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ABSTRACT
In recent years, there has been a remarkable improvement in
the computing power of computers. As a result, numerous real-
world optimization problems in science and engineering, possess-
ing very high dimensions, have appeared. In the research com-
munity, they are generally labeled as Large Scale Global Op-
timization (LSGO) problems. Several Metaheuristics has been
proposed to tackle these problems. Broadly these algorithms
can be categorized in 3 groups: Standard Evolutionary Algo-
rithms, Cooperative Co-evolution (CC) based Evolutionary Al-
gorithms and Memetic Algorithms. This paper gives a brief in-
troduction of some state-of-the-art Metaheuristics used in the
field of LSGO, discusses their performance in CEC Competi-
tion on LSGO and finally, future scope in this field is presented.
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1. INTRODUCTION
LSGO problems appear everywhere in business, science and
engineering such as Electric motor power losses minimization,
Engineering design optimization, Large scale set covering prob-
lems with application to Airline crew scheduling etc. It has
become a prominent research area in the field of Evolutionary
Computation. In past decades, several Metaheuristics such as
Differential Evolution (DE), Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), Evolution Strategy (ES), etc
have been modified to tackle these problems. But all these standard
algorithms suffer from a major drawback: their performance gets
deteriorated as the dimensionality of the problem increases.

There could be 3 possible reasons for the performance dete-
rioration:

—Landscape complexity increases.
—Search space increases exponentially.
—Function evaluation becomes costly.

Many valuable research papers have been published to tackle
LSGO problems. These research papers have been published in top
conferences and journals such as IEEE Congress on Evolutionary
Computation (CEC), Information Sciences, Lecture Notes in Com-
puting Science, IEEE Transactions on Evolutionary Computation,
etc. Numerous benchmark functions have been designed to test the
robustness of these algorithms.

The purpose of this paper is to provide a broad overview of
metaheuristics used in LSGO.

The remainder of this paper is organized as follows: Section
2 gives a brief description of the metaheuristics used for tack-
ling LSGO problems; Section 3 discusses the results of “CEC
Competition on LSGO”; Finally, Section 4 concludes this paper.

2. APPROACHES FOR TACKLING LSGO
PROBLEMS

Several algorithms have been proposed to tackle LSGO problems.
These algorithms can be roughly classified as follows:

—Standard Evolutionary Algorithms: Numerous standard Evo-
lutionary Algorithms have been modified to tackle LSGO prob-
lems.

—CC based Evolutionary Algorithms: CC based Evolutionary
Algorithms follow “divide-n-conquer” based approach. They de-
compose high dimensional problems into smaller sub-problems
with low dimensions, and solve them separately.

—Memetic Algorithms: Memetic Algorithms (MAs) are a class of
Evolutionary Algorithms which are combined with a problem-
specific technique such as local search heuristics, approximation
algorithms, etc. The hybridization of problem-specific technique
with standard Evolutionary Algorithms is done to enhance the
search capability of the algorithms.

2.1 Standard Evolutionary Algorithms
Differential Evolution is one of the state-of-the-art Evolution
Algorithm used in the field of Evolutionary Computation. It was
first proposed by Rainer Storn [22] in 1996. Since then, it has been
used to solve many real-world optimization problems. Differential
evolution is preferred over other greedy Evolutionary Algorithms
like Particle Swarm Optimisation [4] for solving LSGO problems
because it is more explorative in nature. As the dimension of the
problem increases landscape complexity, number of local optima,
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Fig. 1. Different Approaches for tackling LSGO problems.

etc. increases. Hence, Evolutionary Algorithm, which is more
exploratory, would be successful for solving LSGO problems.
Numerous variants for Differential Evolution have been proposed
in the past decades; JADE and SaNSDE are some of the best
algorithms among them.

JADE [36] is one of the recent variants of Differential Evo-
lution which is used in high dimensional optimization. In JADE,
the authors introduced a new mutation strategy called “DE/current-
to-pbest” which is the generalization of “DE/current-to-best”.
In a new mutation strategy, any of the top p solutions can be
randomly chosen to play the role of the single best solution as in
“DE/current-to-best”. Control parameters in JADE are dynamically
adapted using feedback from the evolutionary search. Authors
explained that if the control parameters are adapted carefully, then
the convergence rate can be improved. They have also suggested to
use the “external archive operation” which utilizes historical data
to provide information of progress direction. Basically, in external
archive operations, unsuccessful points are saved and further used
in the future for diversifying the population.

SaNSDE [33] is another powerful variant of DE. It basically
combines features of two previous algorithms, SaDE [19] and
NSDE [35]. SaDE (Self adaptive differential evolution) dynami-
cally adapts mutation strategy and crossover rate. NSDE, on the
contrary, do not consider self-adaption of operators. SaNSDE
calculates scale factor as follows:

Fi =

{
Ni(0.5, 0.3), Ui(0, 1) < fp
δi, otherwise

(1)

where Ui(0, 1) denotes a uniform random number between 0 and
1, Ni(0.5, 0.3) denotes a Gaussian random number with mean
0.5 and standard deviation 0.3, and δi denotes a Cauchy random
variable with scale parameter t = 1. The parameter fp will be self
adapted as done in SaDE.

SaNSDE introduces SaDE’s self-adaptive mechanisms into
NSDE.

Mutation scheme, scale factor F and crossover rate CR are
the three crucial operators in DE that determine its performance.
GaDE [34] adapt these parameters as follows:

(1) Vectors are mutated in the same fashion as in SaNSDE.

(2) The Cauchy distribution with location Fm and scale parameter
t = 0.2 is used to generate F values.

(3) The Gaussian distribution with mean CRm and standard devi-
ation 0.1 is used to generate CR values.

For the detailed steps of adapting F and CR, please refer [34].
The different probability distribution is used to generate control
parameter F and crossover rate CR. For scale parameter, Cauchy
distribution is used and for crossover rate, Gaussian distribution is
used.

Sampling values from the Cauchy distribution increase the
probability to generate large search step sizes, which is desired
in high dimensional function optimization. It has been found that
good CR values lie in a small range, so Gaussian distribution with
mean 0.1 is used which is very helpful in generating such values.

Hansen’s CMA-ES [3] is one of the state-of-the-art Evolu-
tionary Algorithm, but standard CMA-ES is inefficient for solving
problems with high dimensions. So Loshchilov revised CMA-ES
for tackling LSGO problems and proposed LM-CMA-ES (Limited
Memory CMA-ES) [9]. It reconstructs the Cholesky factor and its
inverse using m � n direction vectors (where n is the number of
decision variables). Direction vectors were helpful in optimizing
high dimensional problems with large number of depended
variables. Loshchilov argued that LM-CMA-ES algorithm can
optimize a 1 million dimensional problem.

In [5], Korosec et al. improved the Ant Colony Optimization
(ACO) algorithm to tackle LSGO problems. The new ACO-based
algorithm is labeled as Differential Ant-Stigmergy Algorithm
(DASA). The DASA transforms an optimization problem into
a graph-search problem. It assigns parameter differences to the
vertices of the graph, and then uses it to navigate through the
search space.

2.2 CC based Evolutionary algorithms
Cooperative Co-evolution (CC) framework was proposed by Potter
et al. [17] [18]. They adopted a “divide-n-conquer” based strategy,
where problem dimension is broken down into small sub-problems
and are evolved separately. Sub-problem collaboration occurs only
during function evaluation.

CC framework can be summarized as follows [31]:
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(1) Problem Decomposition: Decision vector of a high-
dimensional problem is decomposed into smaller sub-
components.

(2) Subcomponent Optimization: Each sub-component is
evolved separately using certain Evolutionary Algorithm.

(3) Subcomponents Coadaptation: Since inter-dependencies
may exist between sub-components, co-adaptation is essential
in capturing such inter-dependencies during optimization.

Problem decomposition is the most crucial step in CC framework.
If problem decomposition step fails to put most of the interacting
variables in the same sub-component, then the performance of
the algorithm will deteriorate. Previous approaches of problem
decomposition include 1-dimensional and splitting-in-half based
methods. 1-dimensional approach simply evolves each dimension
separately. At first it seems to be a fairly straight forward approach,
but it doesn’t consider interdependence among variables. It fails to
optimize non-separable problems. Splitting-in-half approach splits
the whole dimension into two parts and evolve them separately.
Though it will capture most of the interacting variables, Due to
large sub-component size the performance of the algorithm using
Splitting-in-half approach will be nearby the standard Evolutionary
Algorithm. So, too small and too big sub-component size is not the
optimal choice. Sub-component size should be adapted according
to the problem.

CC framework as proposed by the Potter is given in Algorithm 1.

Algorithm 1 CCGA-1
1: gen← 0
2: for each species s do
3: Pop(gen)← randomly initialized population
4: evaluate fitness of each individual in Pop(gen)
5: end for
6: while termination condition = false do
7: gen← gen+ 1
8: for each species s do
9: select Pop(gen) from Pop(gen− 1) based on fitness

10: apply genetic operators to Pop(gen)
11: evaluate fitness of each individual in Pop(gen)
12: end for
13: end while

Yang et al. [31] proposed a CC based algorithm called DECC-G
which uses a predefined group size to decompose the decision
vector into multiple sub-components. Each sub-component is then
optimized separately by using SaNSDE [33]. For co-adaption of
the sub-components, instead of using Potters greedy collaboration
method, they have used Adaptive weighting strategy. Adaptive
weighting strategy applies a weight to each of the sub-component
after every cycle, and then evolves the weight vector with Differ-
ential Evolution.

Basic steps of the DECC-G algorithm is as follows:

(1) Start a new cycle
(2) Randomly split the n-dimensional decision vector into sub-

components of size s i.e., n = m× s, where m is the number
of sub-components.

(3) Optimize each sub-component one by one using SaNSDE.

(4) Apply weight vector to each optimized sub-component, and
then optimize the weight vector for the best, random and worst
member of the current population.

(5) Stop, if stopping criteria is met, otherwise, go to step 1.

Yang et al. proposed MLCC [32] which considers a pool of group
size, also called as decomposer pool. Corresponding to each group
size a performance record is maintained, which is updated at the
end of every cycle.

At the start of a new cycle, a decomposer or group size is
selected from the decomposer pool on the basis of its past
performance, and then the problem is decomposed into small
components by using this decomposer. Each sub-component is
evolved in round robin fashion for certain fitness evaluations and
then at the end of a cycle, group size performance is stored. The
process is repeated until termination criteria is met.

MLCC [32] is further improved by Yang et al. [14]. They
introduced 3 techniques to improve its performance. These 3
techniques are summarized as follows:

—More frequent random grouping.
—Removing Adaptive weighting strategy for co-adaption.
—Self-adaption of sub-component sizes.

Authors realized that Adaptive weighting strategy is compu-
tationally expensive, and wastes lots of fitness evaluation. So,
they suggested that instead of using lots of fitness evaluations in
Adaptive weighting, if these fitness evaluations are used to increase
the number of cycles, then it will increase the frequency of random
grouping which leads to the improvement in the performance of an
algorithm.

CC based variant of CMA-ES called CC-CMA-ES for Large
Scale Global Optimization problems has been proposed by Liu et
al. [8]. In CC-CMA-ES, authors have used two new decomposition
strategies that are based on diagonal of the co-variance matrix of
CMA-ES.

—Min-Variance decomposition strategy (MiVD)
—Max-Variance decomposition strategy (MaVD)

These new decomposition strategies maintain a balance between
exploration and exploitation. An adaptive decomposition strategy
scheme is adopted which selects the appropriate decomposition
strategy.

The performance of CC based algorithms for tackling LSGO
problems depends heavily on optimal group size which is used
to decompose the problem into smaller sub-components. Optimal
group size for a particular problem tries to group most of the
interacting variables into one group so that they can be evolved
together. However, finding optimal group size for a particular
problem a priori is not feasible as, most of the time, problems
are black box. Dependency Identification techniques will be very
helpful here to find the optimal group size by identifying the
interacting variables. But work done in this area is very limited.

Wicker [30] proposed a simple technique for identifying interact-
ing variables which is based on Potters non greedy collaboration
strategy [16].

Wicker’s method for recognizing dependency is based on the
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observation that, if, by changing the value of dimensions j & k in
a decision vector, It achieves better fitness than by changing the
value of any one dimension, then there is strong indication that
dimensions j & k have dependency and these dimensions should
be merged together into the same sub-component.

A new individual for dimension i i.e., newvali is evalu-
ated by the collaboration of two different candidate solutions
candbest = 〈d1, ..., dn〉 and candrandom = 〈d′1, ..., d′n〉 which
are defined by:

dj =

{
newvali, i = j

bestvalj , otherwise
(2)

d′j =


newvali, i = j

randvalk, k = j

bestvalj , otherwise
(3)

where bestvalj is the value of the best individual in the population
for dimension j and randvalk is the value of a randomly chosen
individual in the population for dimension k.

Now, the fitness values of the two candidate solutions are
used for determining the dependency between variables. If the
fitness of candrandom is better than the fitness of candbest, then
a counter for the link (j, k) is increased. At the end of each
cycle, counters are analyzed and the dimensions having maximum
counters are merged.

For solving Large-Scale Global Optimization problems, Chen et
al. [2] proposed Cooperative Coevolution with Variable Interaction
Learning (CCVIL). They have used Wicker’s [30] dependency
identification technique to identify interacting variables so that they
can be placed in one group for next evolutionary cycle. CCVIL,
dynamically, finds interacting variables through the evolution of
the algorithm. It is one of the state-of-the-art algorithms in LSGO
field. Though CCVIL is successful in finding optimal group size
for most of the problems, it is very computationally expensive.
More than 60% of total FE’s is consumed in learning stage which
leaves only less than 40% for optimization stage.

Omidvar et al. have used a gradient approximation technique
in Differential grouping [13] to find the interacting variables so
that they can be put in the same sub-component. It is successful in
identifying direct interaction among decision variable but fails to
identify indirect interaction among decision variable.

Sun et al. [24] improved Differential Grouping technique
and proposed Extended Differential Grouping. This new technique
successfully identifies direct and indirect interaction among
decision variables.

Differential grouping is further improved by Mei et al. [10].
They adopted a modified CMA-ES as the base optimizer for
solving sub-problems.

Omidvar et al. [15] proposed DECC-D (Differential Evolu-
tion with Cooperative Coevolution using Delta-Grouping) which
uses delta value to identify interacting variables. Delta value
corresponding to a decision variable is calculated by measuring the
amount of change in it, in successive iterations.

DECC-D sorts the delta values and then decision variables
corresponding to two smallest delta values are merged in one
subcomponent.

Some other CC based algorithms for LSGO are Cooperative
Co-evolutionary Differential Evolution algorithm with Correlation
Identification Grouping (DECC-CIG) [23], Cooperative Coevolu-
tion with Variable Grouping and Filled Function (CCVF) [28], and
Variable Grouping based Differential Evolution algorithm [29].

2.3 Memetic Algorithms
Multiple Trajectory Search (MTS) [25] initially generates M
solutions uniformly distributed over the solution space using
Simulated Orthogonal Array (SOA).

During the first iterations MTS conducts a local search on
all the M solutions. For further iterations, MTS conducts a local
search only on the best solutions among M solutions. MTS uses
3 local search methods. Before applying a local search method to
a solution, MTS first checks which local search method better fits
the landscape of the solutions neighborhood to do the search. On
the basis of the performance of the local search method, the best
for a particular solution is chosen.

MTS has been used to solve numerous real-world optimiza-
tion problems. Aside from its outstanding performance on LSGO
problems, it has also given remarkable results on multiobjective
optimization problems.

MOS framework [6], rather than relying on a single algorithm,
considers a pool of algorithms which can be population-based,
local searches, etc. and combines them dynamically.

It uses a High-level Relay Hybrid (HRH) approach which
means that algorithms are used in sequence. Each algorithm
uses the population generated by the previous algorithm and
participation of each algorithm is adjusted dynamically, according
to some quality measures.

MA-SW-Chains [12] is another great algorithm for tackling
LSGO problems. It uses Solis Wets algorithm as its local search
procedure. Throughout the evolution, MA-SW-Chains manages
the LS Chains, which helps continuous LS algorithms to better
exploit the most promising regions. In this way, the continuous LS
algorithms, adaptively, fit its strategy parameters.

Authors participated in CEC competition on LSGO in 2010,
where MA-SW-Chains stood 1st among 10 algorithms, proving it
to be one of the strongest algorithms for LSGO problems.

Every Evolutionary Algorithm revolves around two important
factors: exploration and exploitation. Two-stage based Ensemble
Optimization Evolutionary Algorithm, EOEA [26], balances these
two factors by using a search procedure which is divided into two
stages explained as follows:

(1) Stage 1 (Global Shrinking Stage): Search region is shrunk to
a more promising region by using a search technique which
possesses high convergence speed.

(2) Stage 2 (Local Exploration Stage): A CC based search tech-
nique is used to explore the shrunk region to get better solu-
tions.
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The objective of the first stage is to find the most promising region
in a big solution space and the objective of the second stage is to
extensively explore the region shrunk by the previous stage to find
a better solution as soon as possible.

For the first stage, an Estimation of Distribution Algorithm
(EDA) based on mixed Gaussian and Cauchy models (MUEDA)
[27] is used. As the problem dimension increases, and search space
becomes large and complex, MUEDA can be used first to locate
the most promising region in the big solution space which can be
later exploited using some other algorithms. For the second stage
CC based algorithm is adopted.

Dynamic Multi-Swarm Particle Swarm Optimizer (DMS-PSO)
[7] uses a dynamic and randomized neighborhood topology. It has
shown better performance on multi-modal problems but fails on
making an efficient local search. A new DMS-PSO, incorporated
with a quasi-newton method, is proposed here [37] for Large
Scale Global Optimization problems. This quasi-newton method
improves the local search ability of DMS-PSO.

Zhao et al. [38] further improve the above procedure by re-
placing the quasi-newton method with Harmony Search method.
This new algorithm is labeled as DMS-PSO-SHS (Dynamic Multi-
Swarm Particle Swarm Optimizer with Sub-regional Harmony
Search). Authors participated in CEC competition on LSGO in
2010, where DMS-PSO-SHS stood 3rd among 10 algorithms,
showing that it is one of the robust algorithms for solving LSGO
problems.

There are some CC based algorithms which try to find de-
pendency among decision variables like CCVIL, Differential
Grouping, Delta Grouping, etc. but there hasn’t been much work
proposed that finds dependency among decision variables by
using the memetic algorithms. Sayed et al. tried to fill this gap by
proposing DIMA [20]. It consists of following two stages:

(1) Dependency Identification and Decomposition.
(2) Optimization and Information Exchange.

At first, DIMA uses the Dependency Identification (DI) technique
to identify the dependent variables so that they can be placed into
same sub-components. Sub-components are then evolved using a
memetic algorithm.

Optimal grouping of variables which is used to decompose
LSGO problem into small sub-components should minimize the
number of interdependent variables. An interdependent variable is
a variable which appears in more than two sub-components. While
optimizing a sub-component having an interdependent variable, if
its value changes, then all instances of it must be updated in other
sub-components too. In order to achieve this, a technique based on
information exchange is adopted.

Optimal group size is found by minimizing the least square
difference of F (x) and the summation of all fk(xv), v = [1, V ]
(V = dependent variables), as defined in equation 4.

min [F (x)−
m∑

k=1

fk(xv)]
2, v = [1, V ] (4)

DIMA is revised and a new updated version of DIMA, HDIMA
[21], is proposed.

Table 1. 2008 Competition results
Rank Algorithm Authors

1 MTS Tseng et al. [25]
2 LSEDA-gl Wang et al.
3 jDEdynNP-F Brest et al. [1]
4 MLCC Yang et al. [32]

Table 2. 2010 Competition results
Rank Algorithm Authors

1 MA-SW-Chains Molina et al. [12]
2 EOEA Wang et al. [26]
3 DMS-PSO-SHS Zhao et al. [38]
4 DASA Korosec et al. [5]

Table 3. 2013 Competition results
Rank Algorithm Authors

1 MOS LaTorre et al. [6]
2 DECC-G Yang et al. [31]
3 CC-CMA-ES Liu et al. [8]
4 VMODE Ernesto Diaz Lopez

The three main stages of HDIMA are as follows:

(1) Dependency Identification and Decomposition.
(2) Optimization and Information Exchange.
(3) Sub-components aggregation and Optimization.

Dependency identification and decomposition is performed in
same way as in DIMA. In the second stage, After the optimization
of a sub-component, Information Exchange Mechanism (IEM) is
activated so that all the instances of the interdependent variables in
different sub-components are updated.

In the last stage, sub-components are aggregated and opti-
mized using Memetic Algorithm (MA) as one large scale problem
with IEM deactivated.

3. CEC COMPETITION ON LSGO RESULTS
Congress on Evolutionary Computation (CEC) is one of the most
important international conference in the field of Evolutionary
Computation. CEC organizes a special competition on Large Scale
Global Optimization, where authors compete with their algorithms
specially designed for tackling Large scale optimization problems.
Competition results of past sessions are mentioned in Table 1, Ta-
ble 2, Table 3 and Table 4.

4. CONCLUSION AND FUTURE DIRECTIONS
Optimization problems with high dimensions frequently appear
in science, engineering, and other disciplines. Over the past
decade, various metaheuristics or their modifications have been
proposed to tackle these problems. In this paper, we surveyed some
state-of-the-art metaheuristics in the field of LSGO. We found two
promising approaches for tackling these problems one is CC based
algorithms and the other is memetic algorithms.

Numerous CC based algorithms have been proposed for tackling
LSGO problems. Most of them rely on random grouping tech-
niques to group interacting variables, but these algorithms are not
so powerful. The performance of CC based algorithms could be
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Table 4. 2015 Competition results
Rank Algorithm Authors

1 MOS LaTorre et al. [6]
2 IHDELS Molina et al. [11]
3 CC-CMA-ES Liu et al. [8]
4 DECC-G (Baseline Model) Yang et al.

drastically improved by incorporating Dependency Identification
(DI) technique. By using DI technique, algorithms will be able to
group dependent variable together more efficiently. But very lim-
ited work has been done on this issue and more efforts are required.

Memetic algorithms are local search based algorithms. They
generally revolves around designing smart local search techniques
which can explore complex landscape of high dimensional solu-
tion space more efficiently. Memetic algorithms generally do not
decompose the problem into smaller sub-components, rather they
are applied directly to the original problem.
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