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ABSTRACT
For any graph G(V,E), the line graph of G denoted by L(G).
The Line graph L(G) whose vertices corresponds to the edges of
G and two vertices in L(G) are adjacent if and only if the cor-
responding edges in G are adjacent. A geodetic set S ⊆ V (G)
of a graph G = (V,E) is a restrained geodetic set if the sub-
graph V −S has no isolated vertex. The minimum cardinality of a
restrained geodetic set is the restrained geodetic number. In this pa-
per we obtained the restrained geodetic number of line graph of any
graph. Also, obtained many bounds on restrained geodetic number
in terms of elements of G and covering number of G.
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1. INTRODUCTION
In this paper we follow the notations of [6]. All the graphs
considered here are finite, non trivial, undirected and connected.
As usual n = |V | and m = |E| denote the number of vertices
and edges of a graph G, respectively. For any graph G(V,E), the
Line graph L(G) whose vertices correspond to the edges of G and
two vertices in L(G) are adjacent if and only if the corresponding
edges in G are adjacent. The distance d(u, v) between two vertices
u and v in a connected graph G is the length of a shortest u − v
path in G. It is well known that this distance is a metric on the
vertex set V (G). For a vertex v of G, the eccentricity e(v) is the
distance between v and a vertex farthest from v. The minimum
eccentricity among the vertices of G is the radius, radG, and the
maximum eccentricity is its diameter, diamG. A u − v path of
length d(u, v) is called a u − v geodesic. We define I(u, v) to be
the set (interval) of all vertices lying on some u − v geodesic of
G , and for a nonempty subset S of V (G), I(S) =

⋃
u,v∈S I(u, v).

A set S of vertices of G is called a geodetic set in G if
I(S) = V (G), and a geodetic set of minimum cardinality is a
minimum geodetic set. The cardinality of a minimum geodetic set
in G is called the geodetic number g(G). A set of vertices S in a
graph G is a restrained geodetic set if S is a geodetic set and the
subgraph V − S has no isolated vertex. The minimum cardinality
of a restrained geodetic set, denoted gr(G), is called the restrained
geodetic number of G.

Now we define restrained geodetic number of line graph of a
graph G. A set S

′
of vertices of L(G) = H is called a restrained

geodetic set in H if I(S
′
) = V (H) and V − S ′ has no isolated

vertex. A restrained geodetic set of minimum cardinality is the
restrained geodetic number of L(G) and is denoted by gr[L(G)].
The cartesian product (or direct product) X ×Y of two sets X and
Y is the set of all possible ordered pairs whose first component is a
member of X and whose second component is a member of Y . A
vertex v is an extreme vertex in a graph G, if the subgraph induced
by its neighbors is complete. A vertex cover (edge cover) in a
graph G is a set of vertices (edges) that covers all edges (vertices)
of G. The minimum number of vertices (edges) in a vertex cover
(edge cover) of G is the vertex cover number α0(G) (edge cover
number α1(G)).

For any undefined term in this paper, see [5],[6].

2. MATHEMATICS SUBJECT
CLASSIFICATION:05C05, 05C12

3. PRELIMINARY NOTES
We need the following results to prove further results.

THEOREM 3.1 4. Every geodetic set of a graph contains its
extreme vertices.

THEOREM 3.2 4. If G is a non trivial connected graph of
order n and diameter d, then g(G) ≤ n− d+ 1.

THEOREM 3.3 4. Let G be a connected graph of order at
least 3, If G contains a minimum geodetic set S with a vertex of G
lies on some x − w geodesic in G for some w ∈ S, then g(G) =
g(G×K2).

PROPOSITION 3.4. The end edges of a tree T are the ex-
treme vertices of a line graph L(T ) of T .

PROPOSITION 3.5. For any tree T with order n and diame-
ter d, L(T ) and T have the same value of n− d.

4. MAIN RESULTS
THEOREM 4.1. For any tree T that has at least three inter-

nal vertices and k end-edges, gr[L(T )] = k.

Proof. Let S be the set of all extreme vertices of a line graph L(T )
of a tree T , by the theorem 2.1, gr[L(T )] ≥ |S|. On the other hand
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for an internal vertex v of T , there exists x, y of T such that v lies
on the unique x, y geodesic in T . The corresponding end edges of
T are the extreme vertices of L(T ). Thus g[L(T )] ≤ |S|. Also
every geodesic set S

′
of L(T ) must contain S which is the unique

minimum geodesic set, such that V − S ′ has no isolated vertices.
Thus by the above argument S

′
is the minimal restrained geodetic

set of L(T ). Hence |S| = |S ′ | = k. There fore gr[L(T )] = k.

COROLLARY 4.2. For any path Pn with n vertices,
gr[L(Pn)] = 2.

Proof. Clearly the set of two end-edges of a path Pn is its unique
restrained geodesic set. From Theorem 1, the result follows.

THEOREM 4.3. For any tree T of order n and diameter d,
then gr[L(T )] ≤ n− d+ 1.

Proof. Let T be a non trivial connected graph of order n and diam-
eter d, let u and v be vertices of L(T ), for which d(u, v) = d,
let u = v0, v1, ..., vd = v be a u − v path of length d. Now
let S = V [L(T )] − {v1, v2, ..., vd−1}, from the proposition 2.5,
I(S) = V [L(T )] and consequently gr[L(T )] ≤ |S| = n− d+ 1.

THEOREM 4.4. For cycle Cn of order n ≥ 6,

gr[L(Cn)] =

{
2 if n is even
3 if n is odd.

Proof. The line graph L(Cn) of a cycle Cn is again a cycle. We
have the following cases
Case i. Let n be even.
The set of any two antipodal vertices is a restrained geodetic set of
L(C2n).
Case ii. Let n be odd.
No two vertices form a restrained geodetic set, since there exists a
3 vertex restrained geodetic set. Thus

gr[L(Cn)] =

{
2 if n is even
3 if n is odd.

THEOREM 4.5. If every non end-vertex of a tree T is adja-
cent to at least one end vertex, then gr[L(T )] ≤ dn− k

2
e, where k

is number of end vertices in T .

Proof. If diam(T ) ≤ 3, then the result is obvious. Let diam(T ) >

3 and S
′
= {v1, v2, ..., vk} be the set of all end vertices in T with

|S ′ | = k. Now without loss of generality, every end edge of T
are the extreme vertices of L(T ). Suppose L(T ) does not contain
any end vertex then S = {u1, u2, ..., ui}, where S ⊆ V [L(T )],
forms a geodetic sets of L(T ). Further if L(T ) contains at least
one end vertex w, then the set S ∪ {w} forms a geodetic set L(T ).

Therefore in all the cases, We obtain |S ∪ {w}| ≤ dn − |S′ |
2
e ⇒

g[L(T )] ≤ dn− k
2
e.

THEOREM 4.6. For any tree T , with m edges, g[L(T )] ≤
m− α1(T )

2
+ 2.

Proof. Suppose S
′
= {e1, e2, ..., em} be the set of all end edges in

T . Then S
′ ∪J where J ⊆ E(T )−S ′ , be the minimal set of edges

which covers the vertices of T which is not covered by S
′
, such

that |S ′ ∪ J | = α1(T ). Now without loss generality in L(T ), let
I = {u1, u2, ..., ui} ⊆ V [L(T )] be the set of all vertices in L(T )
formed by the end edges in T is the minimal geodetic set of L(T ).

Clearly it follows that g[L(T )] ≤ |E(T )| − |d s
′∪J
2
e|+ 2

⇒ g[L(T )] ≤ m− α1(T )
2

+ 2.

THEOREM 4.7. Let G
′

be the graph obtained by adding an
end-edge (u, v) to a cycle Cn = G with u ∈ G and v /∈ G then
gr[L(G

′
)] = 3, if n is even, except for C4.

Proof. Let {e1, e2, ..., en, e1} be a cycle with n vertices which is
even and let G

′
be the graph obtained from G = Cn by adding

an end-edge (u, v) such that u ∈ G and v /∈ G. By the definition
of line graph, L(G

′
) has K3 as a induced subgraph, also the edge

(u, v) = ek becomes a vertex of L(G
′
). Let S = {ek, ei, ej}

are the vertices of L(G
′
) where ei, ej are the edges incident on

the antipodal vertex of u in G
′
, such that I(S) = V [L(G

′
)] and

V −S has no isolated vertices. Thus by the above argument S is the
minimal restrained geodetic set of L(G

′
). Therefore gr[L(G

′
)] =

3.

THEOREM 4.8. Let G
′

be the graph obtained by adding end
edge (u, v) to a cycle Cn = G with u ∈ G and v /∈ G, then
g[L(G

′
)] = 2, if n is odd, except for C3.

Proof. Let {e1, e2, ..., en, e1} be a cycle with n vertices which is
odd and let G

′
be the graph obtained from G = Cn by adding an

end edge (u, v) such that u ∈ G and v /∈ G. By the definition of
line graph, L(G

′
) has 〈K3〉 as an induced sub graph, also the edge

(u, v) = ek becomes a vertex ofL(G
′
). Let S = {ek, ei} be the set

of vertices of L(G
′
), where ei = (a, b) ∈ G and d(u, a) = d(u, b)

in the graph L(G
′
), such that I(S) = V [L(G

′
)] and any vertex

el ∈ V − S, deg(el) 6= 0. Thus by the above argument S is the
minimal restrained geodetic set of L(G

′
). There fore gr[L(G

′
)] =

2.

THEOREM 4.9. LetG
′
be the graph obtained by adding end-

edge (ui, vi), i = 1, 2, ..., n to each vertex of G = Cn such that
ui ∈ G, vi /∈ G. Then gr[L(G

′
)] = n.

Proof. Let {e1, e2, ..., en, e1} be a cycle with n vertices and G =

Cn. Let G
′

be the graph obtained by adding end edge (ui, vi), i =
1, 2, 3, ..., n to each vertex of G such that ui ∈ G, vi /∈ G. Clearly
n be the number of end vertices of G

′
. By the definition of line

graph, L(G
′
) have n copies of K3 as an induced subgraph. The

edges (ui, vi) = ei for all i, becomes n vertices of L(G
′
) and

those lies on geodetic set of L(G
′
). Since they forms the extreme

vertices of L(G
′
), by Theorem 2.1. Which itself is the restrained

geodetic set of L(G
′
. There fore gr[L(G

′
)] = n.

THEOREM 4.10. For cycleCn, n ≥ 6 is even, gr[L(Cn)] =
n

α0(Cn)
.

Proof. Let n ≥ 6 is even be the number of vertices and α0 is the
vertex covering number ofG = Cn. We have L(Cn) = Cn and by
Theorem 3.3, gr[L(Cn)] = 2. Also for even cycle, vertex covering
number α0(Cn) =

n
2

. Hence gr[L(Cn)] = 2 = n
n
2
= n

α0(Cn)
.

THEOREM 4.11. For cycle Cn, n > 5 is odd, gr[L(Cn)] =
n+1

α0(Cn)
+ 1.

Proof. Let n ≥ 3 is odd be the number of vertices and α0 is the
vertex covering number ofG = Cn. We have L(Cn) = Cn and by
Theorem 3.3, gr[L(Cn)] = 3. Also for odd cycle, vertex covering
number α0(Cn) =

n+1
2

. Hence gr[L(Cn)] = 2+1 = n+1
n+1
2

+1 =

n+1
α0(Cn)

+ 1.

THEOREM 4.12. For any integers m,n ≥ 2,
gr[L(Km,n)] ≤ mn− 1.
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Proof. Let m + n and mn be the number of vertices and edges
of the given graph Km,n and d be the diameter. Since diameter of
L(Km,n) = 2, the number of vertices in L(Km,n) is mn. Hence
by Theorem 2.2 gr(G) ≤ n−d+1. Now we have gr[L(Km,n)] ≤
mn− 2 + 1⇒ gr[L(Km,n)] ≤ mn− 1.

THEOREM 4.13. For any integer n ≥ 4, gr[L(Kn)] ≤
(n+1)(n−2)

2
.

Proof. Let n ≥ 4 be the vertices of the given graphKn and d be the
diameter. Since diameter of L(Kn) is 2 and the number of vertices
in L(Kn) is n(n−1)

2
, hence by Theorem 2.2, gr(G) ≤ n − d + 1.

We have gr[L(Kn)] ≤ n(n−1)
2
− 2 + 1.

⇒ gr[L(Kn)] ≤ n(n−1)
2
− 1.

⇒ gr[L(Kn)] ≤ n2−n−2
2

.
⇒ gr[L(Kn)] ≤ (n+1)(n−2)

2
.

THEOREM 4.14. For any path Pn,

g[L(Pn ×K2)] =

{
2 when n = 2
3 when n = 3
4 when n > 3.

Proof. Let Pn × K2 be formed from two copies of G1 and
G2 of Pn. Then by Theorem 2.3 g(Pn × K2) = g(Pn).
Now L(Pn × K2) formed from two copies of G

′
1 and G

′
2

of L(Pn). And let U = {u1, u2, ..., un−1} ∈ V (G
′
1),

W = {w1, w2, ..., wn−1} ∈ V (G
′
2). We have the following

cases.

Case1: If n = 2.
Then by the definition of line graph L(P2 ×K2) = P2 ×K2. By
Theorem 2.3 g[L(P2 ×K2)] = g(P2) = 2.

Case2: If n = 3.
Then L(P3 × K2) is formed from two copies of P2 clearly
g[L(P3 ×K2)] = 3.

Case3: If n > 3.
Let S be the geodetic set of L(Pn×K2). We claim that S contains
two elements (end vertices) from each set {u1, un−1, w1, wn−1}.
Since I(S) = V [L(Pn × K2)] = V , it follows that g[L(Pn ×
K2)] ≤ 4. It remains to show that if S

′
is a three element subset of

V [L(Pn ×K2)] then I(S
′
) 6= V [L(Pn ×K2)]. First assume that

S
′
is a subset U or W , say the farmer. Then I(S

′
) = S

′ ∪W 6= V .
Therefore, we may take that S

′ ∩ U = {ui, uj} and S
′ ∩W =

{wk}. Then I(S
′
) = {ui, uj} ∪W 6= V [L(Pn ×K2)].

THEOREM 4.15. For the wheelWn = K1+Cn−1 (n ≥ 6),
n is even. Then gr[L(Wn)] =

n
2

.

Proof. Let Wn = K1 + Cn−1 (n ≥ 6) with x the vertex of
K1 and V (Cn−1) = {v1, v2, ..., vn−1}, E = {e1, e2, ..., en−1}
be the internal edges of Wn. Now, U = {u1, u2, ..., uj} are the
vertices formed from edges of Cn−1 i.e U ⊆ V [L(Wn)]. W =
{w1, w2, ..., wj} are the vertices of L(Wn) formed from internal
edges ofWn, i.eW ⊆ V [L(Wn)]. NowU1∪{wj}whereU1 ⊆ U ,
forms a minimum geodetic set of L(Wn). Clearly |U ∪{wj}|n2 .⇒
gr[L(Wn)] =

n
2

.

THEOREM 4.16. For the wheelWn = K1+Cn−1 (n ≥ 6),
n is odd. Then gr[L(Wn)] =

n+1
2

.

Proof. Let Wn = K1 + Cn−1 (n ≥ 6) with x the vertex of
K1 and V (Cn−1) = {v1, v2, ..., vn−1}, E = {e1, e2, ..., en−1}
be the internal edges of Wn. Now, U = {u1, u2, ..., uj} are
the vertices formed from edges of Cn−1 i.e U ⊆ V [L(Wn)].
W = {w1, w2, ..., wj} are the vertices of L(Wn) formed from
internal edges of Wn, i.e W ⊆ V [L(Wn)]. Now U1 ∪ {wj , wj−1}
where U1 ⊆ U , forms a minimum geodetic set of L(Wn). Clearly
|U ∪ {wj , wj−1}|n+1

2
.⇒ gr[L(Wn)] =

n+1
2

.
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