

from the source code each and every template of the code

is evaluated corresponding to the source code. The

detection of clone is an issue hence various techniques had

been developed in previous research works by various

researchers for the detection of clone. In this study a brief

introduction is given about the clones in the code, its types,

reason of cloning, and process of clone detection. The

second section depicts the clone detection techniques with

their limitations and advantages. The traditional work

conducted in this field is described in the third section of

the study under the segment of related work.

Keywords
Source Code, Code Clone, Fragments, Lexical Clone,

Semantic Clone, Syntactical Clone, Textual Clone

1. INTRODUCTION
Cloning mostly exists at the time when the code of the

software is being written. In coding phase, developers

frequently copy and paste the code which is being reused

in coding [1]. This pasted copy of the code is known as the

clone of the original data. The code that has been copied is

known as the code cloning. It is very tedious task to

recognize the original code and clone of the original code.

The part of the code copied is known as fragments. It is not

easy to maintain the clone of the code as compared to the

original code [2]. Hence there is a need to remove the

clones from the code, since cloning leaves adverse effects

on the maintenance phase of the software [3].

Let’s assume that there exists a system with huge amount

of coding and the whole code is the clone of original code.

Due to the cloning, it becomes quite expensive to maintain

such system as compared to other systems. It is very

difficult task to remove or find clones from such systems.

The copy, paste leads to the in-accuracy in the maintenance

of such system. Lots of research has been conducted to

generate such technique that can find the cloning

automatically when it exist [4].

Example of code cloning:

Int sum=0;

Void foo (iteratoriter)

{

For (item=first(iter): has more (iter); item =next(iter))

{

Sum=sum + value (item);

}

}

Int bar (Iteratoriter)

{

Int sum=0;

For(item=first(iter); has more (iter); item=next (iter))

{

Sum =sum +value (item);

}

}

In above ode two function have the similar statements. The

function for() has same number of statements as well as

structure to the function bar(). Hence this code is useful to

understand the concept of code clone in an effective and

easy way.

2. REASON BEHIND CODE

CLONNING
Even though, the tactics of cut-copy and paste are

measured not to be good from the aspect of software

maintenance, lots of programmers uses this technique for

their coding [5]. Here is a list of reasons that exist behind

the code cloning:

2.1 Programmer’s limitation and time

constraints:
The software code is written or created under perfect

surroundings [6]. The limited skills of professional or

developer and the time constraints slowdown the process

of software development, hence the only way out is to cut

or copy and paste.

2.2 Complexity of the system:
Some systems or software are difficult to understand hence

this problem leads to the reuse of the existing code of lines

by the developers just by doing few alterations to this code

[7].

2.3 Language limitations:
There are lots of programming languages available in the

market but it is not possible that the every programmer

should have the full fledge knowledge about particular

programming language. Hence the language limitation is

another reason behind the code cloning [7].

2.4 Phobia of fresh code:
The software developer fears to bring the new ideas to the

market. There is a phobia in the developers which restricts

them to create new innovations with the software because

the introduction to ideas can lead to the lengthy software

development process [7].

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

9

2.5 Forking/Templating:
Forking or templating is a process to reprocess the same

solution more than once. This is again an aspect which

motivates the developers to clone the code [7].

3. TYPES OF CLONE
As studied in previous sections about the code cloning and

the reasons that give birth to the concept of cloning, in this

section we define the types of clone. The clones are

broadly categorized in four sections as follows [9]:

3.1 Type-1: Identical rule pieces except for

modifications in whitespace, structure and feedback.

3.2 Type-2: Syntactically similar pieces except for

modifications in identifiers, literals, kinds,

whitespace, structure and feedback [9].

3.3 Type-3: Copied pieces with further modifications

such as changed, added or removed statements, in

addition to modifications in identifiers, literals, kinds,

whitespace, structure and feedback.

3.4 Type-4: Two or more rule pieces that perform the

same calculations but are implemented by different

syntactic versions [9].

4. ADVANTAGES OF DETECTING

CODE CLONES
The advantages of code clone detection are as below [10]:

 Detects the code fragments to put into the

library file

 Helps to have a clear understanding to the

program

 Finds usage patterns

 Detects malicious software

 Detects plagiarism and copyright infringement

 Helps software evolution research

 Helps in code compacting

5. CLONE DETECTION PROCESS
Clone detection refers to the process of detecting the

duplicate code in the source of the software [10]. For

detecting these clones, clone detector software is used. The

work of clone detector is to find out the duplicate line of

code with the higher rate of similarity in the source code.

The process of code clone detection is started by firstly

comparing each and every possible fragment of the code

with the rest of the code, because initially it is not known

to the detector that which code from the source code is

cloned. After detecting the cloned fragments from the

source code, next step is to apply the tool that look out for

actual clone in the code [10].

6. CLONE TERMINOLOGY
The cloned code is recognized in the form of clone classes

and clone pairs. Clone classes and pairs are used to depict

the match among the different code clone templates. If

some similarities are found among the cloned code then it

means that some relationship exists between the codes. The

frequently used terms in code clone are as follows:

 Code Fragment

 Clone Pair

 Clone Set

 Clone Class

7. TECHNIQUES FOR CLONE

DETECTION
From last few years, clone detection has been the most

prominent area for the research work. Large number of

clone detection techniques had been proposed by various

scholars. This section reveals the techniques used for

clone detection along with their limitations. The

techniques for clone detection are divided into four main

categories which are as shown:

 Textual Approach for clone detection

 Syntactic Approach for clone detection

 Lexical Approach for clone detection

 Semantic Approach for clone detection

7.1 Textual Approach:
Textual approach is a text based technique for clone

detection. This method did not leave any changes or effects

on the original source code before evaluating the source

code and cloned code. Examples of textual approach to

detect the cloned code are SDD, NICAD, and Simian1 etc

[10].

Limitations of textual approach [4] [8]:

 As it processes the code line by line, hence it cannot

maintain the remaining identifiers.

 The line breaks that exist in code are not referred as

clones.

 The addition and subtraction of the brackets to the

code can be problematic in case when brackets are

found in one fragment of the code but not in other

fragment.

 It is not usable in source code modulations due to the

required normalization mechanism for the

enhancements, without affecting the precision.

7.2 Syntactic Approach
Syntactic approach uses the concept of tree parsing for the

detection of cloning in the code. It uses parser for

moulding the source code into the form of parse trees or

AST (Abstract Syntax Trees) [11]. Then this parsed source

code is processed by applying the tree comparison or

structure metrics in order to detect the code clone from the

source. There is a parse tree based algorithm used for clone

detection. It is a complex algorithm which creates the parse

tree [11]. Parse tree based algorithm is used in various

applications because it allows to add distinct algorithm for

comparison also. CloneDr, Deckard, CloneDigger etc are

the examples of syntactic approach.

Fig 1 Example of AST based Syntactic Approach [2]

5

3 2

4

2

1

3

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

10

7.2.1 Tree matching Approach:
Tree matching approach is based upon the concept of

comparing the sub trees in order to find the similarities

among them with the purpose of detecting the clone from

the code [12]. The tree represents the literals, identifiers,

keywords, variable names and tokens that are abstracted

form the source code [9].

Basic Algorithm for AST is as below [23]:

Clones=

For each subtree i

 If mass (i)>=Threshold

 Then hash to bucket

For each subtree i and j in the same bucket

 If Compare tree (i,h) > Similarity Threshold

 Then for every subtree s(i)

 If IsMember r(clone s,s)

 Then DeleteClonePair(clone s,s)

 For each subtree s(j)

 If IsMember r(clone s,s)

 Then DeleteClonePair(clone s,s)

AddClonePair(clone i,j)

7.2.2 Metrics based Approach:
This approach evaluates or measures the number of metrics

that form the code templates and then perform the

comparison among them, on the behalf of metrics vectors.

The metrics evaluation is performed specifically for

classes, control statements, conditional statements,

functions and loop statements and then these metrics

values are utilized to detect the clone form the code.

Mostly, ASTs and Flow Graphs are used for parsing the

source code [13].

Limitations of Syntactical Approach:

 This technique is not able to control or manage the

literal and identifiers from the source code.

 It is also not capable to detect the saved statement

clones.

 The availability of the parser is must.

 On the basis of metrics, the similarities between the

two code fragments are not found easily or found to

be less effective.

7.3 Lexical Approach
It is also known as token based approach for clone

detection. It is much reliable and able to generate more

accurate results. In this technique transformation of the

code is done by applying algorithms [14]. The

transformation algorithm is created by using a stream

known as token. This token is extracted from code itself.

Transformations performed by using lexer (tokens) make

the comparison phase easy. Compiler-style lexical analysis

is done in order to change the source code into the

sequence of “tokens” [15]. After transformation of the

code, the lexer is compared with the original code and

duplicity is detected. After the comparison, the original

code is referred to as the cloned code and returned to the

user. It makes the user capable of making small

modulations in the code such as formatting the code,

renaming the file etc as compared to other clone detection

approaches, hence it makes it more robust than other

mechanisms [16]. Lexical approach was initiated by the

Baker’s Tool Dup, which firstly splits the source file into

small tokens by using a lexical analyzer. Then these tokens

are further sub divided into parameterized tokens which

consists of identifiers and literals as well as the non

parameterized tokens. The parameterized tokens are

encoded on the basis of their index position which depicts

their occurrence in the particular line [3].

The basic algorithm for lexical analysis on the basis of

parameterized tokens is as below [3]:

1. function report Clones (filename)

2. Let be the list of tuples corresponding to

filename sorted by the statement index either read

from the index or evaluated on the fly.

3. Let c a list

4. For

Do

5. Retrieve tuples with similar sequence of has as f(i)

6. Save this in

7. For

Do

8. Then

9. Continue with step 11.

10. Let a=

11. For

Do

12. Let

13. If

14. Report clones from to a.

15.

16. If then

17. End inner loop.

The non parameterized tokens are reviewed by using the

hash functions. CC Finder, CP Miner, Dup etc are the

example of Lexical clone detection approach [17]. In

lexical approach the full fledge source code is referred as

input code and then uses each and every basic statement as

a module for analyzing purpose. The process of lexical

analysis has following steps:

STEP1: Filter uninterested information: As we

know it is very cost effective process to detect the clone

from the code. Hence in lexical approach the code of

interest is separated from the code of uninterested first, so

that the efforts or cost can be reduced to detect the clone.

The whitespaces and comments in the code fall under the

category of uninterested code.

STEP2: Analysis Statements: It is done to save the

time for analyzing the code token by token. In this step

along with the analysis the following information is

gathered [17]:

 Used Data

 Structured Code

 Functional Code

STEP3: Suffix Comparison: Suffix comparison is

done to increase the comparison speed by employing the

suffix text searching mechanism. This process is initiated

by classifying the similar line of code and then suffix for

each statement is evaluated, then similar suffix values are

extracted from the code [17].

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

11

Limitation of lexical approach:

 This approach works upon the sequence of lines

in the source code therefore if the order of the

lines is modified in the cloned code then it will

not recognize the cloned code [18].

 The implementation of lexical analysis is quite

time consuming and expensive as compared to

other mechanisms with the extra memory

requirements.

7.4 Semantic Approach
Semantic based clone detection mechanism provides more

reliable and effective information regarding the cloned

code in the source code. It is represented in the form of

graphs where the nodes of the graph depicts the statements

and expressions form the source code and edges of the

graph depicts the control along with dependency of data

[4][7][9].

The figure below depicts an example of a PDG graph that

is used in semantic clone detection approach.

 Control Dependency

Data Dependency

Fig2 Example of Semantic Approach (PDG) [21]

Limitations of Semantic Approach

 Graph based semantic approach is not suitable for the

large system hence it is less scalable.

 The availability of the graph generator is mandatory

for creating the graphs.

 The incurred cost is high for graph matching.

7.5 Coarse Grained Approach
Coarse grained approach detects the clones on the block

level from the source code file. It explains the method for

detecting the clones in a set of source code files, followed

by the incremental detection description.

ALGORITHM
The detection procedure consists of the following four

steps.

 STEP1: Parse given source files to detect the

blocks.

 STEP2: Normalizing the blocks detected in step

1.

 STEP3: Calculation of the hash value from the

each block.

 STEP4: Grouping the blocks on the basis of the

calculated hash values.

STEP1: Detect Blocks: In the first step, all the blocks

are detected from the given source code file. Where the

blocks includes the classes, methods as well as the block

statements i.e. statements like if or for. This step of the

block detection requires both the lexical as well as the

syntax analysis.

STEP2: Normalize Blocks: In the next step,

normalization is done for the block detected in the first

step. At the start, reformatting of every block was done

with a regularized form. Detector can ignore the

differences of the white space and tabs in this procedure. It

can also replace variable names and the literal with a

special token, allowing the detector to identify the Type-2

clones, thus allowing the detector to detect both the Type-1

and Type-2 clones. But not allowing the detector to

identify the Type-3 clones.

STEP3: Calculate Hash Values: In the third step,

hash value was calculated from the text of the respective

blocks. Implementation uses the hash Code().String as a

hash function. Apart from this any of the hash function can

be used that can generate a numeric value from the given

string.

STEP4: Group Blocks: In the last step, grouping of

blocks was done on the basis of their hash values. Two

blocks have the same hash values, if the text

representations for both the blocks after the process of

normalization are equal for both the blocks. Hence, a pair

of block represents a clone pair if the hash value is same

for the two blocks. The detector reports all the cloned pairs

after grouping all the detected blocks with same hash

values.

7.6 Fine Grained Approach
Fine grained approach detects the code clone for the source

code file under the CVS (Concurrent Version System is a

system which allows the user to save the different versions

of the software and facilitates its access to multiple users)

control by checking the revision of classes by using the

CVS capabilities. It divides the Source code into the

classes and then compares the methods and attribute of

these classes in order to find the revision in these classes.

The revised version and the original version were then

compared for the cloning.

Step 1: Checking the revision of class.

Step 2: Profiteering the Method and attribute by the

compare plug-in

Step 3: Creating the intermediate trees.

8. RELATED WORK
Ira et al. [29] proposed a tree based technique for

detecting the clone from the source code. The proposed

work was divided into three sub parts by using three

algorithms. First algorithm was employed for extracting

the sub trees from the code. Then these sub trees were

evaluated with another sub trees. And then similarity

proves the existence of clone in the code and it was

measured on the basis of following equation:

In above formula (1)

S defines the number of shared clones,

L defines number of differential nodes corresponding to

sub tree1,

R depicts the nodes corresponding to the subtree2.

ENTRY

a=0 i=0 While i<10 Output

(a)

Output (i)

i=i+1 a=a+1

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

12

After this, the second algorithm was employed to evaluate

the sequence of codes. For example if sub tree was

distinguished as a clone in the sequence then that sub-tree

was declared as single clone instead of individual clone.

The objective behind employing the third algorithm was to

detect the near miss clone in the source code. The process

was started by visiting the superior nodes of existing clones

to reveal out that whether the superior was near miss clone

or not. The work was employed not only to detect the clone

from the file but also repair file from these clone. The only

drawback was that, the technique was not able to detect the

semantic clones from the code.

Yong Yuan et al. [26] proposed an initialized token

based way to deal with distinguished clones named as

Boreas. Boreas purposed a novel checking based strategy

for qualities grids, which depicts the program fragments

individually in a powerful way to recognize the clones.

Boreas had presented three terms numbering conditions

(CE), tally vectors (CV) and check framework (CM) [5].

CE portrays the sample for the variables that was isolated

into three phases. These stages were innocent including

stage, proclamation checking stage and the inner statement

evaluation stage. This stage comprises of utilized variables.

In instatement numbering stage, CE was utilized for the

variables, where they were used as though predicate,

exhibit subscript and where any operation was connected

to the factors and where it was characterized by expression

with constants. In Inner statement level, CE was utilized as

the variable was in first level circle, second level circle or

more profound level circle. CV with measurements was

framed by utilizing CE. The ith measurement of CV was

comprised of number of count of that variable for ith CE.

Otherwise the CV was called as attributes vector. For n

variable utilizing m-dimensional CV m*n Count Matrix

was shaped. These CM were the unique type of code parts.

Comparability of two parts was measured by the

generation of their CM's similarity and likeness of their

CV’s of the keyword or punctuations. Likeness of two CVs

was measured with the equation:

Boreas was platform independent and had the feature of

scalability along with less time consumption and less

comparison time.

Rochelle et al. [27] proposed a technique for detecting

the semantic clone from code by using IOE behavior. In

order to evaluate the clone form the file, the input and

output was considered along with the variations in the heap

state. The JAVA platform was most suitable platform for

the implementation of the proposed work. This technique

was comprised of four sub processes i.e. Abstraction,

Filtering, Evaluation and Gathering. In first stage i.e.

abstraction, AST trees was created in order to observe the

method types and effects of the methods from the source

code. In second stage i.e. filtering, two filters were

concerned. The process of first filter was to return the

functions from the source code which had the same return

type and number of parameters or we can say it had the

similar syntactical features and second filter detect the

clone on the basis of semantic information from the code.

After filtering, the evaluation phase was initialized by

evaluating the dynamic nature of the functions. For this

purpose test files were used. Then for the completion of the

process, last phase i.e. gathering phase was done by

executing the files. At last the clones from the source code

were detected finally.

Thierry Lavoie et al. [28] proposed a levenshtein

distance method to find out the clone from the code which

was comprised of metric based and token based

mechanism for clone detection. Metric trees and Manhattan

separation were used for exact evaluation of levenshtein

distance. Levenshtein separation was measure of the

closeness between strings. It figures number of addition,

cancellation and swapping of characters to change string s1

into s2. In the first step tokens were removed from source

code with lexical analyzer. In the second step recurrence

vectors were manufactured and unique id was given to

every token. Id was given progressively and if any new

thing founded then an accessible id was given to that token

else the comparing vector of token was increased by one.

Hashing Tables were utilized to store these vectors. In the

next step, stride metric tree were manufactured by utilizing

recurrence vectors. L1 metric i.e. Manhattan separation

was utilized. Manhattan separation was picked as a result

of the accompanying reasons given below:

a) L1 covers less space.

b) L1 is quick and high exactness.

c) In the fourth step Metric tree is worked with

every one of the vectors.

Metric tree isolate the hunt space and increment the speed

of addition, range questions and closest neighbors. The last

stride was tree question step. In this progression,

Manhattan separate between two metric trees was

measured. In case if two trees had Manhattan separate not

as much as limits then those were referred as clones.

Dandan Kong et al.[30] utilized the k-nearest algorithm

for detecting the cloned code. This algorithm was

comprised of the features of AST (Abstract Syntax Tree)

and the advantages of k-nearest algorithm. By

implementing the proposed work two templates from the

code were considered as functionally equivalent only if the

existences of permutation i.e. p1 and p2 between these

templates are as:

Here OC refers to the output related to the set C1 and C2

coded templates.

Initially the code was passed from the lexical analyzer and

syntax analysis for evaluating the control dependency

information from the code by generating the abstract

syntax trees and PDG. Then clustering algorithm was

applied to obtain the functionally cohesive line of code.

Then the output was observed and gathered into the related

clusters.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

13

Table2. Comparison table of Previous work on the basis of techniques used

Sr. No Author Technique Used Scalability Portability Complexity

1. Yong Yuan et al.

[26](2012)

Token Based i.e.

Lexical Approach

High Language Independent Medium

2. Rochelle et al. [27]

(2012)

On the basis of

fragments behavior

High Specifically developed

for JAVA platform.

Less

3. Theirry Lavoie et al.

[28] (2012)

Hybrid(Token based

and Metric Based)

Low Only C Language High

4. Ira D. Baxter et al

[29] (2012)

Tree Based

(Syntactic Approach)

Low Language Dependent and

uses parser for

transformation purpose.

High

5. Dandang Kong et al.

[30] (2012)

Hybrid(Tree and

Graph based)

Low Language Dependent

parser

High

9. CONCLUSION
Clone in the source code can degrade the quality of the

code written for the software since the code is referred as

copied code. Cloning can lead to the enhancenments in the

maintainence cost and occurrence of bugs to the software.

Hence it is mandatory to remove the cloning from the

source code. Each technique for clone detection has some

advantages and limitations as discussed in this study. Some

techniques can be used for specific clone detection in the

source such as for semantic clone detection for evaluating

the semantic related clone from the code.

10. FUTURE SCOPE
Number of techniques were evaluated for the clone

detection in this study. Each of the techniques has some

advantages and disadvantages. Based on these techniques,

a hybrid technique based on the fine grained and coarse

grain method can be proposed for the feature extration of

code clone in future that can overcome the limitation of

both of these technique and devlop an advance method

with the advantages of these two methods combined andve

ha higher efficiency for the detection of the code cloning.

11. REFERENCES
[1] Chanchal K. Roy, James R. Cordy and Rainer

Koschke, “Comparison and evaluation of code clone

detection techniques and tools: a qualitative

approach”, Elsevier, Vol 74, Pp 470-495, 2009

[2] Martin White, Michele Tufano, Christopher Vendome

and Denys Poshyvanyk,“Deep Learning code

fragments for code clone detection”, ACM,

International Conference of on Automated Software

Engineering, Pp 87-98, 2016

[3] Benjamin Hummel, Elmar Juergens Lars Heinemann

and Michael Conradit, “Index based code clone

detection: Incremental, Distributed, Scalable”, IEEE,

Pp 1-9, 2010

[4] Yoshiki Higo, Toshihiro Kamiya, Kusumoto and

Katsuro Inoue “Methods and implementation for

investigating code clones in a software system”,

Elsevier, Vol 49, Issue 9-10, Pp 985-998, 2007

[5] Shruti Jadon , “Code clones detection using machine

learning techniques: support vector machine”, IEEE,

International Conference of computing,

communication and automation, Pp 299-303, 2017

[6] Fang Hsiang Su, Jonathan Bell, and Gail Kaiser

“Challenges and Behavioral code clone detection”,

IEEE, International conference on Software analysis,

evolution and reengineering, Pp 21-22, 2016

[7] Siim Larus and karl Kilgi, “Code Clone Detection

using wavelets”, IEEE, Pp 8-14, 2015

[8] Kavitha Esther Rajakumari and T. Jebarajan, “A novel

approach to effective detection and analysis of code

clones”, IEEE, Pp 287-290, 2013

[9] Ritesh V.Patil, Lalit V. Patil, Sachin V. Shinde and S.

D. Joshi, “Software code cloning detection and future

scope development- latest short review”, IEEE,

International conference on recent advances and

innovation in engineering, Pp 1-4, 2014

[10] Mai Iwamoto, Shunsuke Oshima and Takuo

Nakashima, “Token based code clone detection

techniques in a student’s programming excercise”,

IEEE, International conference on broadband wireless

computing communication and application, Pp 650-

655, 2012

[11] Toshihiro kamiya, Shinji Kusumoto and Katsuro

Inouel, “A multi-Linguistic Token Based Code Clone

Detection System for Large Scale Source code”,

IEEE, Pp 1-37, 2002,

[12] Stephane Ducasse, “A Language Independent

Approach for detecting Duplicate Code”, IEEE, Pp 1-

10, 1995

[13] Simone Livieri, “Very ALrge Scale Code Clone

Analysis and Visualization of Open Source Programs

Using Distributed CCFinder:DCCFinder”, IEEE, Pp

1-10,2007,

[14] Chanchal K. Roy, “An Empirical study of functions

clones in open Source Software”, IEEE, Pp 1-10,

2008

[15] Elmar Juergens, “Do Code Clone Matters?”, IEEE, Pp

485-495, 2009

[16] Ginika Mahajan., “Implementing a 3-Way Approach

of Clone Detection and Removal using PC Detector

Tool”, in Proceedings of IEEE 2014, International

Conference on Program Comprehension, pp.242-245,

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shunsuke%20Oshima.QT.&newsearch=true

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.5, July 2017

14

[17] Nicolas Bettenburg , “An empirical study on

inconsistent changes to code clones at the release

level “ ELSEVIER ,2010, Pp 1-17

[18] Nam H. Pham, “Complete and Accurate Clone

Detection in Graph-based Models”, IEEE, May 16-24,

2009, Pp286-276

[19] Elmar Juergens, “Do Code Clone Matters?”, IEEE, Pp

485-495, 2009

[20] Kuldeep Kaur and Dr. Raman Maini, “A

Comprehensive review of code clone detection

Techniques”, IJLTEMAS, Vol 4, Issue 12, Pp 43-47,

2015

[21] Abdullah Sheneamer and Jugal Kalita, “A Survey of

Software Clone Detection Techniques”, International

Journal of Computer Applications, Vol 137, Issue 10,

Pp 1-21, 2016

[22] Nils Gode, “Clone Removal: Fact or Fiction?”, ACM,

Proceedings of the 4th International Workshop on

Software Clones , Pp 33-40, 2010

[23] Tahira Khatoon, Priyansha Singh and Shiksha Sukla

“Abstract Sytax Tree Based Clone detection for java

project”, IOSR journal of Engineering, Vol 2, Issue

12. Pp 45-47, 2012

[24] Dhavleesh Rattan, rajesh Bhatia and Maninder Singh

“Software Clone detection : a systematic review”,

Elsevier, Vol 55, Issue 7, Pp 1165-1199, 2013

[25] Michel Chilowicz , Etienne Duris and Gilles Roussel

“Viewing functions as token sequence to highlight

similarities in source code”, Elsevier, Vol 78, Issue

10, Pp 1871-1891, 2013

[26] Yong Yuan and Yao Guo, “Boreas: An Accurate and

Scalable Token-Based Approach to Code Clone

Detection”, IEEE, Pp 286-289, 2012

[27] Rochelle and Garry TR Leavens, “Semantic clone

detection using method IOE-behavior”, IEEE,

Proceeding IWCS, Pp 80-81, 2012

[28] Theirry Lavoie and Ettore Merlo, “An accurate

estimation of the Levenshtein distance using metric

trees and Manhattan distance”, IEEE, Proceedings in

ISWC, Pp 7-15, 2012

[29] Ira D. Baxter, Andrew Yahin, Leonardo Moura,

Marcelo Sant Anna and Lorraine Bier, “Clone

Detection using Abstract Syntax Tree", IEEE,

Proceeding of ICSM’98, Pp 1-11, 2012

[30] Dandan Kong, Xiaohong Su ; Shitang Wu ; Tiantian

Wang ; Peijun Ma “Detect functionally equivalent

code fragments via k-nearest neighbor algorithm”,

IEEE, ICACI, Pp 94-98, 2012

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaohong%20Su.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shitang%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tiantian%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tiantian%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Peijun%20Ma.QT.&newsearch=true

