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ABSTRACT 

Unsteady hydromagnetic Couette flow of a viscous, 

incompressible and electrically conducting fluid in a rotating 

system between two infinitely long parallel porous plates, 

taking Hall current into account, in the presence of a 

transverse magnetic field is studied numerically. Fluid flow 

within the channel is induced due to impulsive movement of 

the lower plate of the channel and fluid motion is subjected to 

a uniform suction and injection at upper and lower plates. 

Magnetic lines of force are assumed to be fixed relative to the 

fluid. Numerical solutions for primary and secondary 

velocities are obtained from the governing momentum 

equation by employing explicit finite difference method. The 

effects of various non-dimensional parameters: Hall current 

parameter  , magnetic parameter  , suction/injection 

parameter   and time   on primary and secondary velocities 

are presented graphically and discussed.   
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1. INTRODUCTION 
The study of unsteady magnetohydrodynamic (MHD) Couette 

flow in the presence of a transverse magnetic field has various 

and wide applications in many areas of science and 

engineering such as MHD pumps, MHD generators, MHD 

accelerators, MHD flow meters, nuclear reactors using liquid 

metal coolant etc. Katagiri [1] studied unsteady MHD Couette 

flow of a viscous, incompressible and electrically conducting 

fluid in the presence of a uniform transverse magnetic field 

when the fluid flow within the channel is induced due to 

impulsive movement of one of the plates of the channel. In 

recent years, the study of Couette flow in a rotating system 

enhances an interest to the researchers due to its applications 

in secular variation of earth’s magnetic field, the internal 

rotation rate of sun, the structure of rotating magnetic stars, 

the planetary and solar dynamo problems, rotating 

hydromagnetic generators, vortex type MHD power 

generators and other centrifugal machines. Taking into 

account these facts, unsteady hydromagnetic Couette flow of 

a viscous incompressible electrically conducting fluid in a 

rotating system is investigated by Seth et al. [2,3,4,5], 

Chandran et al.[6], Hayat et al. [7], Das et al. [8], Jana et al. 

[9], Guria et al. [10] and Das et al. [11], under various aspects 

of the problem.  

In all these investigations, the effects of Hall current are not 

taken into account. Cowling [12] stated that the effects of Hall 

current become significant if the strength of the magnetic field 

is high and number of density of electrons is small as it is 

responsible for the change of the flow pattern of an ionized 

gas. Hall Effect results in a development of an additional 

potential difference between opposite surfaces of a conductor 

for which a current is induced perpendicular to both the 

electric and magnetic field. Hall current induces secondary 

flow in the flow-field. Hall current on the fluid flow have 

many applications in MHD power generation, nuclear power 

reactors, underground energy storage systems, and in several 

areas of astrophysical and geophysical interest. Keeping in 

view of this fact, Jana and Datta [13], Mandal et al. [14], 

Ghosh and Pop [15],  Hayat et al. [16], Guchhait et al [17], 

Ghosh [18], Reddy and Bathaiah [19], Das et al.[20], Chauhan 

and Agrawal [21], Seth et al. [22,23] and Harisingh Naik et al. 

[24]  studied the effects of Hall current on MHD Couette flow 

of a viscous incompressible electrically conducting fluid in a 

rotating system considering different aspects of the problem. 

Hossain [25] studied unsteady hydromagnetic free convection 

flow near an infinite vertical porous plate with the effect of 

Hall current.  

The study of MHD flow problem in porous channel may find 

applications in designing of cooling systems with liquid 

metals, geothermal reservoirs, underground energy transport, 

petroleum and mineral industries, in purification of crude oils 

etc. Taking into account this fact, Muhuri [26], Seth et al. 

[4,5,23], Guchhait [17], Reddy and Bathaiah [19], Harisingh 

Naik et al. [24] and Hossain [25] studied MHD Couette flow 

of electrically conducting fluid bounded by porous plates 

under different conditions, in rotating/ non-rotating system. 

The purpose of the present paper is to investigate unsteady 

MHD Couette flow of a viscous, incompressible and 

electrically conducting fluid in a rotating system bounded by 

two parallel porous plates in the presence of transverse 

magnetic field with Hall effects. Fluid flow within the channel 

is induced due to impulsive movement of the lower plate of 

the channel. Numerical solution of the governing equation is 

obtained by finite difference method. The effects of rotation, 

Hall current, magnetic field, porosity of the plates and time on 

the flow-field have been analyzed and presented graphically.  

2. MATHEMATICAL FORMULATION 
Consider the unsteady MHD Couette flow of an electrically 

conducting, viscous, incompressible fluid between two 

parallel infinite horizontal porous plates      and     
 
of 

infinite length in    and    directions. A uniform magnetic 

field    is applied parallel to   -axis. The fluid as well as 

plates of the channel are in a state of rigid body rotation about 

  -axis with uniform angular velocity   . Initially, at    
         both the fluid and plates are assumed to be at rest. 

But, at        the lower plate        starts to move with a 

constant velocity    while the upper plate         is 

stationary. There is no pressure gradient along the   -axis i.e 

        , and a uniform suction from above and injection 
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from below which are applied at     . It is assumed that no 

applied and polarization voltage exists.  This corresponds to 

the case where no energy is being added or extracted the fluid 

by electrical means (Meyer, [27]) i.e. electrical field,      . 

Further, the induced magnetic field can be neglected by 

assuming a very small magnetic Reynolds number. The Hall 

Effect is taken into consideration and consequently a   -
component for the velocity is expected to arise. The uniform 

suction and injection implies that the   -component of the 

velocity is constant i.e,      . Since the plates are infinite in 

the    and   -directions, all the physical quantities do not 

change in these directions. Thus, the fluid velocity and 

magnetic field vectors are given by,  
                     

           and  

              

 
Fig 1: Geometrical configuration of the problem 

The flow of the fluid is governed by the equations as follows: 

Continuity equation: 


Momentum equation in a rotating system: 

     

  
                       

 

 
          

 

 
              (2) 

Generalized Ohm’s Law:  

                 
 

   
     

  

  
                              (3) 

Maxwell’s Equations: 

       
    

  
                                                                         (4)  

                                      (5)   

Here,     is the velocity field,       is the angular velocity,     is the 

magnetic induction vector,     is the electric field vector,    is 
the current density vector,   is the pressure of the fluid,   is 

the density of the fluid,   is the coefficient of viscosity,   is 

the kinematic coefficient of viscosity,   is the electron charge, 

   is the number density of electron,   is the electron 

cyclotron frequency,   is the electron collision time,    is the 

electron pressure and    is the time.                                                                                                                                                                                                                                                                                                                                                          

We assume     to be negligible and the induced magnetic field 

can be ignored by assuming a very small magnetic Reynolds 

number. Moreover, in the absence of the ion-slip effects and 

electron pressure gradient; Generalized Ohm’s Law [3] 

reduces to  

              
 

  
                                                           (6)  

where,      is the Hall parameter. 

Using velocity (   ) and magnetic field (   ) as stated above, Eq. 

(6) can be solved in    to yield 

        
   

 

       
                                      (7)                                                                                            

Using  (7), the    and   -components of Eq.  (2) can be 

written as   
   

   
   

   

   
        

    

    
 

   
 

    
                      (8) 

   

   
   

   

   
        

    

    
 

   
 

    
                     (9) 

      
The initial and boundary conditions for the problem are 

 
                             

       
                          

                                   

                         (10)  

We, introduce the following non-dimensional quantities    

  
  

 
 ,    

  

  
,   

  

  
,   

   

  
                                              (11) 

Using non-dimensional quantities (11) in Eqs. (8) and (9), we 

obtain 

  

  
  

  

  
     

   

   
 

  

    
                               (12) 

  

  
  

  

  
     

   

   
 

  

    
                             (13)

 

 

where,   
   

 
 is the suction or injection parameter             

(    for suction and     for injection),                        

      
 

  
 
   

is the Hartmann number and   
    

 
  is the 

rotation parameter. 

The initial and boundary conditions (10), in dimensionless 

form, become 

 
                         
                                  
                              

                               (14)                                      

3. NUMERICAL SOLUTION 
Equations (12) and (13) represent a system of coupled linear 

partial differential equations which can be solved numerically 

subject to the initial and boundary conditions (14) using finite 

difference approximations. In numerical procedure 

computational domain is divided into a uniform grid system. 

Both the second-derivative and the first-derivative terms for 

space and time are discretized using the central difference 

approximations of second-order accuracy. The finite 

difference equations corresponding to the governing Eqs. (12) 

and (13) are as follows 

             

  
   

             

  
          

 
                   

  
 

  

                                           (15)  

             

  
   

             

  
          

 
                   

  
 

  

                                             (16)  

Then the initial and boundary conditions (14) become   

 
                                          

                                      

                                    
                     (17)                                                                                    

where, index   refers to  ,   refers  to   and   denotes number 

of grids inside the computational domain in  the  -direction.  

Solving Eqs. (15) and (16) respectively for      and     , we 

obtain the following equations 
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                                                                     (18) 

                                         

                                                                     (19) 

where, 

   
 

  
    

    

 ,    
  

     
    

     
  ,     

  

    
    

     
  , 

   
      

   

     

  
    

    

    are constants.  

The numerical solutions of Eqs. (18) and (19) subject to the 

initial and boundary conditions (17) are obtained by first 

selecting  non-dimensional parameters that are involved such 

as  ,  ,   and  . Then knowing the values of   and   at a 

time  , we can evaluate the values at a time       as follows. 

We substitute                      
 
in the Eq. (18) which 

constitutes a tri-diagonal system of linear equations; the 

system can be solved by Gauss Seidal iteration method 

(Mathews and Fink, [28]).  Thus   is known for all values of 

  at time  . Then knowing values of   and applying the same 

procedure with the boundary conditions (17), we calculate    

from equations (19). This procedure is continued to obtain the 

solution till the converged solutions for   and   in the grids 

system are obtained at desired time   .  

4. RESULTS AND DISCUSSION 
In this present paper, Hall Effect on unsteady MHD Couette 

flow of an electrically conducting viscous incompressible 

fluid in a rotating system bounded by two parallel non-

conducting porous plates in the presence of transverse 

magnetic field have been investigated numerically. Numerical 

solutions for the non-dimensional fluid velocity components   
and   have been presented for different values of the 

Hartmann number ( ), rotation parameter (Ω), Hall 

parameter ( ), suction/injection parameter ( ), and time   
against   in Figs. 2-14.  

 
Fig 2: Primary velocity profile   at various   when    , 

     ,     and        

In Fig. 2 and Fig. 3, we have presented the primary and 

secondary velocity profiles for different values of the 

Hartmann number   keeping other parameters fixed.    It is 

seen in these figures that the magnitude of the primary 

velocity   decreases and the secondary velocity   increases 

with an increase in Hartmann number  . It is clear from Eq. 

(12) that the term  
   

     , which decides the flow in the  -

direction. If the Hartmann number    , then the term 

mentioned above is zero and hence there is no force to induce 

the flow in the  -direction, that is,    . The interaction of 

the transverse magnetic field with the moving fluid creates a 

body force called Lorentz force, and plays the role of a 

resistive type force  on the primary flow similar to a drag 

force that acts in the opposite direction of the fluid motion and  

tends to retard the flow thereby reducing the primary velocity. 

On the other hand, the resulting Lorentz force will not act as a 

drag force but act as an aiding body force on the secondary 

flow. This will serve to accelerate the secondary velocity. 

This is in good agreement with the results of Hossain [25]. 

 

Fig 3: Secondary velocity profile   at various   when 

   ,      ,     and        

 
Fig 4: Primary velocity profile   at various   when    , 

   ,         and        

 
Fig 5: Secondary velocity profile   at various   when 

   ,    ,         and        
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Fig 6: Primary velocity profile   at various         when 
   ,       ,     and        

 

Fig 7: Secondary velocity profile   at various         
when    ,       ,     and        

 

Fig 8: Primary velocity profile   at various         
when    ,       ,     and        

 

Fig 9: Secondary velocity profile   at various         
when    ,       ,     and        

 

Fig 10: Primary velocity profile   at various   when 

   ,    ,     and        

 

Fig 11: Secondary velocity profile   at various         
when    ,    ,     and        
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Fig 12: Secondary velocity profile   at various         

when    ,    ,     and        

 
Fig 13: Primary velocity profile   at various   when    , 

   ,       and     

 
Fig 14: Secondary velocity profile   at various   when 

   ,    ,       and     

Fig. 4 and Fig. 5 present the effects of rotation parameter   on 

primary and secondary velocities for fixed values of    , 

   ,         and        respectively. It is observed in 

Fig. 4 that the primary velocity   decreases with an increase 

in rotation parameter  . While, the secondary velocity    

increases for increasing values   as it is seen in Fig. 5. It 

confirms the result obtained by Seth et al. [5]. 

The effects of suction parameter         on velocity 

components   and   are depicted in Fig. 6 and Fig. 7 

respectively, when    ,      ,     and       . It is 

observed in Fig. 6 and Fig. 7, that both primary and secondary 

velocity increases as suction parameter    increases.   

Similarly, the effects of injection parameter         on 

velocity components   and   are depicted in Fig. 8 and Fig. 9 

respectively. The variation of velocity profiles for the 

injection case is quite opposite to that of suction case as 

shown in Fig. 6- Fig. 7.   

Fig. 10 demonstrates the primary velocity   for different 

values of the Hall parameter  , when    ,    ,     

and       . It is observed that the Hall current promotes the 

flow along the channel. So, primary velocity   increases with 

an increase in Hall parameter. This is because, in general, the 

Hall currents reduce the resistance offered by the Lorentz 

force.  

The effect of Hall current on the secondary velocity   is 

depicted in Fig. 11 and Fig. 12 for the cases     and 

    respectively. The secondary velocity is induced by the 

component of the Lorentz force in the  -direction which arises 

solely due to the Hall current. From Eq. (12), it is clear that 

the term 
 

    
  decides the flow in the  -direction. If the Hall 

parameter    , then the term mentioned above is zero and 

hence there is no force to induce the flow in the  -direction. 

That is    . Further, 
 

     increases as   increases in the 

range      , and it decreases as   increases in the range 

   . This implies that the magnitude of the component of 

the Lorentz force in the  -direction increases as   increases in 

the range       and hence the secondary velocity   

increases, while it decreases when   increases in the range 

    and hence the secondary velocity   is decreases. 

These results are analyzed graphically in Fig. 11 and Fig. 12. 

These are in good agreement with the result obtained by 

Harisingh Naik et al. [24].    

Fig. 13 and Fig. 14 present the velocity components   and   

as functions of y for different values of the time starting from 

    to the steady state when    ,     and    . It is 

observed in Fig. 13 and Fig. 14 that both the primary and 

secondary velocity components   and   increase with an 

increase in time and reach the steady state monotonically and  

  reaches the steady state faster than  . 

5. CONCLUSIONS 
In this paper, unsteady MHD Couette flow of a viscous, 

incompressible and electrically conducting fluid in a rotating 

system bounded by two infinitely long parallel porous plates, 

taking Hall current into account, in the presence of a 

transverse magnetic field is studied numerically by explicit 

finite difference method. Based on the computed results 

presented above in terms of graphics the following   

conclusions are made.    

a. Effect of applied magnetic field is to retard the 

primary flow throughout the channel and to support 

the secondary flow induced by the Hall current. 

b. The effect of rotation is to reduce the primary flow 

and enhance the secondary flow throughout the 

channel.  

c. Hall current promotes primary flow throughout the 

channel; it enhances the secondary flow when the 

Hall parameter is increased up to unity and retards 

the secondary flow when Hall parameter is 

increased beyond unity. 
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d. The suction parameter         enhances both 

primary flow and secondary flow, while the 

injection parameter         has a reversal effects 

on flow variables.  

e. Both the primary and secondary flows increase with 

an increase in time and reach the steady state 

monotonically and primary flow reaches the steady 

state faster than secondary flow. 
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