
International Journal of Computer Applications (0975 – 8887)

Volume 171 – No. 7, August 2017

15

Replacing Object Oriented Programming Features

through Aspect Oriented Programming with

Crosscutting Concerns

Ravi Kumar
Ph.D. Scholar, MMICT& BM

Maharishi Markandeshwar University
Mullana(Ambala)-133207, Haryana,India

Munishwar Rai, PhD
Associate Professor, MMICT& BM

Maharishi Markandeshwar University
Mullana(Ambala)-133207, Haryana,India

ABSTRACT
Aspect-oriented programming (AOP) has been introduced

as a potential programming approach for the specification

of nonfunctional component properties of a system. Thus

AOP and especially AspectJ (general purpose aspect

oriented language) is assessed from the component reuse

point of view. We examines the use of the language, as

well as its features . It lays out a common crosscutting

problem to illustrate the general syntax of the traditional

AspectJ language.

Keywords

Aspect Oriented Programming, Reusability, AspectJ .

1. INTRODUCTION
An aspect-oriented programming system (AOP) is a

software system that is a realization of the aspect-oriented

programming methodology [3].

An explicit definition of the syntax and semantics of the

language is called language specification. A software

application that can translate code written in the language

into an executable form is called language reference

implementation.

A complete AOP system supports the following

fundamental concepts [1, 4-6]:

 Join points: Identifiable points in the execution

of a system.

 Pointcut: A construct for selecting join points.

 Advice: A construct to introduce or alter

execution behavior .

 Static crosscutting: constructs for altering the

static structure of a system .

 Aspect: A module to express all crosscutting

constructs .

Fig. 1 shows the central concepts in each of the three

programming approaches such as AOP,OOP ,POP and

how they are related to each other[8][12].

Fig 1: The Relationship between POP, OOP and AOP

1.1 Comparison of OOP and AOP
Table 1.

Characteristics OOP AOP

Code unit

Class: Code unit

that encapsulates

methods and

attributes[11].

Aspect: Code

unit that

encapsulates

pointcuts, advice,

and attributes.

Entry point

Method

signatures:

Define the entry

points for the

execution of

method bodies.

Pointcut: Define

the set of entry

points in which

advice is

executed.

Implementation

Method bodies:

Implementations

of the primary

concerns.

Advice:

Implementations

of the

crosscutting

concerns.

Conversion

Compiler:

Converts source

code into object

code.

Weaver:

Instruments code

(source or object)

with advice.

AspectJ is the first complete AOP system which is also the

best and most widely used AOP system. The initial

development of AspectJ was the work of a team at Xerox

PARC, led by Gregor Kiczales. He also coined the terms

Programming

Methodology

Language

specification
Language reference

implementation

AOP(Aspects: extended

classes)

 OOP(Classes)

 POP

(Operation Only)

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No. 7, August 2017

16

"crosscutting" and "aspect-oriented programming". After a

few releases, Xerox donated AspectJ to the free software

community at http://eclipse.org. A few years later another

AOP system (AspectWerkz) merged with AspectJ, adding

features, such as annotation based syntax. At the moment,

AspectJ has an alternative implementation(AspectBench),

used for experimenting with new features and

optimizations .

2. ASPECTJ IMPLEMENTATION IN

AOP
AspectJ is an extension to the Java programming language

that adds AOP capabilities to Java. AspectJ provides three

weaving mechanisms or AspectJ is a three-step process

(see Fig. 2)[17]:

1. Compile classes

2. Compile aspects

3. Weave aspects into classes to produce the final binary

files

Fig. 2 Three-step process

 “AOP is an approach to software development that

combines generative and component–based development"

[9]. Fig. 3 illustrates the conversion of an Object Oriented

program to Aspect Oriented and how a concern is

modularized[10].

 (a)

(b)

Fig. 3 Modularizing system concerns

AOP complements OOP by providing a different way of

thinking about program structure.The key unit of

modularity in OOP is the class whereas in AOP the unit of

modularity is the aspect. Fig. 3 (a) describe the object

oriented program. A program can be categorized into four

objects like O1,O2,O3,O4 .Each object could accessed by

a class but in AOP we make an aspect as shown in Fig.

3(b) .Through aspect we make more modular of a program.

Here aspect is central unit of AspectJ program like a class.

Aspect allows the user to understand each element of the

system by knowing only its concern and without the need

to understand other module. Main concern in a program

are identified and implemented as aspects. They are then

weaved into the appropriate places in the program by a

weaver which is compilerof an aspect language[2].

AOP for implementing AspectJ will certainly enhance

software quality in many ways like[7]:

 Clear responsibilities for individual modules : In

AOP, AspectJ code deals with the same aspect

in one module avoiding the redundancy of

crosscutting concerns.

 O 1

data

 O 3

data

 O 2

data

 O 4

data

O 1

data

O 3

data

O 2

data

O 4

data

A

S

P

E

C

T

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No. 7, August 2017

17

 Consistent implementation : AspectJ provides

consistent implementation by having each aspect

handled once.

 Improved reusability : AOP isolates core

concerns from the crosscutting ones, enabling

more mixing and matching, and therefore

improving the overall reusability in both

modules.

 Improved skill transfer : The concepts of AOP

are reusable and transferable. Therefore,

developers training time and cost will be

minimized even if they need to learn more than

one language. This is because core concerns and

design patterns are universal.

 -wide policy enforcement : AOP

allows programmers to enforce a variety of

contracts and provide guidance in following

“best” practices by creating reusable aspects.

 Logging-fortified quality assurance : AOP

enables quality-assurance persons to attach the

bug paper with its log, easing the reproduction of

the behavior by the developer.

 Better simulation of the real world through

virtual mock objects : AOP makes the difficult

and cumbersome testing process easier without

the need to compromise the core design for

testability.

 Nonintrusive what-if analysis : AOP does not

waste time and space by checking whether

functionality is needed by running what-if

analysis every time before changing the system

behavior.

3. COMPARISON OF JAVA AND

ASPECTJ THROUGH EXAMPLE
Join point, point-cut ,advice ,introduction ,point-cut

designator are the points through which we can link the

AspectJ and Java(non aspect) code[14]. Some join points

examples are method call, method execution, and method

reception. AspectJ defines different types of point-cut

designators that can identify all types of join points [13]. In

Fig.4 the point-cut prime operation at statement 12 picks

out each call to the method isprime() of an instance of the

class prime, where an int is passed as an argument and it

makes the value to be available to the point-cut and

advice[16]. Using advice we can define certain code to be

executed when a point-cut is reached [13]. After advice at

statement 15 runs after each join point picked out by the

point-cut primeoperation and before the control is return to

the calling function. The before advice at statement 13 runs

before the join point picked out by the point-cut

primeoperation. Introduction allows an aspect to add

methods, fields or interfaces to existing classes. A point-

cut designator simply matches certain join points at

runtime. In Fig.4 the point-cut designator Call (boolean

prime.isprime(int), at statement 12 matches all the method

calls to factorial from an instance of the class prime [15].

4. CONCLUSION
Clearly, there is a need for development environments that

support the efficient creation of applications that use

modern execution systems. This has been the goal of a

continuing research effort over the last several years. The

previous focus has been on using component-based ideas

to develop a programming model and associated

framework to support such a development approach.

AspectJ slowly but surely gains popularity and the number

of big projects that are using it has increased. AspectJ is

also very popular in the academic setting. Researchers

often use it for their research in the area of AOP, for

example in software design optimizations. AOP with

AspectJ has potential to become very popular in the near

future because it is easy to use and very powerful.

Non aspect code

Import java.util.*;

public class prime

{

private static int n,count=0;

1. public static void

main(String args[])

 {

2.

n=Integer.parseInt(args[0]);

3. if(isprime(n))

 {

4. System.out.println(“IS

PRIME”);

 else

5. System.out.println(“IS

NOT PRIME”);

 }

 }

6. public static boolean

isprime(int n)

 {

7. for(int i=2; i<=n/2; i++)

 {

8. if(n%i == 0)

{

 Count++;

 break;

 }

 }

 If(count==0)

 {

9. return false;

 }

 Else

{

10. return true;

 }

 }

 Aspect code

11. public aspect

PrimeAspect

 {

12. public pointcut

primeoperation(int n): call

(boolean prime.isprime(int)

&& args(n);

13. before (int n):

primeoperation(n)

 {

14.

System.out.println(“Testing

the prime number for “

+n);

 }

15. after(int n) returning

(boolean result):

primeoperation(n)

 {

16.

system.out.println(showing

the prime status for” + n);

 }

 }

Fig. 4 AspectJ program to test a number is prime or

not

5. REFERENCES
[1] R. Laddad, AspectJ in Action, 2010 Enterprise AOP

with Spring, Manning Publications.

[2] Munishwar Rai, Rajender Nath & Jai Bhagwan,

International Journal of Engineering and Innovative

Technology(IJEIT), Volume 3, Issue 5, November

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No. 7, August 2017

18

2013,PP.309-11,” A Cluster Based Reusability Model

with Reference to Aspect Mining .”

[3] http://www.eclipse.org/articles

[4] R. Miles, O’Reilly Media, 2004,AspectJ Cookbook.

[5] A. Colyer, A. Clement, G. Harley and M. Webster,

Addison-Wesley Professional, 2004,Eclipse AspectJ:

Aspect-Oriented Programming with AspectJ and

Eclipse AspectJ Development Tools.

[6] J. D. Gradecki and N. Lesiecki, Wiley, 2003,

Mastering AspectJ: Aspect- Oriented Programming in

Java.

[7] R. Laddad, IEEE Software, 2003, vol.20, no. 6, pp.

90-91. “Aspect-oriented programming will improve

quality.”

[8] J. Viega, J. Vuas, IEEE Software, 2000, vol.17, no.6,

pp. 19-21. “Can aspect-oriented programming lead to

more reliable software?,”

[9] Sommerville, 8 ed, 2007, I. Software Engineering,.

[10] Daniela Gotseva and Mario Pavlov, IJCSI vol. 9,Issue

5, No.1., 2012, “Aspect-oriented programming with

AspectJ”

[11] Sk. Riazur Raheman, Amiya Kumar Rath, Hima

Bindu M , IJRITCC ,vol.2,Issue:2,pp.249-259,2014,

“Dynamic Slice of Aspect Oriented Program: A

Comparative Study”

[12] Heba A. Kurdi, IJACSA,vol.4,No.9,2013, “Review

on Aspect Oriented Programming”

[13] Mohapatra D. P. et. al., , informatica 32, 261-274,

2008, Dynamic Slicing of Aspect-Oriented Programs.

[14] Abhishek Ray et. al., International Journal of

Software Engineering and Its Applications, Vol. 7,

No. 1, January, 2013, An Approach for Computing

Dynamic Slice of Concurrent Aspect-Oriented

Programs.

[15] Gregor Kiczales et. al., published in proceedings of

the 15th European Conference on Object Oriented

Programming, pages 327-353, 2001, An Overview of

AspectJ.

[16] Jyri Laukkanen , seminar paper, UNIVERSITY OF

ELSINKI , 2008, Aspect-Oriented Programming.

[17] http://www.eclipse.org/aspectj

IJCATM : www.ijcaonline.org

