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ABSTRACT
This article presents an automatic approach to validate UML arti-
facts created during Model Driven Engineering. This validation ap-
proach may be used at both model and metamodel layer of Model
Driven Architecture. This approach first automatically translates
the UML artifacts into logical equivalent OWL 2 axioms and then
use OWL 2 reasoners to validate the translations. Furthermore, the
viability of the approach is demonstrated by validating 303 mod-
els and metamodels available in an online repository and the re-
sults show that half of the models and metamodels found erroneous.
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1. INTRODUCTION
Model Driven Engineering (MDE) [1] advocates the use of models
to represent the most relevant design decisions in a software devel-
opment project. Each software model is described using a partic-
ular modeling language, such as the Unified Modeling Language
(UML) [2] or a domain-specific language. The definition of a mod-
eling language is given using a so-called meta modeling language
or a language to define modeling language.
Creating a new metamodel is not a simple task since it requires
a good knowledge of the problem domain and how to use model-
ing languages to improve the development of new systems. Also,
a metamodel can contain errors. A metamodel contains constraints
on how concepts in a model can be related to each other, such as
multiplicity, domain and range, composition and subset constraints.
These constraints may lead to contradictions.
Similarly, creating models can be a complicated task. Models are
intended to conform to the metamodels after which they are spec-
ified, but is is not always easy to ensure that they conform to all
of the constraints that the metamodel imposes. Without tool-aided
validation, the models can easily end up containing both obvious
and less trivial errors with regard to their metamodel specification.
Furthermore, it will be a help in the development process to have
software tools that can aid in on one hand validating the internal
consistency of metamodels and on the other hand validating mod-

els against their metamodels. The idea presented here is to represent
metamodels as ontologies based on Description Logics (DL) [3].
Later, the existing DL reasoners can be used to validate the meta-
models.
The advantage of this approach is that once encoding of the meta-
models is obtained it can be used by the reasoners to solve both the
validation problems. The reasoners’ capabilities to reason about in-
dividuals belonging to a system of classes enable us to check mod-
els against their metamodel specification. The reasoners’ capabil-
ities to draw conclusions about the system of classes itself can be
used to check the consistency of metamodels.

2. METHODOLOGY
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Fig. 1. Conceptual Model for Automatic Validation of Metamodel and
Models

The study of metamodeling languages has led to a number of
practical tools such as model repositories, diagram editors, model
transformation tools and code generation tools that simplify enor-
mously the creation of new practical tool chains that use UML
or domain-specific modeling languages in software development
projects. There exist metamodel repositories such as the Atlantic
Metamodeling Zoo [4] that contain hundreds of metamodels for
many different problem domains.
Two well-known metamodeling languages are MOF or the UML
Infrastructure [5] that are used to define the UML as known by its
practitioners. They can also be used to define new modeling lan-
guages. Other popular metamodeling languages include the Ecore,
used in the Eclipse Modeling Framework (EMF) [6, 7] or KM3 [8].
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These metalanguages are targeted to define domain-specific lan-
guages that are specific to a certain application domain.
There are several important differences between these metamodel-
ing languages as described by Alanen et al. [9]. However, it can be
acknowledged that share a common set of fundamental concepts:
the classification of model elements into classes, the association of
classes using properties and the specialization of classes and prop-
erties. In this article all such languages are called UML-like meta-
modeling languages, and it is these languages are targeted.

2.1 Description Logic and UML
This article also shows the logical equivalent representations of the
UML construct using an ontology language based on Description
Logics. DL are a family of logic languages that are especially suit-
able to model knowledge in a domain in terms of concepts and
roles. The main characteristic of DLs is their reasoning capabilities.
DLs are less expressive than first-order logic but they are decidable
in the majority of cases and there exist efficient reasoning engines
that can tackle classification and satisfiability problems.
By creating a mapping between a metamodeling language and the
DL, this work obtains important benefits:

—Firstly, providing a formal and unambiguous definition of the
metamodeling concepts that is independent of a specific model
repository. This ensures interoperability of metamodeling tools.

—Secondly, the ability to use existing reasoning tools to analyze
and validate metamodels and detect problems.

—Thirdly, the same representation is used for both to encode the
constraints that apply to metamodels and for the constraints that
metamodels impose on models.

2.2 Related Work
The use of DL and ontology languages in the context of metamod-
eling has been proposed in the past. Van Der Straeten has studied
the use of DL to formalize fragments of UML and detect inconsis-
tency between models [10]. Parreiras et al. has discussed the ben-
efits of integrating metamodeling and ontology languages [11] and
have proposed the OntoDSL language to define new domain spe-
cific languages [12]. Gašević et al has discussed the use of UML
diagrams to construct ontologies [13]. Wang et al has suggested a
partial mapping of MOF to OWL for consistency checking [14].
OMG also proposes the ODM which defines a UML to OWL map-
ping of classes and associations [15]. It is nonetheless believed that
a detailed discussion on how to capture the semantics of UML-like
metamodeling languages in the context of DLs and the use of DLs
reasoners to validate metamodels are missing in the literature.
This proposal is based on the OWL 2 Web ontology language [16]
and the SWRL Semantic Web Rule Language [17], whose seman-
tics are rooted in DL. These are two standard recommendations
from the W3C to improve machine interoperability of web content
(the semantic web). There exists tools such as Pellet [18] that pro-
vide reasoning services for OWL 2 ontologies, and support DL-safe
SWRL rules [19].
In order to preserve readability, this article writes OWL 2 using
the functional syntax, while SWRL rules will be described using
the human-readable syntax used by Horrocks et al. in their SWRL
proposal [17].

3. REPRESENTING UML-LIKE METAMODELS IN
OWL 2

This section provides a mapping of the basic UML and MOF meta-
modeling concepts of classes, various relationships among those
conceptual classes into OWL 2.

3.1 Classes and Modeling Elements
The most fundamental concept in a UML and MOF metamodel is
class. A class is the basic building block of a metamodels. A UML
class in a metamodel represents an abstraction of the elements ap-
pearing in a model. Accordingly, each element in a model is an
instance of a class in a metamodel. A class can be a specialization
of another class. Each instance of the specialized class is implicitly
an instance of its generalization and shares its features. A class can
also represents an abstraction of entities that can appear in a model
such as a state or a transition in a Statechart.
For each metaclass C in a UML metamodel, it is asserted that
there exists a homonymous class in OWL 2 with the axiom Dec-
laration(Class(C)). As an example, the mapping of UML Classes
shown in Figure 2 into OWL 2 is as follows:

Declaration( Class(State) ) Declaration( Class(Transition) )
Declaration( Class(CompositeState) )

State

CompositeState

Transition0..*outgoing1 source

0..*incoming1 target

0..1
container                 

0..* substates    

Fig. 2. Class Definition and Class specialization

A UML representation of specialization is also shown in Figure 2.
In OWL 2 the SubClassOf axiom is used to represent class spe-
cialization. For each pair of metaclasses C1 and C2 where C2 is a
subclass of C1, the axiom SubClassOf(C2 C1) is declare in the cor-
responding OWL 2 ontology. In this example class CompositeState
as a subclass of State, which is consequently expressed as:
SubClassOf(CompositeState State)

3.2 Class Membership
Each element in a model, such as a transition in a given statechart, is
an instance of a class in a metamodel. The UML and MOF seman-
tics for instantiation follow closely the object-oriented paradigm.
In this context, when declaring a model element m is of type C, it
is asserted that:

—m is a direct instance of the class C
—m is an (indirect) instance of all the superclasses of C
—m is not an instance of any other class

However, declaring that an element m is of type C in OWL 2 asserts
that:

—m is at least an indirect instance of the class C
—m is an (indirect) instance of all the superclasses of C
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—m is not an instance of any classes disjoint to C

According to the UML semantics of class membership, when it is
asserted that a model element is an instance of a class, it is also
asserted that it is not an instance of its subclasses. This is not true
in OWL 2. It is therefore needed to declare that there is a subset
of model elements belonging to a class that do not belong to its
subclasses. This set is called a direct instances of a class.
For each metaclass C a OWL 2 class C DInstance is defined that
is a subclass of C: SubClassOf(C DInstance C). In the example
shown in Figure 2,

SubClassOf(State˙DInstance State) SubClas-
sOf(CompositeState˙DInstance CompositeState)
SubClassOf(Transition˙DInstance Transition)

Any model element m asserted to be of type C in a model is as-
serted to be of type C DInstance in the transformation, in order to
preserve the UML semantics of class membership.
Furthermore, a class equivalent to the union of its direct instances
and any direct subclasses is explicitly declared. The example
yields:

EquivalentClasses(State ObjectUnionOf( State˙DInstance CompositeS-
tate ))
EquivalentClasses(CompositeState˙DInstance CompositeState)
EquivalentClasses(Transition˙DInstance Transition)

Moreover, the OWL 2 class representing the direct instances
of C ( C DInstance) must be disjoint with the OWL 2 classes
that represent direct subclasses of C. In this example, Disjoint-
Classes(State DInstance CompositeState)
In OWL 2, unless classes are explicitly stated to be disjoint or in-
dividuals to be unique instances, they may be not treated as such.
This would allow us to assert that an individual belongs to class
State and Transition simultaneously. However, the UML interpre-
tation does not allow this. It is therefore to necessary to declare a
class disjoint to any other classes that it is not a a superclass to, a
subclass of, or sharing subclasses with.
In practice, in order to avoid parsing complicated graphs, the direct
instances of a class disjoint to any classes that are not transitively a
superclass to the direct instance are declared. As it was previously
declared a class equivalent to the union of its subclasses and di-
rect instances, it is therefore possible for a reasoner to infer which
classes are disjoint to each other.
A pair of classes that have been declared disjoint to each other
will naturally also be disjoint to any subclasses. Therefore, the only
classes that need to be declared disjoint to the direct instance class
are top level classes and any direct subclasses of a (transitive) su-
perclass.
For the example shown in figure 3 following axioms are generated
accordingly:

DisjointClasses(A˙DInstance ObjectUnionOf(C D E))
DisjointClasses(C˙DInstance ObjectUnionOf(D E))
DisjointClasses(D˙DInstance ObjectUnionOf(C E))
DisjointClasses(E˙DInstance ObjectUnionOf(C D))
DisjointClasses(F˙DInstance C)

A

C D

F

E

Fig. 3. An example of a metamodel with multiple inheritance.

3.3 Properties
Another fundamental concept in UML and MOF metamodels be-
sides the class is the property. A property represents a basic rela-
tionship between classes. For example, the class representing a stat-
echart transition may have two properties to represent the source
and target state of each transition.
This section discusses how to represent UML set properties in
OWL 2. In this section the properties related to an unordered set
of objects are referred as set properties. These properties are used
when the order of definition of elements is not relevant. For ex-
ample the definition of classes in a package. The next section will
discuss about the ordered set properties and bag properties. In ad-
dition, it will also discuss properties representing a composition.

C2n1..n2 m1..m2
P1                                      P2

C1

Fig. 4. A UML binary association with two properties

In a UML class diagram representing a UML metamodel, proper-
ties are presented as associations between classes. A binary UML
association contains two properties that represent each end of the
association. In the example shown in Figure 4 the properties are P1
and P2.
Each UML property is represented as an OWL ObjectProperty and
prefixed the name of the property with the full name of the class
in order to distinguish between properties with the same name be-
longing to different classes.
In this example, the UML properties P1 and P2 are declared as the
OWL ObjectProperty C1 P2 and C2 P1 respectively:

Declaration( ObjectProperty(C1˙P2) ) Declaration( ObjectProp-
erty(C2˙P1) )

Additional features of the properties such as type and multiplicity
constraints are represented as domain, range and cardinality axioms
in OWL 2.

ObjectPropertyDomain(C1˙P2 C1) ObjectPropertyRange(C1˙P2 C2)
ObjectPropertyDomain(C2˙P1 C2) ObjectPropertyRange(C2˙P1 C1)
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The multiplicity of a UML property is mapped into OWL 2 by
defining the owner class of the property as a subclass of a set of
classes which own the same property of the same cardinalities.

SubClassOf(C1 ObjectMinCardinality(m1 C1˙P2 ))
SubClassOf(C1 ObjectMaxCardinality(m2 C1˙P2 ))
SubClassOf(C2 ObjectMinCardinality(n1 C2˙P1 ))
SubClassOf(C2 ObjectMaxCardinality(n2 C2˙P1 ))

In this example, both P1 and P2 are two ends of the same associ-
ation and are opposite properties. In UML two opposite properties
form a bidirectional and navigable association. It is represented in
OWL 2 by stating that P1 is the inverse of P2 using the following
axiom: InverseObjectProperty(C1 P2 C2 P1)

3.4 Composition
Composition is an important concept used to denote hierarchy and
ownership in a model; it lets us organize a model as a collection of
smaller parts. Composition has two requirements: it should not be
possible to create a cyclic composition, and an element can only be
referred to by one composition slot. This section defines a mapping
of UML composition into OWL 2.
In OWL 2 there is no axiom defining composition. So in order to
represent the composition constraints in OWL 2, two properties are
defined: contains — denoting the aggregation of elements in the
model, and owns — denoting the direct owner of an element. Fig-
ure 5 shows the basic metamodel illustrating these properties, and
a model conforming to the metamodel. Composition can be used to
create a hierarchy of any kind of objects, meaning the domain and
range of these properties will be the default owl:Thing—the super-
class of all individuals in an ontology.

owl:Thing   0..1

0..*          

owns          

*

  *
                contains

C2:owl:Thing

C3:owl:Thing

C1:owl:Thing

  owns

             ownscontains                 
               contains

contains

Fig. 5. Left: the composition metamodel. Right: a model conforming to
the metamodel

The contains property is used to capture the acyclic requirement,
by defining it as an irreflexive object property:
IrreflexiveObjectProperty( contains )

Furthermore, aggregation is transitive. However in order to guaran-
tee decidability, it is not possible to combine the IrreflexiveObject-
Property and TransitiveObjectProperty axioms. The transitivity is
expressed using the following SWRL rule:
contains(?x, ?y) ∧ contains(?y, ?z) =⇒ contains(?x, ?z)
Given that contains tracks the aggregation of model elements, each
object that owns another object must also contain it. It is expressed
by defining owns as a subproperty of contains. SubObjectProper-
tyOf( owns contains ). The subproperty axiom is further discussed
in Section 3.5.
The composition slot requirement states that an object can only
have one owner. In other words, the inverse property of owns has

a maximum cardinality of one. This restriction is expressed by us-
ing the inverse functional property axiom: InverseFunctionalOb-
jectProperty( owns )
The owns and contains properties are defined as global properties;
they apply to all classes in a metamodel. However, this work also
wishes to be able to apply range and cardinality restrictions on com-
posite relationships. If a metamodel defines a class CompositeState
as being in composite relationship with a class State it should only
be in a composite relationship with that class. However, these re-
strictions cannot be applied directly on the owns property while still
using it to enforce composition restrictions over the entire meta-
model. This problem is solved by making a separate subproperty of
owns for each composite relationship in the metamodel, on which
the restrictions can be applied like as any other property.
If the class CompositeState is in a composite relationship labeled
substates with the State, it is declared as the following:

SubObjectPropertyOf(substates owns)
ObjectPropertyDomain(substates CompositeState)
ObjectPropertyRange(substates State)

As with any other property, cardinality is imposed on individual
classes in the metamodel by subclassing restrictions like Object-
MinCardinality(n substates State). Furthermore, in order to be able
to impose cardinality restrictions on the owning end of a composite
association, an inverse object property to the properties represent-
ing a specific association in defined. It is translated as:

InverseObjectProperties( substates substates˙owned )

3.5 Property Subsetting
This section provides a mapping of UML property subsetting into
OWL 2. Property subsetting was introduced in the MOF 2.0 and
the UML 2.0 infrastructure, and allows for the specialization of an
existing property, with new characteristics and a new basic type
while retaining its existing features. Each instance of the special-
ized property is also an instance of the original property, and there-
fore elements that are a part of its slot should be a part of the origi-
nal property slot. A UML example of property subsetting is shown
in Figure 6.

C2

C4

C1 0..nP1

0..mP2C3

Fig. 6. UML association subsetting P2 ⊆ P1

The OWL 2 axiom SubObjectPropertyOf is used to subset a prop-
erty: SubObjectPropertyOf(P2 P1). Furthermore, it modifies the
specialized property, within the constraints imposed by the origi-
nal property.
It is translated into OWL 2 as:
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DisjointClasses( C1 C2 ) SubClassOf( C3 C1 ) SubClassOf( C4 C2 )
Declaration( ObjectProperty( C1˙P1 ) )
ObjectPropertyDomain( C1˙P1 C1 ) ObjectPropertyRange( C1˙P1 C2 )
SubClassOf( C1 ObjectMaxCardinality( n C1˙P1 ))
SubObjectPropertyOf( C3˙P2 C1˙P1 ) ObjectPropertyDo-
main( C3˙P2 C3 )
ObjectPropertyRange( C3˙P2 C4 ) SubClassOf( C3 ObjectMaxCardinal-
ity( m C3˙P2 ))

4. REPRESENTING UML-LIKE MODELS IN OWL
2

A Model consists of classes and associations, if a model is designed
for some specific domain then that model must be an instance of
metamodel which defines the domain language. Since a model only
consists of class instances and association between those instances,
ensuring that a model is part of the domain defined by a metamodel
is primarily a case of ensuring that the reasoner has enough in-
formation to enforce cardinality constraints and class membership,
and that no associations or individuals other than what is explic-
itly provided by the model and metamodel is inferred. In other
words, providing the reasoner with enough information to evalu-
ate the model according to a closed world assumption.

           
      t2: a

t1: a

t3: b      t4: b

State3

State2State1

1 0...*
Target                              Incoming

1 0...*
Source                             Outgoing

0...*

transitions

0...*

States

Transition
triger: String

State
name: String

StateMachine

Fig. 7. Top: Metamodel of State Machine, Bottom: An State Machine
Model.

4.1 Modeling Classes as Instances
While modeling for DSL, a class of a model is depicted as an
instance of conceptual class of Metamodel which is representing
the DSL. An instance of class in OWL 2 is represented by an ax-
iom ClassAssertion(ClassName InstanceName), Figure 7 depict-
ing the state machine metamodel and its model, the translation of
the classes of state machine model in OWL 2, as follows:

ClassAssertion( State State1 ) ClassAssertion( State State2 )
ClassAssertion( State State3 ) ClassAssertion( Transition t1:a)
ClassAssertion( Transition t2:a) ClassAssertion( Transition t3:b)
ClassAssertion( Transition t4:b)

4.2 Modeling Associations as Properties
For representing the association between concepts of Metamodel
the OWL 2 property axiom is used, similarly for representing the
the associations between concepts of model the OWL 2 property
is instantiated by using axiom ObjectPropertyAssertion( Proper-
tyName RangeClass DomainClass ), the association among the
classes of model represented in Figure 7 is translated by using OWL
2 axioms is as follows.

ObjectPropertyAssertion( Source State1 t1:a ) ObjectPropertyAsser-
tion( Source State2 t2:a )
ObjectPropertyAssertion( Source State3 t3:b ) ObjectPropertyAsser-
tion( Source State4 t4:b )

ObjectPropertyAssertion( Outgoing t1:a State1 ) ObjectPropertyAsser-
tion( Outgoing t2:a State2 )
ObjectPropertyAssertion( Outgoing t3:b State3 ) ObjectPropertyAsser-
tion( Outgoing t4:b State4 )

ObjectPropertyAssertion( Target State2 t1:a ) ObjectPropertyAsser-
tion( Target State3 t2:a )
ObjectPropertyAssertion( Target State2 t3:b ) ObjectPropertyAsser-
tion( Target State3 t4:b )

ObjectPropertyAssertion( Incoming t1:a State2 ) ObjectPropertyAsser-
tion( Incoming t2:a State3 )
ObjectPropertyAssertion( Incoming t3:a State4 ) ObjectPropertyAsser-
tion( Incoming t4:a State3 )

4.3 Applying Closed World Restrictions
UML and MOF-like modeling adopts the closed world assumption
whereas Ontology Development Modeling adopts the open world
assumption, due to this when ever the closed world UML or MOF-
like models or metamodels are translated in ontology, for the sake
of correctness of reasoner error report and validation outcome there
is a need to create the closed world environment inside the open
world of Ontology. For creating closed world environment while
translating the model in OWL 2, first the equivalent instance is re-
quired for each class with the respective classifying class by using
OWL 2 axioms,

EquivalentClasses(ClassifierClassName˙Metamodel ObjectOneOf( In-
stantiatedClassName˙Model) )

and secondly all classifying classes must be made equivalent with
owl:Thing by using following OWL 2 axiom,

EquivalentClasses(owl:Thing ObjectUnionOf(InstantiatedClass1 Instanti-
atedClass2 InstantiatedClassN) )

By applying above rules on model of Figure 7, the OWL 2 closed
world translation is as follows,

EquivalentClasses(State ObjectOneOf(State1))
EquivalentClasses(State ObjectOneOf(State2))
EquivalentClasses(State ObjectOneOf(State3))
EquivalentClasses(Transition ObjectOneOf(t1:a))
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EquivalentClasses(Transition ObjectOneOf(t2:a))
EquivalentClasses(Transition ObjectOneOf(t3:b))
EquivalentClasses(Transition ObjectOneOf(t4:b))
EquivalentClasses(owl:Thing ObjectUnionOf(State Transition))

5. AUTOMATIC TRANSLATION TO
ONTOLOGIES

The transformation from a metamodel expressed using UML to
OWL 2 is implemented using the Model-to-Text transformation
tool MOFScript [20] [21].
MOFScript consists of two parts: the MOFScript tool and the
MOFScript language. The MOFScript tool is developed as an
Eclipse [6, 7] plugin and contain an implementation of the MOF-
Script language and it provides ways of editing, compiling and ex-
ecuting MOFScript transformation code. MOFScript transforma-
tions are MOFScript language programs that define a set of rules
that can translate metamodel elements and relations between them
to expected output through print statements. The MOFScript trans-
formation code is written based on one or more input metamod-
els, then compiled and executed on one or more loaded input files
which contains models conforming to the input metamodels.
The input metamodel in this implementation is UML2 2.1.0, the
input file is a .uml file which contains a UML metamodel in XML
syntax and output file contain an OWL 2 ontology written in OWL
2 functional syntax.

6. CORRECTNESS AND EXPERIMENTAL
RESULTS

To determine the correctness of presented approach in practice the
test have been conducted by translating metamodels from Atlantic
Zoo in OWL 2 Ontology and then validate it by using OWL 2 rea-
soners.

6.1 Determining Correctness of the Translation
To determine whether the translation is correct it would be helpful
to have an unambiguous description of the semantics of the meta-
models that are required to translate. This is not possible for two
reasons. First, the semantics of UML are not unambiguously de-
fined. Secondly, even if UML had clear semantics this article is not
really focused in UML itself, rather it focuses in aspects of a part
of UML that it shares with other metamodel formalisms, such as
generalization and composition.
What does it mean to be ”correct”? A first requirement seems to
be that if one translate metamodels it deems to be correct, the re-
sulting ontologies should be consistent and satisfiable. But this re-
quirement is not enough. After all, a translation that takes every
metamodel into an empty ontology will never generate an incon-
sistent ontology, vacuously satisfying the requirement. To demon-
strate that this is not an empty concern the work of Wang ea. [14]
is referred. Their translation is quite literal, mapping elements in
UML to elements in OWL without regard for the differences in
semantics. Some constructs that have no counterparts in OWL are
translated in the form of comments, and some constructs are simply
ignored. The result is a translation that admittedly does transform
valid metamodels to consistent otologies, but is also rather useless.
To ensure that the notion of correctness of this article is useful it
needs to be consider that which metamodels are translated as in-
consistent ontologies. It can be done by placing a number of con-

straints on the metamodels. [22] Metamodels violating the con-
straints should result in ontologies that are inconsistent or unsat-
isfiable. The notion of correctness thus becomes a question of dis-
criminating between correct and incorrect metamodels.
To make sure that the translation is correct in the sense that it can
discriminate between the relevant classes of metamodels, a number
of pairs of metamodels are constructed. The metamodels in each
pair make use of the same features but one is violating a certain
constraint and the other is not. It can thus be sure that the translation
can make the relevant distinction. An example of such a pair is
given in figure 8. The list of constraints that can be validated using
presented approach is as follows:

—Multiplicity constraints of the form n..m where n > m

—Multiple ownerships with minimum cardinality constraints of a
class.

—Ownership with a minimum cardinality of a class whose su-
perclass is already owned with a minimum cardinality constraint.

—Classes being subclasses of themselves.

—Subset properties that violate the domain or range of their
super-properties.

—Classes being in a composition relationship with themselves
with multiplicity strictly greater than zero.

—Composition relationships forming a cycle between different
classes where all the multiplicities are strictly greater than zero.

C

A

D

B

C

A

D

B
1 1

1 1

1

1

0..1

0..1

Fig. 8. Example of a contrasting metamodel pair. The metamodel on the
left is violating the constraint that instances cannot have more than one
owner. The metamodel on the right is valid.

6.2 Validating the Atlantic Metamodel Zoo
The Atlantic metamodel zoo is a library of 303 metamodels, main-
tained by the AtlanMod team. The AtlanMod team does not state
the criteria for inclusion of a metamodel in the zoo, but most of the
metamodels seem to have been entered by modeling and computer
science researchers. The metamodels are available in different lan-
guages, including UML 2, OWL, KM3 etc.
All examples in the UML 2 zoo are translated into OWL 2 using
the implemented translator and then used the OWL 2 reasoner Pel-
let to validate the generated ontologies. Pellet is an open source
Java-based ontology reasoner developed by a Clark& Parsia LLC,
which is an R&D firm, specializing in Semantic Web and advanced
systems[23]. Given a source metamodel, the process consists of
three steps:

(1) Run the source metamodel through the translator.
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(2) Check the satisfiability of the generated ontology. If the ontol-
ogy is inconsistent it will also be reported in this step.

(3) If the reasoner reported any problem with the ontology, then
ask reasoner to generate an explanation in form of a list of
violated axioms.

The time taken to translate the metamodels varies considerably.
93% of the metamodels took under 10 seconds but large metamod-
els can take minutes, with the largest taking 13.5 minutes to trans-
late on a Pentium 4 PC. The time taken for the reasoner to detect
constraint violations (step two above) is between 3 and 7 seconds
for each metamodel in the zoo.
When the reasoner reports a problem it is necessary to manually
inspect the generated explanation and usually also a diagram of the
metamodel in question since it is in many cases not obvious from
the explanation what the cause of the problem is.
Out of the 303 metamodels, 43% were found to have problems. A
list of the ill-formed metamodels and the classes causing problems
is reported in the appendixes of PhD Thesis [24]. The metamodels
that were not found to have problems are not guaranteed to be well
formed, they are just free from violations that presented method can
detect. However, it is still consider that this shows that the problem
of metamodel validation is indeed an issue of practical concern.

7. CONCLUSION
This article proposed an approach that validates UML and MOF-
Like metamodels and its corresponding models by mapping from
UML-like metamodeling and modeling concepts to OWL 2. The
purpose of this mapping is to describe the semantics of metamodels
using a language with a formal semantic definition and to allow the
automatic validation of metamodels. Many metamodels found in
the largest public repository contain errors and this approach can
find them quickly and effortlessly
Several researchers including the author of this article [25] have
proposed formalizations of UML, MOF and Ecore metamodeling
languages, including Akehurst et al. [26], Alanen and Porres [22],
Clark et al. [27], Jouault and Bézivin [8], Schätz [28] and Varró
[29]. As discussed in the introduction, other researchers have dis-
cussed the significant theoretical aspects that may be seen as a foun-
dation of this work. Whereas the work presented in this article ex-
tends the previous work [25] which is implemented and tested to
demonstrate the viability.
Another approach to validating UML and MOF metamodels is
through OCL [30] rules. A metamodel can define a well-formed
rule that prevents an association’s minimum cardinality from be-
ing greater than its maximum cardinality. However, OCL operates
on the syntactic level. Consequently, validating all combinations of
UML elements requires a very extensive ruleset. The advantage of
using a reasoner to detect contradictions is that one does not need
to express the well-formed rules explicitly.
One issue when mapping UML-like languages into OWL is that
these languages use opposite assumptions. UML-like languages
operate on a closed-world assumption, where complete knowledge
is assumed to be provided in a model or metamodel, which means
everything not provably true is considered false. Conversely, OWL
uses the open world assumption, in which an ontology is not con-
sidered to provide complete knowledge. As it can be seen in for in-
stance Section 3.2, this requires some non-obvious additional dec-
larations in the mapping. It also means that if one wishes to validate
models against the translated meta-models, it will need similar ad-
ditional declarations.

Nonetheless, it is consider that the use of languages and tools en-
visioned for the semantic web as a foundation for software mod-
eling languages and tools is a promising proposition. The existing
issues of interoperability of metamodels and models that face cur-
rent tools could be addressed by reusing results from the semantic
web community. However, as can be seen in this article, the map-
ping between languages is not trivial if it intends to preserve the
original semantics.

7.1 Future Work
In future, this approach may be evolved to analyze the consistency
of full system model comprising of numerous models of more than
one type.
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