
International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.6, July 2017 

1 

Parallel Genetic Algorithm for High School Timetabling  

 
Sanjay R. Sutar 

Asso. Professor, Dr. B. A. T. University, Lonere, 
Research Scholar, SGGSIET,  

Nanded, INDIA. 

Rajan S. Bichkar 
Professor, E&TC and Dean R&D, G. H. Raisoni 

College of Engg. & Mgt., 
Pune, INDIA. 

ABSTRACT 

The high school timetabling problem is a combinatorial 

optimization problem, proved to be NP-hard. It is a task to 

assign class–teacher interactions to rooms and timeslots of a 

weekly schedule. The nature of the problem varies depending 

on the region and institution. It has several hard and soft 

constraints. It means finding an assignment, such that no hard 

constraints are violated and the number of violations of soft 

constraints is minimized. Large and complex high school 

timetabling problem taken from real life, often takes long time 

to do manually. Hence, automated timetabling has attracted 

researchers since 1980s and many techniques have been 

proposed to solve it. Genetic Algorithm can be effectively 

used to solve such difficult problem. We propose the Parallel 

Genetic Algorithm (PGA) with customized operators and 

probabilistic repair to solve “hard timetabling” test problems 

hdtt4, hdtt5 and hdtt6 given by Professor Kate Smith-Miles in 

OR-Library. The optimal objective function for each of these 

problems is no clashes and fulfilling teacher’s workload on 

each class in given room. The functions are designed for 

intelligent operators and repair. The PGA consisting operators 

augmented with problem specific knowledge and probabilistic 

repair in crossover converges faster than Simple Genetic 

Algorithm (SGA) and give solution within few seconds. The 

results are compared with the recent work carried out using 

different methodologies on same data set. 
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1. INTRODUCTION 
Timetabling problems are optimization problems, considered 

to be a subset of scheduling problems. There are various 

problems in this category such as education timetabling, 

healthcare scheduling, transportation, sports and 

entertainment scheduling. The events have to be ordered in 

time slots while satisfying various constraints. Typically, 

timetabling problems are classified in three main categories: 

university, school, and exam timetabling problems. 

It is very difficult to solve school timetabling by conventional 

methods and the computation to find optimal solution 

increases exponentially with problem size. Hence efficient 

search methods are used to produce optimal or near optimal 

timetable satisfying the constraints. Institutes have to perform 

this task regularly which means a large wastage of time and 

efforts. Design of techniques for the automated timetables is 

still of interest. The school timetabling is to assign class, 

teacher and room tuples to time slots predefined number of 

times, so as to satisfy the hard constraints, and minimize the 

violation of soft constraints. The hard constraints include all 

class-teacher meetings must be included, no class or teacher 

should appear more than once in a slot, certain classes may 

need to be split and rearranged. The soft constraints represent 

expected features of the timetable, however if these 

constraints are not satisfied it will be still valid. We have to 

minimize the soft constraint cost and hence to improve the 

quality of the timetable. Typical soft constraints for the 

timetabling problem include class or teacher preferences. 

Research work in school timetabling started in 1960s. It 

focused on greedy technique and on local search methods 

such as simulated annealing, tabu search, and genetic 

algorithms. The metaheuristics techniques seem to be the 

most efficient and able to generate solutions in reasonable 

time and they can be adapted to different forms of problems. 

Hence, metaheuristics are used for large and complex 

instances. A large number of diverse methods have been 

proposed for solving timetabling problems, from a number of 

disciplines like Operations Research, Computational 

Intelligence, and Artificial Intelligence and development in 

solving them is a main goal of current research in these areas. 

Genetic Algorithm (GA) is a population based algorithm 

amenable for parallelization. Genetic algorithms are used to 

solve problems similar to the evolution. Initial population is 

created with randomly built individuals. Each individual is 

one of the possible solutions to the problem. The population is 

then modified with evolutional process similar to nature, i.e. 

evaluation, selection, crossover and mutation. The algorithm 

stops if a termination criterion is met. GAs produce timetables 

of comparative quality to that generated and used by the 

researchers. The timetable created meets all timetabling 

requirements without violating the constraints. The main 

contribution of this paper is a parallel genetic algorithm with 

customized operators to solve hdtt4, hdtt5, hdtt6 problems 

within short times which are less than most of the known 

times so far, reported by various techniques with same 

experimental set up. 

The following section provides previous work employing 

genetic algorithms to solve the school timetabling problem. 

Section III describes an overview of the hard timetabling, 

hdtt. The PGA with customized operators and probabilistic 

repair in crossover, used to solve hdtt problems is presented in 

section IV. The performance of the PGA in solving the 

problems is discussed in section V. A summary and future 

work is described in section VI. 

2. GENETIC ALGORITHMS AND 

SCHOOL TIMETABLING 
D. Abramson and J. Abela [1] showed how the execution time 

can be reduced by using shared memory multiprocessor while 

applying GA to the school timetabling problem. Alberto 

Colorni et al. [2] presented a model, algorithms and programs 

for the timetable problem, with reference to a real life 

application. Various versions of simulated annealing and tabu 

search were compared with a GA based approach. Tabu 

search gave the best performance and the GA did better than 

simulated annealing.  
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Andrea Schaerf [3] proposed an algorithm based on local 

search techniques. The algorithm used different techniques 

and different types of moves alternatively. Also the hard 

constraints were adaptively relaxed. The algorithm worked 

successfully within some large high schools with different 

side constraints. Adora E. Calaor et al. [4] presented hybrid 

technique, parallel genetic algorithm with simulated annealing 

to solve school timetabling. They explained how to run the 

algorithms in parallelization on a local network. They 

compared results on the different parallel models.  

Alpay Alkan and Ender Ozcan [5] discussed new operators to 

be applied in evolutionary algorithms for timetabling, such as 

exam timetabling. The operators are violation directed 

mutations, crossovers, and a violation directed hierarchical 

hill climbing method. Tests gave good results on a small part 

of a real data.  

Leonardo Aparecido Ciscon et al. [6] proposed a memetic 

algorithm, a hybridization that increased the robustness and 

the quality of the results, giving more appropriate solutions to 

real timetabling problem. Two methodologies, simultaneous 

elimination of open periods and isolated classes were 

compared. Rushil Raghavjee and Nelishia Pillay [7] proposed 

genetic algorithms for school timetabling problem. The fitness 

of the offspring was compared to that of the parent to check 

the effect of mutation on the quality of the timetable. They 

found that in the most of cases there was no improvement in 

the fitness. Hence they tested a “nondestructive” version of 

the mutation operator. The fitness after each mutation swap 

compared with the fitness of the parent. If the fitness was 

better further swaps were not performed and the offspring 

returned. If there was no improvement then all swaps were 

performed and the offspring returned. This mutation operator 

improved the performance of the GA. 

Nedim Srndic et al. [8] described a PGA for solving the 

weekly timetable problem for elementary schools. They 

proposed methods for chromosome representation and fitness 

evaluation, and specific recombination and mutation 

operators. The method used a coarse grained PGA, suitable 

for execution on a Beowulf cluster. Eugene Ruben Ramirez 

[9] employed smart operators, Violation-Directed Mutation 

(VDM), Event-Freeing Mutation (EFM), Stochastic 

Violation-Directed Mutation (SVDM) and Stochastic Event-

Freeing Mutation (SEFM) during the mutation process to 

solve two high school timetabling problems, with and without 

fixed master schedule. Violation directed mutation with a one 

point crossover gave the best result. The second type of 

problem was solved using GA by increasing population size. 

Michael Pimmer and Gunther R. Raidl [10] used the 

international, real-world instances of the benchmarking 

project for high school timetabling. Timeslot filling heuristic 

(TFH) was used for creating timetables. Selected timeslots 

were iteratively filled with sets of events. Nelishia Pillay [11] 

presented the performance comparison of a selection 

constructive hyper-heuristic (SCHH), a generation 

constructive hyper-heuristic (GCHH), a selection perturbative 

hyper-heuristic (SPHH) and a hybrid hyper-heuristic (GPHH) 

combination of a generation constructive and a selection 

perturbative hyper-heuristic, in solving the school timetabling 

problem. Evolutionary algorithm was used to search the 

heuristic space. Five problems in the Abramson benchmark 

set were solved with all hyper-heuristics. SPHH produced the 

best results for the all the problems. George H. G. Fonseca 

and Haroldo G. Santos [12] proposed memetic algorithm for 

the high school timetabling problem. A mixed Simulated 

Annealing - Iterated Local Search approach (SA-ILS) was 

applied to all the individuals in the population at iteration. The 

approach was suitable, especially to small instances of the 

problem.  

Nelishia Pillay [13] provided an overview of the research 

carried out in school timetabling, details of problem sets and 

areas for further research. She attempted to provide a standard 

definition of the problem in terms of hard constraints, soft 

constraints and problem requirements. She gave an overview 

of techniques applied to solve the school timetabling problem. 

R. Raghavjee and N. Pillay [14] applied a genetic algorithm 

selection perturbative hyper-heuristic for solving the school 

timetabling problem. A two-phased approach, with the first 

phase focusing on hard constraints and the second on soft 

constraints, was proposed. The genetic algorithm selection 

perturbative hyper-heuristic (GASPHH) was applied to five 

different school timetabling problems. The performance was 

compared to that of other methods, including a GA. GASPHH 

performed well over all five problems.  

3. THE HARD TIMETABLING 

PROBLEM 
We propose GA based solution to the high school timetabling 

problems hdtt4, hdtt5, and hdtt6, given as “hard timetabling” 

test data sets in OR-Library. All periods are to be utilized with 

very less or no options for each allocation. D. Abramson and 

H. Dang [15], M. Randall, D. Abramson and C. Wild [16], K. 

A. Smith, D. Abramson and D. Duke [17] originally used 

these data sets. Table-1 shows the grouping of rows according 

to venue for hdtt4.  

 

Table-1 hdtt4 requirements matrix 

 

C/T 

 

venue1 venue2 venue3 venue4 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 2 2 1 2 2 5 1 2 2 1 1 2 3 1 2 1 

2 1 1 1 2 0 4 3 2 0 0 5 1 1 4 1 4 

3 1 1 1 6 1 2 1 0 2 1 4 1 3 3 2 1 

4 2 2 3 2 2 2 1 2 6 1 2 1 2 0 1 1 

 

Requirements matrices for hdtt5 and hdtt6 are given in 

Appendix. It is read as follows: 

If there are C classes, T teachers, V venues, and P periods, 

then the venue1 block of Table-1 indicates the number of each 

class teacher interactions in venue1 across the P periods. It is 

a five days week, six periods a day with a total of 30 periods.  

All five problems have the following hard constraints: 

•A room must be allocated only once to a timeslot. 

•A class must be scheduled only once in a period. 

•A teacher must be scheduled only once in a period. 

•All class-teacher-venue tuples must be scheduled the 

expected number of times. 
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4. A PARALLEL GENETIC 

ALGORITHM WITH CUSTOMIZED 

OPERATORS FOR HARD 

TIMETABLING PROBLEM 
We have used GAlib, a C++ library of genetic algorithm 

objects developed by Matthew Wall of Massachusetts 

Institute of Technology [18]. The library includes tools for 

using genetic algorithms to do optimization in any C++ 

program. We applied ‘simple’ genetic algorithm as described 

by Goldberg [19] in his book, with varying parameters to 

solve hard timetabling problems. SGA creates an entirely new 

population of individuals by selecting from the previous 

population then mating to produce the new offspring for the 

new population. The crossover operator defines the procedure 

for generating a child from two parents. Mutation operator is 

based on the value of the mutation probability. Our 

representation is 1D array of integers which contains <Room, 

Teacher> tuples i.e. weekly timetable. Objective function 

returns the fitness score of individual chromosome (timetable) 

based on error value (error), which is sum of number of 

workload violations (error1) and number of clashes (error2). 

It is given by- 

Score= [1/ (0.1+error)], hence timetable with zero error value 

has score 10. Same room or teacher value at the same index in 

succeeding classes leads to a clash. The values, error1 and 

error2 are expressed by the following two equations: 

                                         

˅ 0<=r<rooms, 0<=c<classes, 0<=t<teachers.                      (1) 

W=workload, A=allotment                        

                  
   

         
     

         
                     (2)   

If ((TT [l*slots+n]) == (TT [m*slots+n])), otherwise 0.                                 

Where, TT is individual timetable (chromosome) and 

slots= (2*days*hours)   

GA operators have been modified which use problem specific 

knowledge during the evolution process, to speed up the 

search. Workload requirements are satisfied by customized 

initializer which initializes the chromosome with room and 

teacher values. Mutation is probabilistic and adaptive, as the 

probability is based on number of errors in the individual, 

more the errors higher is the probability. It checks clash in 

succeeding classes probabilistically and replaces it with a 

random number within valid range. 

The workload requirements are preserved while doing 

crossover by not cutting across classes in a chromosome. Our 

crossover site is determined randomly which lies within each 

class itself. Two children are generated by copying left part of 

the respective parent within the respective class to left part of 

the corresponding class in child. Their right parts are made up 

of right part of the respective parent. Workload allotment 

done so far, after copying first part to children is updated in 

arrays and the difference with actual workload is stored. The 

entire process is given by Algorithm-1. Probabilistic repair 

function resolves overlaps in a child, if any. 

(1) Copy <room, teacher> pairs upto ‘site’ from parent1 

and parent2 to corresponding classes of child1 and 

child2 respectively 

(2) Update allotment done so far after copying left parts 

of parents 

(3) Calculate difference between actual requirement and 

partial allotment    

(4) If (difference > 0) then copy corresponding <room, 

teacher> pairs to right parts of children else fill the 

positions with invalid value -1 

(5) Check new difference and insert <room, teacher> 

pairs after ‘site’ as per actual requirement by 

replacing -1s 

 Algorithm-1 Intelligent Crossover 

The PGA has multiple, independent populations. The 

populations are created by cloning the chromosome or 

population that we pass while creating it. A steady-state 

genetic algorithm is used for each population evolution. The 

steady-state GA uses overlapping populations with a specified 

amount of overlap. An algorithm creates a temporary 

population of individuals per generation, adds them to the 

previous population, and then the worst individuals are 

removed to bring the population to its original size. The 

amount of overlap between generations is specified as the 

percentage of the population to be replaced each generation. 

New offspring are added to the population and then the worst 

individuals are removed.  

Some individuals migrate from one population to another in 

each generation of PGA. A specified number of best 

individuals of each population migrate to its neighbor. The 

main population is updated each generation with best 

individual from each population. The initializer, modified 

crossover, adaptive mutation, and repair are also used in PGA. 

5. RESULTS AND DISCUSSION 
Our implementation is in C++ using Dev C++ compiler, 

version 4.9.9.2 on Intel(R) Core™ 2 Duo CPU 2.4 GHz with 

2 GB of memory and Windows Vista. SGA could give 

solution to hard timetabling, hdtt4 within a few minutes in 

80000 generations (Figure-1). Population size was fixed to 

100 after performing trial runs.  

The Figure-2 shows performance graph of SGA on hdtt4 with 

modified operators. An algorithm gave solution in 400 

generations and within few seconds compared to that of SGA 

(80000 and around 9 minutes) [20]. The graphs in Figure-3 

show errors vs. number of generations of customized PGA 

applied to solve hdtt4, hdtt5 and hdtt6 respectively. We 

obtained the results with 110,250 and 1200 generations, 

within three, fifteen and one hundred twenty seconds 

respectively which is worth noting in hard timetabling. A 

significant improvement in execution times was observed. 

Execution times are less than the most of known times so far, 

out of different methodologies. The performance for problems 

was tested against the comparison given by Nelishia Pillay 

[11]. The comparison was carried out on machine equivalent 

to our configuration. The following methodologies were 

applied to the Abramson benchmark set [17]. 

GA with SPHH- Selection perturbative hyper-heuristic, NN-

TT2 and NN-TT3- Neural network approaches, SA1 and 

SA2- Simulated annealing, TS- Tabu search and GS- Greedy 

search. Our customized GA performed comparable to SPHH, 

at par with GS and SA2 while better than NN-TT2, NN-TT3 

and TS on hdtt4. The customized PGA outperformed all (on 

hdtt4 and hdtt5). It performed very well except SA1 and GS 

(on hdtt6). Table-2 lists the performance comparison with 

other methods. We observed that customized operators and 

parallel variant helped in giving faster solutions for the GA 

based timetabling. 
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Figure-1 Performance of SGA on hdtt4 

(Linear Scaling, Roulette Wheel Selection, Pm=0.001, 

Ps=100, Errors=216 for 0 generation) 

 

Figure-2 Performance of SGA with customized operators 

on hdtt4 

(Linear Scaling, Roulette Wheel Selection, Ps=100, Pc=1.0) 

 

 

Figure-3 Performance of customized PGA on hdtt4, hdtt5, 

hdtt6 

Table-2 Performance comparison 

(Execution time in Seconds) 

Method 
Dataset 

hdtt4 hdtt5 hdtt6 

SPHH 12 120 300 

NN-TT2 29 116 291 

NN-TT3 109 146 227 

SA1 - 72 80 

SA2 15 41 123 

TS 630 87 1144 

GS 16 39 78 

Proposed 

PGA 
3 15 120 

 

6. CONCLUSION AND FUTURE WORK 
We presented a customized PGA to solve high school 

timetabling problems hdtt, “hard timetabling”, specifically 

hdtt4, hdtt5 and hdtt6 given as test data sets in OR-Library. 

The SGA produced a solution that met all the constraints for 

hdtt4 problem, but was unable to solve higher problems even 

after longer runs. Use of domain knowledge during the 

initialization, crossover, and mutation helped to speed up the 

search. The probabilistic repair was effective in boosting the 

fitness of the population. An algorithm gave results in a few 

seconds i.e. in much less time compared to SGA. Customized 

PGA performed better than known times given in comparative 

studies on similar configuration (except SA1 and GS for 

hdtt6). We will apply the PGA to additional hdtt and school 

timetabling problems in future. 
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8. APPENDIX 
A-1 hdtt5 requirements matrix 

 

 

 

 

 

 

 

 

A-2 hdtt6 requirements matrix 

C

/

T 

Venue1 Venue2 Venue3 Venue4 Venue5 Venue6 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 1 0 1 1 0 3 2 1 1 0 2 0 2 1 1 1 0 0 0 2 0 0 2 1 0 1 0 0 0 3 0 1 1 0 2 0 

2 0 2 0 0 0 0 0 0 1 0 2 3 1 0 3 0 1 0 0 1 1 2 0 2 0 1 0 3 1 0 0 3 2 1 0 0 

3 0 1 0 1 0 0 0 0 0 0 2 1 0 0 1 1 2 1 0 2 0 0 3 0 3 0 1 4 0 2 0 1 0 2 1 1 

4 1 0 2 1 0 1 1 0 0 0 0 0 1 1 1 1 1 2 1 1 2 1 0 0 2 0 1 0 0 1 1 2 2 3 0 0 

5 2 1 1 2 2 1 0 2 1 2 2 1 1 1 1 0 0 0 1 0 1 0 1 2 2 1 0 0 0 0 1 0 0 0 1 0 

6 0 1 1 1 1 2 3 0 1 1 1 0 1 1 2 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 

 

C/ 

T 

Venue1 Venue2 Venue3 Venue4 Venue5 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 1 0 0 1 2 4 0 3 1 3 2 2 0 0 2 1 2 0 0 1 1 1 1 1 1 

2 2 0 1 3 1 0 1 0 1 3 3 2 1 2 1 0 2 3 1 0 0 3 0 0 0 

3 0 0 1 2 1 0 1 2 1 1 1 0 3 1 1 2 0 2 0 4 1 2 3 1 0 

4 1 2 3 1 0 1 0 3 0 0 3 0 0 0 3 1 3 0 2 1 1 2 1 1 1 

5 0 2 1 4 1 2 1 0 2 0 1 0 0 1 1 1 1 0 2 1 1 3 2 2 1 
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