
International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

32

PRISM: Fine-Grained Phase and Resource Information-

aware Scheduler for Map-Reduce

Swati R. Mahendrakar
PG Student

M B E Society’s College of Engineering,
Ambajogai

Maharashtra, India

B. M. Patil
Professor

M B E Society’s College of Engineering,
Ambajogai

Maharastra, India

ABSTRACT
In recent years, Map Reduce has become a popular model

with regard to data-intensive computation. Map Reduce can

significantly reduce the execution time of data-intensive jobs.

In order to achieve this objective, Map Reduce breaks down

each job into small map and reduce tasks and executes them in

parallel across a large number of machines. However, existing

solutions mainly focus on scheduling at the task-level, which

offer sub-optimal job performance, because tasks may have

resource requirements which may vary during their lifetime.

This makes it difficult for existing system’s task-level

schedulers to effectively utilize available resources in order to

reduce job execution time.

To avoid this limitation, PRISM is introduced. PRISM stands

for Phase and Resource Information-aware Scheduler for

Map-Reduce. PRISM consists of various clusters that perform

resource-aware scheduling at the level of phases. PRISM can

be defined as a fine-grained resource-aware Map Reduce

scheduler that divides tasks into phases. Here, each phase has

a constant resource usage profile, so that not a single phase

suffers from starvation. PRISM also offers high resource

utilization and provides 1:3x improvements in job running

time as compared to the current Hadoop schedulers.

Keywords
Map Reduce, scheduling, resource allocation.

1. INTRODUCTION
Now-a-days, businesses are entirely dependent on large-scale

data analytics so that, they can make critical day-to-day

business decisions. This turns towards the development of

Map-Reduce, i.e., a parallel programming model which has

become equivalent with large-scale and data-intensive

computations. Map-Reduce comprises of a job, which is a

collection of Map and Reduce tasks. These tasks can be

scheduled synchronously on multiple machines, which results

in substantial reduction in job running time.

An essential component of a Map-Reduce system is its job

scheduler. The main role of job scheduler is to create a

schedule of Map and Reduce tasks that spans one or more

jobs, minimizes job completion time and maximizes resource

utilization. In many situations, heavy resource contention and

long job completion time occurs due to a schedule with too

many simultaneously running tasks on a single machine. On

the contrary, starvation occurs due to the poor resource

utilization and also due to a schedule with too few

concurrently running tasks on a single machine.

The problem of job scheduling becomes considerably easier to

solve, if there is an assumption that all map tasks (and

likewise, all reduce tasks) has consistent resource

requirements for example, CPU, memory, disk and network-

bandwidth. However, this assumption is used to simplify the

scheduling problem by the current Map-Reduce systems, such

as Hadoop Map-Reduce Version 1.x. This system uses a

simple slot-based resource allocation scheme, in which the

physical resources on each machine are seized by the number

of indistinguishable slots that can be allocated to tasks.

This paper offers PRISM, i.e., a Fine- grained Phase and

Resource Information-aware Scheduler for Map-Reduce

clusters. PRISM accomplishes resource-aware scheduling at

the level of phases. Precisely, this paper shows that for utmost

Map-Reduce applications, the task resource consumption

during run-time can vary considerably from phase to phase.

Therefore, it is possible for the scheduler to succeed higher

degrees of parallelism although avoiding resource contention,

only by taking care of the resource demand at the phase level.

Hence, by the end, this paper has developed a phase-level

scheduling algorithm with the aim of attaining high job

performance along with proper resource utilization.

2. LITERATURE SURVEY
This section provides an overview of various studies and

surveys, which is related to PRISM.

2.1 Job-Scheduling and Phases
A number of recent studies have conveyed that, often the

production workloads have miscellaneous utilization profiles

and performance requirements [8]. Deteriorating to consider

these job usage characteristics can hypothetically lead to

ineffective job schedules with low resource utilization and

extended job execution time too. Inspired by the above

observation, numerous recent proposals, such as resource-

aware adaptive scheduling (RAS) [15] and Hadoop Map-

Reduce Version 2 (also known as Hadoop NextGen and

Hadoop Yarn) [7], have announced resource-aware job

schedulers for the Map-Reduce framework. On the other

hand, these schedulers insist on a fixed size for each task in

terms of essential resources (e.g. CPU and memory). Thus, the

run-time resource consumption of each task is constant over

its life time.

A phase can be defined as a sub-procedure in the task that has

a distinct determination and can be considered by the identical

resource consumption over its duration. There are two types

of Job-Scheduling, which are Task-level Scheduling and

Phase-level Scheduling.

2.1.1 Task-Level Scheduling
In Task-level Scheduling, it is difficult for schedulers to

effectively utilize the available resources to reduce job

execution time, because tasks can have highly varying

resource requirements during their lifetime. Subsequent phase

of the task may not be scheduled simultaneously. Task level

scheduling suffers from insufficient scheduler decision

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

33

making problem. There are inadequate resources problems

too. Therefore, delay problem might occur. Overall,

performance and efficiency of map reduce frameworks have

become critical.

2.1.2 Phase-Level Scheduling
In Phase-level Scheduling, PRISM, i.e., a fine-grained

resource-aware map-Reduce scheduler, divides tasks into

phases, where each phase has a persistent resource usage

profile and implements scheduling at the phase level. Here, by

considering the resource demand at the level of phases, it is

possible for the scheduler to succeed higher degrees of

parallelism to avoid resource contention. Because of this

parallel implementation there is enhancement in high

Resource Utilization. However, this improves the job Running

Time. Therefore, achieves high job Performance.

2.2 Map-Reduce Job Phases
Existing Hadoop job schedulers implement task-level

scheduling, where tasks are considered as the supreme

granularity for scheduling. However, if the execution of each

task is examined, then it can be found that a task consists of

multiple phases. In particular, a Map-Reduce job consists of

two types of tasks, namely map and reduce tasks. A Map task

takes as input a key-value block stored in the distributed file

system. Subsequently, a Reduce task is responsible for

collecting and applying a user-specified reduce function on

the collected key-value to produce the final output.

In the map phase, when a mapper draws an input data block

from the Hadoop Distributed File System [4] and applies the

user-defined map function on each record, then those records

are collected into a buffer. When the buffer becomes full, then

the content of the buffer will be written to the local Input-

Output disk. Finally, the mapper performs a merge phase to

group the output records and store the records in multiple

files, so that each file can be fetched a consistent reducer. In

the same way, the implementation of a reduce task can be

distributed into three phases: shuffle, sort, and reduce. In the

shuffle phase, the reducer raises the output file from the local

storage of each map task. Then, it places that file in a storage

buffer that can be either memory or disk depending on the size

of the content. When the buffer is fully occupied, then the

content of the buffer will be written to the local Input-Output

disk. At the same time, the reducer also inaugurates one or

more threads to implement local merge sort in order to reduce

the running time of the succeeding sort phase. As soon as, all

the map output records have been collected, then the sort

phase will perform an ultimate sorting procedure to confirm

all collected records are in a specific order. Finally, in the

reduce phase, the records are processed in the sorted order,

and the output is written to the HDFS. Different phases may

have different characteristics in associated to resource

consumption. For instance, the shuffle phase often consumes

substantial network I/O resources as it needs collecting

outputs from all accomplished map tasks. In disparity, the

map and reduce phases essentially process the records on the

local machines. Therefore, they usually demand greater CPU

resources than network bandwidth.

3. PRISM

3.1 Prism Architecture
As it is cleared from the definition that, PRISM is a resource

information-aware Map Reduce scheduler that distributes

tasks into phases in a fine-grained manner, where each phase

has a persistent resource usage profile and implements

scheduling at the level of phases. During the execution time of

a task, resource usage analysis may lead to ineffective

scheduling decisions. Because of this, at run-time, if the

resource allotted to a task is higher than the existing resource

usage, then the idle resources are wasted. On the other hand, if

the resources allotted to the task is much less than the actual

resource demand, then the resource can suffer from a situation

called, bottleneck, which may slow down task execution.

Therefore, a fine-grained, phase-level scheduling mechanism

has been introduced. This allocates the resources according to

the demand of the phase that each task is currently executing.

Due to this fine-grained resource allocation, not a single task

suffers from either bottleneck or starvation problem.

An overview of the PRISM architecture is shown in Fig. 1.

PRISM comprises of four main modules: resource manager,

local node managers, a job progress monitor and a phase-

based scheduler. Initially, Resource Manager (also known as a

job tracker), is responsible for scheduling tasks on each local

node. Then, Local Node Manager, (also known as a task

tracker) that coordinate phase transitions with the scheduler.

Next is Job Progress Monitor, which is responsible to capture

phase-level progress information. Finally, Phase-Based

Scheduler, i.e., a fine-grained, phase-level scheduling

mechanism that allocates resources according to the demand

of executing phase (neither overflow nor underflow).

3.2 Phase-Level Scheduling Mechanism
In this mechanism, there are some steps which are followed

during the execution of PRISM. These steps are:

(Step 1): Each local node manager sends a heartbeat

message to the phase-based scheduler

periodically. As soon as a task requests to be

scheduled, then the scheduler immediately

responses to the heartbeat message with a task

scheduling request.

(Step 2): Then, the local node manager initiates the task.

(Step 3): As and when a task completes implementing a

particular phase (shuffle phase), then the task

requests the local node manager for permission to

start the next phase (e.g. reduce phase).

(Step 4): The local node manager then forwards this

permission request to the phase-based scheduler.

(Step 5): Finally, once the task is permitted to execute the

next phase (reduce phase), the local node

manager grants permission to process that task

and once the task is completed; the task status is

received by the local node manager and then

dispatched to the phase-based scheduler.

PRISM requires constant phase-level resource information for

each job to perform phase-level scheduling. In this way, the

entire task is implemented. Each phase travels through all the

above steps and finally get completed successfully.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

34

 Job Progress Monitor

 Job 1

 Job 2

 Job 3

 Task/Phase Scheduling Decisions

 Task Status

 Task Progression in each phase

Fig. 1: System architecture [16]

4. ALGORITHM AND ITS

DESCRIPTION

4.1 Phase-Level Scheduling Algorithm
1: Upon receiving a status message from machine n:

2. Obtain the resource utilization of machine n

3. PhaseSelected PS ← {∅}

4. CandidatePhases CP ← {∅}

5. repeat

6. for each job j ∈ jobs that has tasks on n do

7. for each schedulable phase i ∈ j do

8. CP ← CP ∪ {i}

9. end for

10. end for

11. For each job j ∈ top k jobs with highest deficit n do

12. if exist schedulable data local task then

13. CP ← CP ∪ {first phase of the local task i}

14. else

15. CP ← CP ∪ {first phase of the non-local task i}

16. end if

17. end for

18. if CP ≠ ∅ then

19. for i ∈ CP do

20. if i is not schedulable on n given current utilization then

21. CP ← CP ∪ {i}

22. Continue;

23. end if

24. Compute the utility U (i, n)

25. if U(i, n) <= 0 then

26. CP ← CP ∪ {i}

27. end if

28. end for

29. if CP ≠ ∅ then

30. i ← task with highest U (i ,n) in the CP

31. PS ← PS U {i}

32. CP ← CP ∪ {i}

33. Update the resource utilization of machine n

34. end if

35. end if

36. Until CP = = ∅

37. Return PS

4.2 Algorithm Description
This algorithm describes the scheduling algorithm used by the

phase-based scheduler. In this algorithm, two important

concepts are used, which are Efficiency and Fairness [8], [14].

However, a Map-Reduce scheduler is responsible to assign

each task to an appropriate machine along with the

consideration of both Efficiency and Fairness.

Efficiency is achieved only by maintaining high utilization of

resources in a cluster by the job schedulers. Another effective

measure for efficiency is job running time because, during an

execution of a task, minimum job running time indicates

maximum utilization of resources in an efficient manner.

Secondly, Fairness provides an assurance that, all the

resources are fairly distributed among each and every job.

This aspect ensures that, there will be neither a bottleneck

situation (i.e. overflow of resources) nor a starvation situation

(i.e. underflow of resources).

However, achieving both the aspects, i.e. Efficiency and

Fairness concurrently seems to be very challenging with

respect to the multi-resource scheduling.

Phase-Based Scheduler

 Resource Manager

Job Request
(With phase-level

resource

requirement)

Task 3

Task 4

…

Task 1

Task 2

…

Task 5

Task 6

…

Node Manager Node Manager

Node Manager

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

35

Initially in the above algorithm, the local node manager sends

the status message to the Phase-Level Scheduling Algorithm

in order to allocate necessary resources. Then, Line 2 states

that, upon receiving the status message from a local node

manager running on machine n, the algorithm computes the

utilization u of the machine using job’s phase-level resource

requirement. Next, Lines 4-10 consists of a set of candidate

phases (i.e. the schedulable phases) and selects these phases in

an iterative manner.

Then, in Lines 11-23, for each job j, if phase has highest

deficit n, then first phase of local task i is executed; otherwise

first phase of the non-local task i is executed. These steps are

iterated for each job.

Next, in Lines 24-28, for each schedulable phase i of each job

j in each iteration, the algorithm computes the utility function

U (i, n) according to the following equation:

U (i, n) = U fairness(i, n) + a .U perf (i, n)
where,

U fairness and U perf signifies the utilities for improving the

fairness and job performance, respectively, and ‘a’ is an

adjustable weight factor.

The fairness of each phase is calculated as

U fairness(i, n) =U before fairness(i, n) – U after fairness(i, n)

where,

U before fairness and U after fairness signify the fairness measures of

the job before and after scheduling phase i on machine n.

Then, in Lines 29-32, the phase with the highest utility for

scheduling is selected and Line 33 updates the resource

utilization of the machine n.

Subsequently, in Lines 34-37, the algorithm repeats the above

steps by re-computing the utility of all the phases in the

candidate set, and selects the succeeding best phase to

schedule. Finally, the algorithm concludes when the candidate

set becomes empty, which means that, there is no suitable

phase to be scheduled.

5. IMPLEMENTATION AND

EXPERIMENTAL RESULTS

5.1 Implementation
The PRISM architecture is implemented as both, i.e. existing

and proposed systems. These systems are simulated in Net-

Beans IDE version 8.1 simulator. All the implementation and

experiments are performed on a machine running Microsoft

Windows XP operating system. The algorithm for executing

the project is implemented in Java, i.e. JDK1.7.0 version.

The Net-Beans simulation for proposed system is as shown in

Fig. 2. This simulation consists of a Master node, a Job

Request module and three Local Node Managers. The

important component, i.e. a Phase-Based Scheduler is

appeared in Master node. This Phase-Based Scheduler is

responsible for scheduling the phases and allocating the

resources. This scheduler is also known as a Fine-Grained

Resource-Aware Scheduler because; it allocates the resources

as per the demand of the phases, (i.e. neither overflow nor

underflow).

Another vital component of Master node is Job Progress

Monitor. This is responsible to capture the phase-level

progress information, i.e. a particular phase is completed or

not.

Next is the Job Request module. In this module, a user can

browse a file which is to be mapped and reduced and then,

this file is assigned to the Job Monitor for further execution.

Finally, there are three Local Node Managers, which are

responsible for coordinating transitions between phase and the

scheduler.

In this manner, the Phase-Level scheduling, i.e. proposed

system of PRISM is implemented. After successful

completion of all three jobs in the Master node; certain graphs

are obtained as results, which are explained in the next sub-

section.

Fig. 2: Simulation of PRISM

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

36

5.2 Experimental Results
As it is discussed that, PRISM architecture is implemented as

both, i.e. existing and proposed systems; therefore certain

graphs are obtained as results in both the systems.

The existing system is based upon Task-Level scheduling;

whereas the proposed system is entirely based upon Phase-

Level scheduling.

5.2.1 Existing System and its Results
In the Existing system (i.e. Task-level Scheduling), it is

difficult for schedulers to effectively utilize the available

resources in order to reduce job execution time, because tasks

may have highly varying resource requirements during their

lifetime. Also, there is no pipelining of tasks (i.e. subsequent

phases are not scheduled simultaneously).

As a result, there is a huge delay problem. Hence, existing

system is too much time-consuming system. Due to this, the

performance and efficiency of the system is reduced.

The following Fig. 3 shows how the tasks suffer from delay

problem. As shown in Fig. 3, there is a XY Line Chart

example, in which there are three nodes (Node 1, Node 3, and

Node 5) on X-axis and there is Time (in sec) on Y-axis.

It can be observed from this graph structure that, each and

every node consumes too much time to complete its

execution. Because of this delay in execution, the existing

system slows down its performance.

In short, these are the drawbacks of existing system, which are

minimum utilization of resources, no pipelining, delay

problem and insufficient scheduler decision making.

Fig. 3: Node and Time Graph (existing system)

Additionally, there are two results (i.e. Line charts). In

existing system, map and reduce functions are implemented.

The first Line chart describes the CPU and memory usages

required for executing map and reduce functions (i.e. Fig. 4).

In this Line chart, the X-axis shows how much time (in sec)

the CPU and Memory has taken during execution and the Y-

axis shows how much percentage of CPU and Memory has

been utilized.

Fig. 4: Map CPU and Memory Usage (existing system)

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

37

Next Line chart is about Map IO usage (i.e. Fig. 5). In this

Line chart, the X-axis shows how much time (in sec) the

Local Disk I/O and HDFS I/O has taken during execution and

Y-axis describes the rate (MB/sec) of data for which the I/O

devices has been used.

These I/O devices are used as buffers for storing data blocks

while running map-reduce functions.

During the execution, the data blocks are first stored on HDFS

(i.e. Hadoop Distributed File System) for implementing map-

reduce functions. When this buffer becomes full, then the

remaining content is written into the Local Disk I/O buffer.

Fig. 5: Map I/O Usage (existing system)

5.2.2 Proposed System and its Results
The Proposed System (i.e. Phase-level Scheduling) introduces

PRISM, which is a fine-grained resource-aware map-Reduce

scheduler. PRISM divides tasks into phases, where each phase

has a persistent resource usage profile and implements

scheduling at the level of phases.

In the proposed system, schedulers allocate the resources as

per the demand of the phases during run-time. Here, the

concept of pipelining is used (i.e. subsequent phases are

scheduled simultaneously), which avoids resource contention

and enhances resource utilization. Therefore, there is no time

consumption, which improves the speed of job Running Time.

Overall, proposed system achieves high job Performance and

efficiency.

The following Fig. 6 shows the Node and Time Graph of

proposed system. As shown in this figure, there are three

nodes (Node 1, Node 3, and Node 5) on X-axis and Time (in

sec) on Y-axis.

Because of pipelining, it can be observed from this graph

structure that, each and every node consumes as minimum

time as needed for execution. Due to this, the performance

and execution speed of the proposed system is appreciably

enhanced.

In short, these are the advantages of proposed system, which

are maximum utilization of resources, pipelining

(improvement in job running time), no delay problem and

achievement in high job performance.

Fig. 6: Node and Time Graph (proposed system)

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

38

Moreover, there are two results (i.e. Line charts) in the

proposed system too. In this system, shuffle, sort and reduce

functions are implemented. The first Line chart describes the

CPU and memory usages required for executing the shuffle,

sort and reduce functions (i.e. Fig. 7).

In this Line chart, the X-axis indicates how much time (in sec)

the CPU and Memory has taken during the execution and the

Y-axis describes how much percentage of CPU and Memory

has been utilized.

Fig. 7: Map CPU and Memory Usage (proposed system)

At the end of execution, the final Line chart is about Map IO

usage (i.e. Fig. 8). In this Line chart, the X-axis indicates how

much time (in sec) the Local Disk I/O and HDFS I/O had

taken during execution and Y-axis defines the rate (MB/sec)

of data blocks for which the I/O devices has been used.

These I/O devices are referred to as buffers for storing data

blocks while running the shuffle, sort and reduce functions.

During the execution, the data blocks are first stored on HDFS

buffer (i.e. Hadoop Distributed File System) for implementing

the specified functions. When this buffer is fully occupied,

then the remaining content is written into the Local Disk I/O

buffer. Hence, these are the Graphs and Line charts, which

appear while executing the proposed system.

Fig. 8: Map I/O Usage (proposed system)

6. CONCLUSION AND FUTURE SCOPE
Therefore, in this paper, Map-Reduce is used a popular

programming model for computing the data intensive jobs.

PRISM, i.e., a fine-grained resource-aware Map-Reduce

scheduler, divides tasks into phases and also performs

scheduling at the phase level. Because of using this Phase-

level scheduling, there is enhancement in Resource

Utilization.

The scheduling algorithm used by PRISM contributes in

minimization of job running time as compared to the current

Hadoop schedulers. Overall, PRISM achieves high job

Performance. Finally, the future scope of this paper will be

improvement in the scalability of PRISM by using the

distributed schedulers.

7. REFERENCES
[1] Hadoop MapReduce distribution [Online]. Available:

http://hadoop.apache.org, 2015.

[2] Hadoop Capacity Scheduler [Online]. Available:

http://hadoop.apache.org/docs/stable/capacity_scheduler

html/, 2015.

[3] Hadoop Fair Scheduler [Online]. Available:

http://hadoop.apache.org/docs/r0.20.2/fair_scheduler.htm

l, 2015.

[4] Hadoop Distributed File System [Online]. Available:

hadoop.apache.org/docs/hdfs/current/, 2015.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

39

[5] GridMix benchmark for Hadoop clusters [Online].

Available:http://hadoop.apache.org/docs/mapreduce/curt/

gridmix.html, 2015.

[6] PUMA benchmarks [Online]. Available:

http://web.ics.purdue.edu/fahmad/benchmarks/datasets.ht

m, 2015.

[7] The Next Generation of Apache Hadoop MapReduce

[Online].Available:http://hadoop.apache.org/docs/current

/hadoop-yarn/hadoop-yarn-site/YARN.html, 2015.

[8] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K.

Elmeleegy, and R. Sears, “MapReduce online,” in Proc.

USENIX Symp. Netw. Syst. Des. Implementation, 2010,

p. 21.

[9] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” Commun. ACM, vol. 51,

no. 1, pp. 107–113, 2008.

[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.

Shenker, and I. Stoica, “Dominant resource fairness: Fair

allocation of multiple resource types,” in Proc. USENIX

Symp. Netw. Syst. Des. Implementation, 2011, pp. 323–

336.

[11] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

Cetin, and S. Babu, ”Starfish: A self-tuning system for

big data analytics,” in Proc. Conf. Innovative Data Syst.

Res., 2011, pp. 261–272.

[12] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, and K.

Talwar, “Quincy: Fair scheduling for distributed

computing clusters,” in Proc. ACMSIGOPS Symp. Oper.

Syst. Principles, 2009, pp. 261–276.

[13] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. “Multi-

resource allocation: Flexible tradeoffs in a unifying

framework,” in Proc. IEEE Int. Conf. Comput.

Commun., 2012, pp. 1206–1214.

[14] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley,

M. Steinder, J. Torres, and E. Ayguad_e, “Resource-

aware adaptive scheduling for MapReduce clusters,” in

Proc. ACM/IFIP/USENIX Int. Conf. Middleware, 2011,

pp. 187–207.

[15] Verma, L. Cherkasova, and R. Campbell, “Resource

provisioning framework for MapReduce jobs with

performance goals,” in Proc. ACM/IFIP/USENIX Int.

Conf. Middleware, 2011, pp. 165–186.

[16] Qi Zhang, Student Member, IEEE, Mohamed Faten

Zhani, Member, IEEE, Yuke Yang, Raouf Boutaba,

Fellow, IEEE, and Bernard Wong, “PRISM: Fine-

Grained Resource-Aware Scheduling for Map-Reduce,”

in ieee transactions on cloud computing, vol. 3, no. 2,

april/june 2015.

IJCATM : www.ijcaonline.org

